
Mining
Twitter

Matthew A. Russell

Distilling Rich Information from Messy Data

21 Recipes for

21 Recipes for Mining Twitter

21 Recipes for Mining Twitter

Matthew A. Russell

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

21 Recipes for Mining Twitter
by Matthew A. Russell

Copyright © 2011 Matthew A. Russell. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Kristen Borg
Proofreader: Kristen Borg

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
February 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. 21 Recipes for Mining Twitter, the image of a peach-faced lovebird, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30316-7

[LSI]

1296485191

Table of Contents

Preface . vii

The Recipes . 1
1.1 Using OAuth to Access Twitter APIs 1
1.2 Looking Up the Trending Topics 3
1.3 Extracting Tweet Entities 5
1.4 Searching for Tweets 7
1.5 Extracting a Retweet’s Origins 10
1.6 Creating a Graph of Retweet Relationships 13
1.7 Visualizing a Graph of Retweet Relationships 15
1.8 Capturing Tweets in Real-time with the Streaming API 20
1.9 Making Robust Twitter Requests 22

1.10 Harvesting Tweets 25
1.11 Creating a Tag Cloud from Tweet Entities 29
1.12 Summarizing Link Targets 34
1.13 Harvesting Friends and Followers 37
1.14 Performing Setwise Operations on Friendship Data 39
1.15 Resolving User Profile Information 43
1.16 Crawling Followers to Approximate Potential Influence 45
1.17 Analyzing Friendship Relationships such as Friends of Friends 48
1.18 Analyzing Friendship Cliques 50
1.19 Analyzing the Authors of Tweets that Appear in Search Results 52
1.20 Visualizing Geodata with a Dorling Cartogram 54
1.21 Geocoding Locations from Profiles (or Elsewhere) 58

v

Preface

Introduction
This intentionally terse recipe collection provides you with 21 easily adaptable Twitter
mining recipes and is a spin-off of Mining the Social Web (O'Reilly), a more compre-
hensive work that covers a much larger cross-section of the social web and related
analysis. Think of this ebook as the jetpack that you can strap onto that great Twitter
mining idea you've been noodling on—whether it’s as simple as running some dispo-
sible scripts to crunch some numbers, or as extensive as creating a full-blown interactive
web application.

All of the recipes in this book are written in Python, and if you are reasonably confident
with any other programming language, you’ll be able to quickly get up to speed and
become productive with virtually no trouble at all. Beyond the Python language itself,
you’ll also want to be familiar with easy_install (http://pypi.python.org/pypi/setup
tools) so that you can get third-party packages that we'll be using along the way. A great
warmup for this ebook is Chapter 1 (Hacking on Twitter Data) from Mining the Social
Web. It walks you through tools like easy_install and discusses specific environment
issues that might be helpful—and the best news is that you can download a full reso-
lution copy, absolutely free!

One other thing you should consider doing up front, if you haven’t already, is quickly
skimming through the official Twitter API documentation and related development
documents linked on that page. Twitter has a very easy-to-use API with a lot of degrees
of freedom, and twitter (http://github.com/sixohsix/twitter), a third-party package we’ll
use extensively, is a beautiful wrapper around the API. Once you know a little bit about
the API, it’ll quickly become obvious how to interact with it using twitter.

Finally—enjoy! And be sure to follow @SocialWebMining on Twitter or “like” the
Mining the Social Web Facebook page to stay up to date with the latest updates, news,
additional content, and more.

vii

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “21 Recipes for Mining Twitter by Matthew
A. Russell (O’Reilly). Copyright 2011 Matthew A. Russell, 978-1-449-30316-7.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

viii | Preface

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9781449303167

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | ix

The Recipes

1.1 Using OAuth to Access Twitter APIs
Problem
You want to access your own data or another user’s data for analysis.

Solution
Take advantage of Twitter’s OAuth implementation to gain full access to Twitter’s
entire API.

Discussion
Twitter currently implements OAuth 1.0a, an authorization mechanism expressly de-
signed to allow users to grant third parties access to their data without having to do the
unthinkable—doling out their username and password. Various third-party Python
packages such as twitter (easy_install twitter) provide easy-to-use abstractions for
performing the “OAuth dance,” so that you can easily implement client programs to
walk the user through this process. In the case of Twitter, the first step involved is
registering your application with Twitter at http://dev.twitter.com/apps where Twitter
provides you with a consumer key and consumer secret that uniquely identify your ap-
plication. You provide these values to Twitter when requesting access to a user’s data,
and Twitter prompts the user with information about the nature of your request. As-
suming the user approves your application, Twitter then provides the user with a PIN
code for the user to give back to you. Using your consumer key, consumer secret, and
this PIN code, you retrieve back an access token and access token secret that ultimately
are used to get you the authorization required to access the user’s data.

Example 1-1 illustrates how to use the consumer key and consumer secret to do the
OAuth dance with the twitter package and gain access to a user’s data. To streamline
future authorizations, the access token and access token secret are written to disk for
later use.

1

Example 1-1. Using OAuth to access Twitter APIs (see http://github.com/ptwobrussell/Recipes-for
-Mining-Twitter/blob/master/recipe__oauth_login.py)

-*- coding: utf-8 -*-

import os
import sys
import twitter

from twitter.oauth import write_token_file, read_token_file
from twitter.oauth_dance import oauth_dance

def oauth_login(app_name='',
 consumer_key='',
 consumer_secret='',
 token_file='out/twitter.oauth'):

 try:
 (access_token, access_token_secret) = read_token_file(token_file)
 except IOError, e:
 (access_token, access_token_secret) = oauth_dance(app_name, consumer_key,
 consumer_secret)

 if not os.path.isdir('out'):
 os.mkdir('out')

 write_token_file(token_file, access_token, access_token_secret)

 print >> sys.stderr, "OAuth Success. Token file stored to", token_file

 return twitter.Twitter(domain='api.twitter.com', api_version='1',
 auth=twitter.oauth.OAuth(access_token, access_token_secret,
 consumer_key, consumer_secret))

if __name__ == '__main__':

 # Go to http://twitter.com/apps/new to create an app and get these items.
 # See also http://dev.twitter.com/pages/oauth_single_token

 APP_NAME = ''
 CONSUMER_KEY = ''
 CONSUMER_SECRET = ''

 oauth_login(APP_NAME, CONSUMER_KEY, CONSUMER_SECRET)

Although not necessarily the norm, Twitter has conveniently opted to provide you with
direct access to your own access token and access token secret, so that you can bypass
the OAuth dance for a particular application you’ve created under your own account.
You can find a “My Access Token” link to these values under your application’s details.
These should be the same values written to the twitter.oauth file in Example 1-1, which
ultimately enables you to instantiate the twitter.Twitter object without all of the
hoopla. Note that while convenient for retrieving your own access data from your own

2 | The Recipes

account, this shortcut provides no benefit if your goal is to write a client program for
accessing someone else’s data. Do the full OAuth dance in that case instead.

See Also
OAuth 2.0 spec, Authenticating Requests with OAuth, OAuth FAQ

1.2 Looking Up the Trending Topics
Problem
You want to keep track of the trending topics on Twitter over a period of time.

Solution
Use the /trends resource (http://dev.twitter.com/doc/get/trends) to retrieve the list of
trending topics along with Python’s built-in sleep function, in order to periodically
retrieve updates from the /trends resource.

Discussion
The /trends resource returns a simple JSON object that provides a list of the currently
trending topics. Examples 1-2 and 1-3 illustrate the approach and sample results.

Example 1-2. Discovering the trending topics (see http://github.com/ptwobrussell/Recipes-for-Mining
-Twitter/blob/master/recipe__get_trending_topics.py)

-*- coding: utf-8 -*-

import json
import twitter

t = twitter.Twitter(domain='api.twitter.com', api_version='1')

print json.dumps(t.trends(), indent=1)

Example 1-3. Sample results for a trending topics query

{
 "trends": [
 {
 "url": "http://search.twitter.com/search?q=Ben+Roethlisberger",
 "name": "Ben Roethlisberger"
 },

 ... output truncated ...

],
 "as_of": "Sun, 09 Jan 2011 23:20:30 +0000"
}

1.2 Looking Up the Trending Topics | 3

You can easily extract the names of the trending topics from this data structure with
the list comprehension shown in Example 1-4.

Example 1-4. Using a list comprehension to extract trend names from a trending topics query

trends = [
 trend['name']
 for trend in t.trends()['trends']
]

From here, it’s a simple matter to archive them to disk as JSON, as shown in
Example 1-5.

Example 1-5. Collecting time-series data for trending topics (see http://github.com/ptwobrussell/
Recipes-for-Mining-Twitter/blob/master/recipe__trending_topics_time_series.py)

-*- coding: utf-8 -*-

import os
import sys
import datetime
import time
import json
import twitter

t = twitter.Twitter(domain='api.twitter.com', api_version='1')

if not os.path.isdir('out/trends_data'):
 os.makedirs('out/trends_data')

while True:

 now = str(datetime.datetime.now())

 trends = json.dumps(t.trends(), indent=1)

 f = open(os.path.join(os.getcwd(), 'out', 'trends_data', now), 'w')
 f.write(trends)
 f.close()

 print >> sys.stderr, "Wrote data file", f.name
 print >> sys.stderr, "Zzz..."

 time.sleep(60) # 60 seconds

The result of the script is a directory that contains JSON data in files named by time-
stamp, and you can read back in the data by opening up a file and using the
json.loads method. Maintaining timestamped archives of tweets for a particular query
could work almost identically. Although to keep this example as simple as possible,
raw JSON is written to a file, it’s not a good practice to build up a directory with many
thousands of files in it. Just about any type of key-value store or a simple relational
schema with only a single table containing a “key” and “value” column would work
just fine. SQLite or CouchDB are good places to start looking.

4 | The Recipes

See Also
http://docs.python.org/library/sqlite3.html

1.3 Extracting Tweet Entities
Problem
You want to extract tweet entities such as @mentions, #hashtags, and short URLs from
search results or other batches of tweets that don’t have entities extracted.

Solution
Use the twitter_text (http://github.com/dryan/twitter-text-py) package’s Extractor
class to extract the tweet entities.

Discussion
As of January 2011, the /search resource does not provide any opt-in parameters for
the automatic extraction of tweet entities as is the case with other APIs such as the
various /statuses resources, but you can use twitter_text (easy_install twitter-
text-py) to extract entities in the very same way that Twitter extracts them in produc-
tion. The twitter_text package is implemented to the same specification as the
twitter-text-rb Ruby gem (https://github.com/mzsanford/twitter-text-rb) that Twitter
uses on its internal platform. Example 1-6 illustrates a typical usage of twitter_text.

Example 1-6. Extracting Tweet entities (see http://github.com/ptwobrussell/Recipes-for-Mining
-Twitter/blob/master/recipe__extract_tweet_entities.py)

-*- coding: utf-8 -*-

import json
import twitter_text

def get_entities(tweet):

 extractor = twitter_text.Extractor(tweet['text'])

 # Note: the production Twitter API contains a few additional fields in
 # the entities hash that would require additional API calls to resolve.
 # See API resources that offer the include_entities parameter for details.

 entities = {}
 entities['user_mentions'] = []
 for um in extractor.extract_mentioned_screen_names_with_indices():
 entities['user_mentions'].append(um)

 entities['hashtags'] = []
 for ht in extractor.extract_hashtags_with_indices():

1.3 Extracting Tweet Entities | 5

 # Massage field name to match production twitter api

 ht['text'] = ht['hashtag']
 del ht['hashtag']
 entities['hashtags'].append(ht)

 entities['urls'] = []
 for url in extractor.extract_urls_with_indices():
 entities['urls'].append(url)

 return entities

if __name__ == '__main__':

 # A mocked up array of tweets for purposes of illustration.
 # Assume tweets have been fetched from the /search resource or elsewhere.

 tweets = \
 [
 {
 'text' : 'Get @SocialWebMining example code at http://bit.ly/biais2 #w00t'

 # ... more tweet fields ...

 },

 # ... more tweets ...

]

 for tweet in tweets:
 tweet['entities'] = get_entities(tweet)

 print json.dumps(tweets, indent=1)

Sample results follow in Example 1-7.

Example 1-7. Sample extracted Tweet entities

[
 {
 "text": "Get @SocialWebMining example code at http://bit.ly/biais2 #w00t",
 "entities": {
 "user_mentions": [
 {
 "indices": [
 4,
 20
],
 "screen_name": "SocialWebMining"
 }
],

6 | The Recipes

 "hashtags": [
 {
 "indices": [
 58,
 63
],
 "text": "w00t"
 }
],
 "urls": [
 {
 "url": "http://bit.ly/biais2",
 "indices": [
 37,
 57
]
 }
]
 }
 }
]

Whenever possible, use the include_entities parameter in requests to have Twitter
automatically extract tweet entities for you. But in circumstances where the API re-
sources currently require you to do the heavy lifting, you now know how to easily
extract the tweet entities for rapid analysis.

See Also
http://dev.twitter.com/pages/tweet_entities

1.4 Searching for Tweets
Problem
You want to collect a sample of tweets from the public timeline for a custom query.

Solution
Use the /search resource to perform a custom query.

Discussion
Example 1-8 illustrates how to use the /search resource to perform a custom query
against Twitter’s public timeline. Similar to the way that search engines work, Twit-
ter’s /search resource returns results on a per page basis, and you can configure the
number of results per page using the page and rpp (results per page) keyword parame-
ters. As of January 2011, the maximum number of search results that you can retrieve
per query is 1,500.

1.4 Searching for Tweets | 7

Example 1-8. Searching for tweets by query term (see http://github.com/ptwobrussell/Recipes-for
-Mining-Twitter/blob/master/recipe__search.py)

-*- coding: utf-8 -*-

import sys
import json
import twitter

Q = ' '.join(sys.argv[1])

MAX_PAGES = 15
RESULTS_PER_PAGE = 100

twitter_search = twitter.Twitter(domain="search.twitter.com")

search_results = []
for page in range(1,MAX_PAGES+1):
 search_results += \
 twitter_search.search(q=Q, rpp=RESULTS_PER_PAGE, page=page)['results']

print json.dumps(search_results, indent=1)

Example 1-9 displays truncated results for a StrataConf query.

Example 1-9. Sample search results for StrataConf

[
 {
 "next_page": "?page=2&max_id=24284287591256064&rpp=100&q=StrataConf",
 "completed_in": 0.187719,
 "max_id_str": "24284287591256064",
 "since_id_str": "0",
 "refresh_url": "?since_id=24284287591256064&q=StrataConf",
 "results": [
 {
 "iso_language_code": "en",
 "to_user_id_str": null,
 "text": "RT @ptwobrussell: Generating Dynamic Social Networks...",
 "from_user_id_str": "142175715",
 "profile_image_url": "http://a2.twimg.com/profile_images/1096089942/...",
 "id": 24266314180730880,
 "source": "Tweetie for Mac",
 "id_str": "24266314180730880",
 "from_user": "dreasoning",
 "from_user_id": 142175715,
 "to_user_id": null,
 "geo": null,
 "created_at": "Mon, 10 Jan 2011 00:48:34 +0000",
 "metadata": {
 "result_type": "recent"
 }
 },

 ... output truncated ...

8 | The Recipes

],
 "since_id": 0,
 "results_per_page": 100,
 "query": "StrataConf",
 "max_id": 24284287591256064,
 "page": 1
 }
]

You can distill the 140 character text field from each tweet in search_results using a
list comprehension, as shown in Example 1-10:

Example 1-10. Using a list comprehension to extract tweet text from search results

print [result['text']
 for result in search_results]

Writing out search_results (or just about anything else) to a file as raw JSON with
Python’s built-in file object is easily accomplished—Example 1-5 includes an overview
of how to use file and json.dumps to achieve that end.

It might be the case that you’d like to display some results from a /trends query, and
prompt the user for a selection that you feed into the /search resource as a targeted
query. Python’s built-in raw_input function can be used precisely for this purpose—
Example 1-11 shows you how to make it all happen by using raw_input to glue together
Example 1-2 and Example 1-8, and then performing a little post-processing with
Example 1-6.

Example 1-11. Searching for trending topics (see http://github.com/ptwobrussell/Recipes-for-Mining
-Twitter/blob/master/recipe__get_search_results_for_trending_topic.py)

-*- coding: utf-8 -*-

import os
import sys
import json
import twitter
from recipe__extract_tweet_entities import get_entities

MAX_PAGES = 15
RESULTS_PER_PAGE = 100

Get the trending topics

t = twitter.Twitter(domain='api.twitter.com', api_version='1')

trends = [
 trend['name']
 for trend in t.trends()['trends']
]

1.4 Searching for Tweets | 9

idx = 0
for trend in trends:
 print '[%i] %s' % (idx, trend,)
 idx += 1

Prompt the user

trend_idx = int(raw_input('\nPick a trend: '))

q = trends[trend_idx]

Search

print >> sys.stderr, 'Fetching tweets for %s...' % (q,)

twitter_search = twitter.Twitter(domain="search.twitter.com")

search_results = []
for page in range(1,MAX_PAGES+1):
 search_results += \
 twitter_search.search(q=q, rpp=RESULTS_PER_PAGE, page=page)['results']

Extract tweet entities and embed them into search results

for result in search_results:
 result['entities'] = get_entities(result)

if not os.path.isdir('out'):
 os.mkdir('out')

f = open(os.path.join(os.getcwd(), 'out', 'search_results.json'), 'w')
f.write(json.dumps(search_results, indent=1))
f.close()

print >> sys.stderr, "Entities for tweets about trend '%s' saved to %s" % (q, f.name,)

See Also
http://dev.twitter.com/doc/get/search, http://dev.twitter.com/doc/get/trends

1.5 Extracting a Retweet’s Origins
Problem
You want to extract the originating source from a retweet.

Solution
If the tweet’s retweet_count field is greater than 0, extract name out of the tweet’s user
field; also parse the text of the tweet with a regular expression.

10 | The Recipes

Discussion
Although the retweet concept was a grassroots phenomenon that evolved with Twit-
ter’s users, the platform has since evolved to natively incorporate retweeting. As a case
in point, /status resources in the Twitter platform are now capable of handling a re-
tweet action such that it’s no longer necessary to explicitly express the origin of the
tweet with conventions such as “RT @user” or “(via @user)” in the 140 character limit.
Instead, the tweet itself contains a retweet_count field that expresses the number of
times the tweet has been retweeted. If the retweet_count field is greater than 0, it means
that the tweet has been retweeted and you should inspect name from the user field
encoded into the tweet.

However, keep in mind that even though Twitter’s platform now accommodates re-
tweeting at the API level, not all popular Twitter clients have adapted to take advantage
of this feature, and there’s a lot of archived Twitter data floating around that doesn’t
contain these fields. Another possibility is that even though someone’s Twitter client
uses the retweet API, they might also manually annotate the tweet with additional “RT”
or “via” criteria of interest. Finally, to throw one more wrench in the gears, note that
tweets returned by the /search resource do not contain the retweet_count as of January
2011. Thus, any way you cut it, inspecting the text of the tweet is still a necessity.

Fortunately, a relatively simple regular expression can handle these issues fairly easily.
Example 1-12 illustrates a generalized approach that should work well in many
circumstances.

Example 1-12. Extracting retweet origins (see http://github.com/ptwobrussell/Recipes-for-Mining-
Twitter/blob/master/recipe__get_rt_origins.py)

-*- coding: utf-8 -*-

import re

def get_rt_origins(tweet):

 # Regex adapted from
 # http://stackoverflow.com/questions/655903/python-regular-expression-for-retweets

 rt_patterns = re.compile(r"(RT|via)((?:\b\W*@\w+)+)", re.IGNORECASE)
 rt_origins = []

 # Inspect the tweet to see if it was produced with /statuses/retweet/:id
 # See http://dev.twitter.com/doc/post/statuses/retweet/:id

 if tweet.has_key('retweet_count'):
 if tweet['retweet_count'] > 0:
 rt_origins += [tweet['user']['name'].lower()]

 # Also, inspect the tweet for the presence of "legacy" retweet
 # patterns such as "RT" and "via".

1.5 Extracting a Retweet’s Origins | 11

 try:
 rt_origins += [
 mention.strip()
 for mention in rt_patterns.findall(tweet['text'])[0][1].split()
]
 except IndexError, e:
 pass

 # Filter out any duplicates

 return list(set([rto.strip("@").lower() for rto in rt_origins]))

if __name__ == '__main__':

 # A mocked up array of tweets for purposes of illustration.
 # Assume tweets have been fetched from the /search resource or elsewhere.

 tweets = \
 [
 {
 'text' : 'RT @ptowbrussell Get @SocialWebMining at http://bit.ly/biais2 #w00t'

 # ... more tweet fields ...

 },

 {
 'text' : 'Get @SocialWebMining example code at http://bit.ly/biais2 #w00t',
 'retweet_count' : 1,
 'user' : {
 'name' : 'ptwobrussell'

 # ... more user fields ...
 }

 # ... more tweet fields ...

 },

 # ... more tweets ...

]

 for tweet in tweets:
 print get_rt_origins(tweet)

Although this task is a little bit more complex than it would be in an ideal Twitterverse,
the good news is that you're now equipped with a readily reusable routine to take
care of the mundane labor, so that you can focus on more interesting analysis and
visualization.

12 | The Recipes

See Also
http://blog.programmableweb.com/2010/08/30/twitter-api-adds-retweet-count-and
-more/, http://dev.twitter.com/doc/get/search, http://groups.google.com/group/twitter-de
velopment-talk/browse_thread/thread/4b08544f2c02d68f

1.6 Creating a Graph of Retweet Relationships
Problem
You want to construct and analyze a graph data structure of retweet relationships for
a set of query results.

Solution
Query for the topic, extract the retweet origins, and then use the NetworkX package
to construct a graph to analyze.

Discussion
Recipe 1.4 can be used to assemble a collection of related tweets, and Recipe 1.5 can
be used to extract the originating authors, if any, from those tweets. Given these retweet
relationships, all that’s left is to use the networkx (http://networkx.lanl.gov/) package
(easy_install networkx) to construct a directed graph that represents these relation-
ships. At the most basic level, nodes on the graph represent the originating authors and
retweet authors, while edges convey the id of the tweet expressing the relationship.
NetworkX contains a slew of useful functions for analyzing graphs that you construct,
and Example 1-13 is just about the absolute minimum working example that you’d
need to get the gist of how things work.

Example 1-13. Creating a graph using NetworkX

-*- coding: utf-8 -*-

import networkx as nx

g = nx.Graph()

g.add_edge("@user1", "@user2")
g.add_edge("@user1", "@user3")
g.add_edge("@user2", "@user3")

Complete details on the many virtues of NetworkX can be found in its online docu-
mentation, and this simple example is intended only to demonstrate how easy it really
is to construct the actual graph once you have the underlying data that you need to
represent the nodes in the graph.

1.6 Creating a Graph of Retweet Relationships | 13

Once you have the essential machinery for processing the tweets in place, the key is to
loop over the tweets and repeatedly call add_edge on an instance of networkx.Digraph.
Example 1-14 illustrates and displays some of the most rudimentary characteristics of
the graph.

Example 1-14. Creating a graph of retweet relationships (see http://github.com/ptwobrussell/Recipes
-for-Mining-Twitter/blob/master/recipe__create_rt_graph.py)

-*- coding: utf-8 -*-

import sys
import json
import twitter
import networkx as nx
from recipe__get_rt_origins import get_rt_origins

def create_rt_graph(tweets):

 g = nx.DiGraph()

 for tweet in tweets:

 rt_origins = get_rt_origins(tweet)

 if not rt_origins:
 continue

 for rt_origin in rt_origins:
 g.add_edge(rt_origin.encode('ascii', 'ignore'),
 tweet['from_user'].encode('ascii', 'ignore'),
 {'tweet_id': tweet['id']}
)

 return g

if __name__ == '__main__':

 # Your query

 Q = ' '.join(sys.argv[1])

 # How many pages of data to grab for the search results.

 MAX_PAGES = 15

 # How many search results per page

 RESULTS_PER_PAGE = 100

 # Get some search results for a query.

 twitter_search = twitter.Twitter(domain='search.twitter.com')
 search_results = []
 for page in range(1,MAX_PAGES+1):

14 | The Recipes

 search_results.append(
 twitter_search.search(q=Q, rpp=RESULTS_PER_PAGE, page=page)
)

 all_tweets = [tweet for page in search_results for tweet in page['results']]

 # Build up a graph data structure.

 g = create_rt_graph(all_tweets)

 # Print out some stats.

 print >> sys.stderr, "Number nodes:", g.number_of_nodes()
 print >> sys.stderr, "Num edges:", g.number_of_edges()
 print >> sys.stderr, "Num connected components:",
 len(nx.connected_components(g.to_undirected()))
 print >> sys.stderr, "Node degrees:", sorted(nx.degree(g))

Once you have a graph data structure on hand, it’s possible to gain lots of valuable
insight without the benefit of visualization tools, because some graphs will be too gnarly
to visualize in 2D (or even 3D) space. Some options you can explore are searching for
cliques in the graph, exploring subgraphs, transforming the graph by applying custom
filters that remove nodes or edges, and so on.

1.7 Visualizing a Graph of Retweet Relationships
Problem
You want to visualize a graph of retweets (or just about anything else) with a staple like
Graphviz or a JavaScript toolkit such as Protovis.

Solution
Emit DOT language output and convert the output to a static image with Graphviz, or
emit JSON output that’s consumable by Protovis or your JavaScript toolkit of choice.

Discussion
Recipe 1.6 provides a create_rt_graph function that creates a networkx.DiGraph in-
stance that can be used as the basis of a DOT language transform or a custom JSON
data structure that powers a JavaScript visualization. Let’s consider each of these
options in turn.

Linux and Unix users could simply emit DOT language output by using networkx.
drawing.write_dot and then transform the DOT language output into a static image
with the dot or circo utilities on the command line. For example, circo -Tpng
-Otwitter_retweet_graph twitter_retweet_graph.dot would transform a sample DOT
file to a PNG image with the same name.

1.7 Visualizing a Graph of Retweet Relationships | 15

For Windows users, however, there is some good news and some bad news. The bad
news is that networkx.drawing.write_dot raises an ImportError because of underlying
C code dependencies, a long-unresolved issue. The good news is that it’s easily worked
around by catching the ImportError and manually emitting the DOT language. With
DOT output emitted, standard Graphviz tools can be used normally. Example 1-15
illustrates this.

Example 1-15. Visualizing a graph of retweet relationships with Graphviz (see http://github.com/
ptwobrussell/Recipes-for-Mining-Twitter/blob/master/recipe__visualize_rt_graph_graphviz.py)

-*- coding: utf-8 -*-

import os
import sys
import twitter
import networkx as nx
from recipe__create_rt_graph import create_rt_graph

Writes out a DOT language file that can be converted into an
image by Graphviz.

def write_dot_output(g, out_file):

 try:
 nx.drawing.write_dot(g, out_file)
 print >> sys.stderr, 'Data file written to', out_file
 except ImportError, e:

 # Help for Windows users:
 # Not a general purpose method, but representative of
 # the same output write_dot would provide for this graph
 # if installed and easy to implement.

 dot = ['"%s" -> "%s" [tweet_id=%s]' % (n1, n2, g[n1][n2]['tweet_id'])
 for (n1, n2) in g.edges()]
 f = open(out_file, 'w')
 f.write('''strict digraph {
 %s
 }''' % (';\n'.join(dot),))
 f.close()

 print >> sys.stderr, 'Data file written to: %s' % f.name

if __name__ == '__main__':

 # Your query.

 Q = ' '.join(sys.argv[1])

 # Your output.

 OUT = 'twitter_retweet_graph'

16 | The Recipes

 # How many pages of data to grab for the search results.

 MAX_PAGES = 15

 # How many search results per page.

 RESULTS_PER_PAGE = 100

 # Get some search results for a query.

 twitter_search = twitter.Twitter(domain='search.twitter.com')

 search_results = []
 for page in range(1,MAX_PAGES+1):

 search_results.append(
 twitter_search.search(q=Q, rpp=RESULTS_PER_PAGE, page=page)
)

 all_tweets = [tweet for page in search_results for tweet in page['results']]

 # Build up a graph data structure.

 g = create_rt_graph(all_tweets)

 # Write Graphviz output.

 if not os.path.isdir('out'):
 os.mkdir('out')

 f = os.path.join(os.getcwd(), 'out', OUT)

 write_dot_output(g, f)

 print >> sys.stderr, \
 'Try this on the DOT output: $ dot -Tpng -O%s %s.dot' % (f, f,)

As you might imagine, it’s not very difficult to emit other types of output formats such
as GraphML or JSON. Recipe 1.6 returns a networkx.DiGraph instance that can be in-
spected and used as the basis of a visualization, and emitting JSON output that’s con-
sumable in the toolkit of choice is simpler than you might think. Regardless of the
specific target output, it’s always a predictable structure that encodes nodes, edges, and
information payloads for these nodes and edges, as you know from Example 1-15. In
the case of Protovis, the specific details of the output are different, but the concept is
the very same. Example 1-16 should look quite similar to Example 1-15, and shows
you how to get output for Protovis. The Protovis output is an array of node objects and
an array of edge objects (see the visualization in Figure 1-1); the edge objects reference
the indexes of the node objects to encode source and target information for each edge.

1.7 Visualizing a Graph of Retweet Relationships | 17

Example 1-16. Visualizing a graph of retweet relationships with Protovis (see http://github.com/
ptwobrussell/Recipes-for-Mining-Twitter/blob/master/recipe__visualize_rt_graph_protovis.py)

-*- coding: utf-8 -*-

import os
import sys
import json
import webbrowser
import twitter
from recipe__create_rt_graph import create_rt_graph

An HTML page that we'll inject Protovis consumable data into.

HTML_TEMPLATE = 'etc/twitter_retweet_graph.html'
OUT = os.path.basename(HTML_TEMPLATE)

Writes out an HTML page that can be opened in the browser
that displays a graph.

def write_protovis_output(g, out_file, html_template):
 nodes = g.nodes()
 indexed_nodes = {}

Figure 1-1. It's a snap to visualize retweet relationships and many other types of linkages with Protovis;
here, we see the results from a #JustinBieber query

18 | The Recipes

 idx = 0
 for n in nodes:
 indexed_nodes.update([(n, idx,)])
 idx += 1

 links = []
 for n1, n2 in g.edges():
 links.append({'source' : indexed_nodes[n2],
 'target' : indexed_nodes[n1]})

 json_data = json.dumps({"nodes" : [{"nodeName" : n} for n in nodes], \
 "links" : links}, indent=4)

 html = open(html_template).read() % (json_data,)

 if not os.path.isdir('out'):
 os.mkdir('out')

 f = open(out_file, 'w')
 f.write(html)
 f.close()

 print >> sys.stderr, 'Data file written to: %s' % f.name

if __name__ == '__main__':

 # Your query.

 Q = ' '.join(sys.argv[1])

 # How many pages of data to grab for the search results.

 MAX_PAGES = 15

 # How many search results per page.

 RESULTS_PER_PAGE = 100

 # Get some search results for a query.

 twitter_search = twitter.Twitter(domain='search.twitter.com')

 search_results = []
 for page in range(1,MAX_PAGES+1):

 search_results.append(twitter_search.search(q=Q,
 rpp=RESULTS_PER_PAGE,
 page=page))

 all_tweets = [tweet
 for page in search_results
 for tweet in page['results']
]

1.7 Visualizing a Graph of Retweet Relationships | 19

 # Build up a graph data structure.

 g = create_rt_graph(all_tweets)

 # Write Protovis output and open in browser.

 if not os.path.isdir('out'):
 os.mkdir('out')

 f = os.path.join(os.getcwd(), 'out', OUT)

 write_protovis_output(g, f, HTML_TEMPLATE)

 webbrowser.open('file://' + f)

These simple scripts are merely the beginning of what you could build. Some next steps
would be to consider the additional information you could encode into the underlying
graph data structure that powers the visualization. For example, you might embed
information such the tweet id into the graph’s edges, or embed user profile information
into the nodes. In the case of the Protovis visualization, you could then add event
handlers that allow you to view and interact with this data.

See Also
Canviz, Graphviz, Protovis, Ubigraph

1.8 Capturing Tweets in Real-time with the Streaming API
Problem
You want to capture a stream of public tweets in real-time, optionally filtering by select
screen names or keywords in the text of the tweet.

Solution
Use Twitter’s streaming API.

Discussion
While handy and quite beautiful, the twitter package doesn’t support streaming API
resources at this time. However, tweepy (http://github.com/joshthecoder/tweepy) is a very
nice package that provides simplified access to streaming API resources and can easily
be used to interact with the streaming API. The PyPi version of tweepy has been noted
to be somewhat dated compared to the latest commit to its public GitHub repository,
so it is recommended that you install directly from GitHub using a handy build tool
called pip (http://pip.openplans.org/). You can conveniently and predictably install
pip with easy_install pip, and afterward, a pip executable should appear in your path.

20 | The Recipes

From there, you can install the latest revision of tweepy with the following command:
pip install git+git://github.com/joshthecoder/tweepy.git.

With tweepy installed, Example 1-17 shows you how to create a streaming API instance
and filter for any public tweets containing keywords of interest. Try TeaParty or Jus-
tinBieber if you want some interesting results from two high velocity communities.

Example 1-17. Filtering tweets using the streaming API (see http://github.com/ptwobrussell/Recipes
-for-Mining-Twitter/blob/master/recipe__streaming_api.py)

-*- coding: utf-8 -*-

import sys
import tweepy
import webbrowser

Query terms

Q = sys.argv[1:]

Get these values from your application settings.

CONSUMER_KEY = ''
CONSUMER_SECRET = ''

Get these values from the "My Access Token" link located in the
margin of your application details, or perform the full OAuth
dance.

ACCESS_TOKEN = ''
ACCESS_TOKEN_SECRET = ''

auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET)
auth.set_access_token(ACCESS_TOKEN, ACCESS_TOKEN_SECRET)

Note: Had you wanted to perform the full OAuth dance instead of using
an access key and access secret, you could have uses the following
four lines of code instead of the previous line that manually set the
access token via auth.set_access_token(ACCESS_TOKEN, ACCESS_TOKEN_SECRET).

auth_url = auth.get_authorization_url(signin_with_twitter=True)
webbrowser.open(auth_url)
verifier = raw_input('PIN: ').strip()
auth.get_access_token(verifier)

class CustomStreamListener(tweepy.StreamListener):

 def on_status(self, status):

 # We'll simply print some values in a tab-delimited format
 # suitable for capturing to a flat file but you could opt
 # store them elsewhere, retweet select statuses, etc.

1.8 Capturing Tweets in Real-time with the Streaming API | 21

 try:
 print "%s\t%s\t%s\t%s" % (status.text,
 status.author.screen_name,
 status.created_at,
 status.source,)
 except Exception, e:
 print >> sys.stderr, 'Encountered Exception:', e
 pass

 def on_error(self, status_code):
 print >> sys.stderr, 'Encountered error with status code:', status_code
 return True # Don't kill the stream

 def on_timeout(self):
 print >> sys.stderr, 'Timeout...'
 return True # Don't kill the stream

Create a streaming API and set a timeout value of 60 seconds.

streaming_api = tweepy.streaming.Stream(auth, CustomStreamListener(), timeout=60)

Optionally filter the statuses you want to track by providing a list
of users to "follow".

print >> sys.stderr, 'Filtering the public timeline for "%s"' % (' '.join(sys.argv[1:]),)

streaming_api.filter(follow=None, track=Q)

If you really like twitter, there’s no reason you couldn’t use twitter and tweepy to-
gether. For example, suppose you wanted to implement a bot to retweet any tweet by
Tim O’Reilly about Open Government or Web 2.0. In this scenario, you might use
tweepy to capture a stream of tweets, filtering on @timoreilly and certain keywords or
hashtags, but use twitter to retweet or perform other actions.

Finally, although a slightly less elegant option, it is certainly possible to poll one or
more of the /users timeline resources for updates of interest instead of using the
streaming API. If you choose to take this approach, be sure to take advantage of the
since_id keyword parameter to request only tweets that have been updated since you
last checked.

See Also
http://code.google.com/p/twitter-repeater/source/browse/repeater.py

1.9 Making Robust Twitter Requests
Problem
You want to write a long-running script that harvests large amounts of data, such as
the friend and follower ids for a very popular Twitterer; however, the Twitter API is

22 | The Recipes

inherently unreliable and imposes rate limits that require you to always expect the
unexpected.

Solution
Write an abstraction for making twitter requests that accounts for rate limiting and
other types of HTTP errors so that you can focus on the problem at hand and not worry
about HTTP errors or rate limits, which are just a very specific kind of HTTP error.

Discussion
If you write a long running script with no more precautions taken than crossing your
fingers, you’ll be unpleasantly surprised when you return only to discover that your
script crashed. Although it’s possible to handle the exceptional circumstances in the
code that calls your script, it’s arguably cleaner and will save you time in the long run
to go ahead and write an extensible abstraction to handle the various types of HTTP
errors that you’ll encounter. The most common HTTP errors include 401 errors (Not
Authorized—probably, someone is protecting their tweets), 503 errors (the beloved
“fail whale”), and 420 errors (rate limit enforcement.) Example 1-18 illustrates a
make_twitter_request function that attempts to handle the most common perils you’ll
face. In the case of a 401, note that there’s nothing you can really do; most other types
of errors require using a timer to wait for a prescribed period of time before making
another request.

Example 1-18. Making robust Twitter requests (see http://github.com/ptwobrussell/Recipes-for
-Mining-Twitter/blob/master/recipe__make_twitter_request.py)

-*- coding: utf-8 -*-

import sys
import time
from urllib2 import URLError
import twitter

See recipe__get_friends_followers.py for an example of how you might use
make_twitter_request to do something like harvest a bunch of friend ids for a user.

def make_twitter_request(t, twitterFunction, max_errors=3, *args, **kwArgs):

 # A nested function for handling common HTTPErrors. Return an updated value
 # for wait_period if the problem is a 503 error. Block until the rate limit is
 # reset if a rate limiting issue.

 def handle_http_error(e, t, wait_period=2):

 if wait_period > 3600: # Seconds
 print >> sys.stderr, 'Too many retries. Quitting.'
 raise e

1.9 Making Robust Twitter Requests | 23

 if e.e.code == 401:
 print >> sys.stderr, 'Encountered 401 Error (Not Authorized)'
 return None
 elif e.e.code in (502, 503):
 print >> sys.stderr, 'Encountered %i Error. Will retry in %i seconds' % \
 (e.e.code, wait_period)
 time.sleep(wait_period)
 wait_period *= 1.5
 return wait_period
 elif t.account.rate_limit_status()['remaining_hits'] == 0:
 status = t.account.rate_limit_status()
 now = time.time() # UTC
 when_rate_limit_resets = status['reset_time_in_seconds'] # UTC
 sleep_time = when_rate_limit_resets - now
 print >> sys.stderr, 'Rate limit reached: sleeping for %i secs' % \
 (sleep_time,)
 time.sleep(sleep_time)
 return 2
 else:
 raise e

 wait_period = 2
 error_count = 0
 while True:
 try:
 return twitterFunction(*args, **kwArgs)
 except twitter.api.TwitterHTTPError, e:
 error_count = 0
 wait_period = handle_http_error(e, t, wait_period)
 if wait_period is None:
 return
 except URLError, e:
 error_count += 1
 print >> sys.stderr, "URLError encountered. Continuing."
 if error_count > max_errors:
 print >> sys.stderr, "Too many consecutive errors...bailing out."
 raise

In order to invoke make_twitter_request, pass it an instance of your twitter.Twitter
API, a reference to the function you want to invoke that instance, and any other relevant
parameters. For example, assuming t is an instance of twitter.Twitter, you might
invoke make_twitter_request(t, t.followers.ids, screen_name="SocialWebMining",
cursor=-1) to issue a request for @SocialWebMining’s follower ids. Note that you can
(and usually should) capture the returned response and follow the cursor in the event
that you have a request that entails multiple iterations to resolve all of the data.

See Also
http://dev.twitter.com/pages/responses_errors

24 | The Recipes

1.10 Harvesting Tweets
Problem
You want to harvest and store tweets from a collection of id values, or harvest entire
timelines of tweets.

Solution
Use the /statuses/show resource to fetch a single tweet by its id value; the vari-
ous /statuses/*_timeline methods can be used to fetch timeline data. CouchDB is a
great option for persistent storage, and also provides a map/reduce processing para-
digm and built-in ways to share your analysis with others.

Discussion
The /statuses/show resource provides a mechanism to fetch a single tweet by its id
value and does not require authentication although it does enforce rate-limiting by
taking the IP address of the request into account. One particularly handy circumstance
in which you’ll need to fetch single tweets is when you want to reconstruct a discussion
thread as specified by an in_reply_to field that appears in the tweet, hinting that it’s a
direct reply to another user. Example 1-19 illustrates how to fetch a tweet.

Example 1-19. Fetching tweets one at a time (see http://github.com/ptwobrussell/Recipes-for-Mining
-Twitter/blob/master/recipe__get_tweet_by_id.py)

-*- coding: utf-8 -*-

import sys
import json
import twitter

TWEET_ID = sys.argv[1] # Example: 24877908333961216

t = twitter.Twitter(domain='api.twitter.com', api_version='1')

No authentication required, but rate limiting is enforced

tweet = t.statuses.show(id=TWEET_ID, include_entities=1)

print json.dumps(tweet, indent=1)

The remainder of this recipe will provide a super-quick overview of the
steps involved to get something up and running with CouchDB. If you’re
not interested in using CouchDB, it should be easy enough to adapt the
core ideas that are presented for your own storage medium of choice.

1.10 Harvesting Tweets | 25

Although there will be plenty of circumstances when you may want to cherrypick par-
ticular tweets from a timeline, it’ll more often be the case that you need to harvest a
batch of tweets. As the need to harvest batches of tweets increases, your need for an
elegant storage medium and framework for processing the tweets will increase accord-
ingly. CouchDB is one option that you should consider as part of your search for an
ideal database to house your tweets. Its document-oriented nature is designed so that
it can natively store JSON data (the response format from Twitter’s API) and its built-
in map/reduce functionality provides a great fabric for many types of tweet analysis
that you’ll encounter. A full introduction to CouchDB is well beyond this book’s scope,
but assuming you’re able to install a local instance of CouchDB, all that’s left is to
easy_install couchdb, and make sure the code line below is modified under the
[query_servers] of your local.ini configuration file. (Make sure it points to the actual
location of the couchpy script that is installed on your system when you easy_install
couchdb.) The effect of this change is that you can install additional query servers for
languages other than JavaScript (which is the default).

[query_servers]
python = /Library/Frameworks/Python.framework/Versions/2.6/bin/couchpy

With CouchDB installed and running on your local machine, the couchdb package in-
stalled, and your configuration updated to use couchpy as a Python query server, you’re
all set to use the script presented in Example 1-20 to harvest timeline data and persist
it in CouchDB. Once you’ve run the script, you’ll want to use CouchDB’s built-in
administrative interface (Futon, located at http://localhost:5984/_utils/), to view the
data in your web browser.

Example 1-20. Harvesting tweets via timelines (see http://github.com/ptwobrussell/Recipes-for
-Mining-Twitter/blob/master/recipe__harvest_timeline.py)

-*- coding: utf-8 -*-

import sys
import time
import twitter
import couchdb
from couchdb.design import ViewDefinition
from recipe__oauth_login import oauth_login
from recipe__make_twitter_request import make_twitter_request

def usage():
 print 'Usage: $ %s timeline_name [max_pages] [screen_name]' % (sys.argv[0],)
 print
 print '\ttimeline_name in [public, home, user]'
 print '\t0 < max_pages <= 16 for timeline_name in [home, user]'
 print '\tmax_pages == 1 for timeline_name == public'

26 | The Recipes

 print 'Notes:'
 print '\t* ~800 statuses are available from the home timeline.'
 print '\t* ~3200 statuses are available from the user timeline.'
 print '\t* The public timeline updates every 60 secs and returns 20 statuses.'
 print '\t* See the streaming/search API for additional options to harvest tweets.'

 exit()

if len(sys.argv) < 2 or sys.argv[1] not in ('public', 'home', 'user'):
 usage()
if len(sys.argv) > 2 and not sys.argv[2].isdigit():
 usage()
if len(sys.argv) > 3 and sys.argv[1] != 'user':
 usage()

TIMELINE_NAME = sys.argv[1]
MAX_PAGES = int(sys.argv[2])

USER = None

KW = { # For the Twitter API call
 'count': 200,
 'skip_users': 'true',
 'include_entities': 'true',
 'since_id': 1,
 }

if TIMELINE_NAME == 'user':
 USER = sys.argv[3]
 KW['screen_name'] = USER
if TIMELINE_NAME == 'home' and MAX_PAGES > 4:
 MAX_PAGES = 4
if TIMELINE_NAME == 'user' and MAX_PAGES > 16:
 MAX_PAGES = 16
if TIMELINE_NAME == 'public':
 MAX_PAGES = 1

Authentication is needed for harvesting home timelines.
Don't forget to add keyword parameters to the oauth_login call below
if you don't have a token file on disk.

t = oauth_login()

Establish a connection to a CouchDB database.

server = couchdb.Server('http://localhost:5984')
DB = 'tweets-%s-timeline' % (TIMELINE_NAME,)

if USER:
 DB = '%s-%s' % (DB, USER)

1.10 Harvesting Tweets | 27

try:
 db = server.create(DB)
except couchdb.http.PreconditionFailed, e:

 # Already exists, so append to it, keeping in mind that duplicates could occur.

 db = server[DB]

 # Try to avoid appending duplicate data into the system by only retrieving tweets
 # newer than the ones already in the system. A trivial mapper/reducer combination
 # allows us to pull out the max tweet id which guards against duplicates for the
 # home and user timelines. It has no effect for the public timeline.

 # For each tweet, emit tuples that can be passed into a reducer to find the maximum
 # tweet value.

 def id_mapper(doc):
 yield (None, doc['id'])

 # Find the maximum tweet id.
 def max_finding_reducer(keys, values, rereduce):
 return max(values)

 view = ViewDefinition('index', 'max_tweet_id', id_mapper, max_finding_reducer,
 language='python')
 view.sync(db)
 try:
 KW['since_id'] = int([_id for _id in db.view('index/max_tweet_id')][0].value)
 except IndexError, e:
 KW['since_id'] = 1

Harvest tweets for the given timeline.
For friend and home timelines, the unofficial limitation is about 800 statuses
although other documentation may state otherwise. The public timeline only returns
20 statuses and gets updated every 60 seconds, so consider using the streaming API
for public statuses. See http://bit.ly/fgJrAx
Note that the count and since_id params have no effect for the public timeline

page_num = 1
while page_num <= MAX_PAGES:
 KW['page'] = page_num
 api_call = getattr(t.statuses, TIMELINE_NAME + '_timeline')
 tweets = make_twitter_request(t, api_call, **KW)

 # Actually storing tweets in CouchDB is as simple as passing them
 # into a call to db.update.

 db.update(tweets, all_or_nothing=True)

28 | The Recipes

 print >> sys.stderr, 'Fetched %i tweets' % (len(tweets),)

 page_num += 1

print >> sys.stderr, 'Done fetching tweets'

The ability to query the data you have collected in CouchDB is just a simple map/reduce
query away, and it just so happens that Recipe 1.11 provides an example to get you on
your way.

See Also
http://couchdb.apache.org/, http://www.couchone.com/

1.11 Creating a Tag Cloud from Tweet Entities
Problem
You want to analyze the entities from timeline data (or elsewhere) and display them in
a tag cloud to quickly get the gist of what someone is talking about.

Solution
Harvest tweets using an approach such as the one described in Example 1-20 (using
the include_entities parameter in your query to have entities extracted automatically,
if it’s available for your API resource), and then build a frequency map that tabulates
how many times each entity occurs. Feed this frequency information into one of many
tagcloud visualizations—such as WP-Cumulus—to quickly get a nice visualization of
what’s happening.

Discussion
Example 1-20 introduces an approach for harvesting tweets using CouchDB, and this
recipe continues with that assumption to use CouchDB’s map/reduce functionality as
an example of a query that you could run on tweets you’ve stored in CouchDB. Ex-
ample 1-21 presents a somewhat lengthy code listing that you should skim on a first
reading; come back to it after you've seen the visualization in action and take a closer
look. The gist is that it computes the frequencies for tweet entities and writes this data
into a template so that the WP-Cumulus tag cloud can visualize it. A visualization
illustrating this is shown in Figure 1-2. The ensuing discussion should clarify the broad
strokes of what is involved.

1.11 Creating a Tag Cloud from Tweet Entities | 29

Figure 1-2. WP-Cumulus is an interactive tag cloud that you can use to get an intuitive visual image
of what's going on in a batch of tweets; here, we see results from a #JustinBieber query

Example 1-21. Creating a tag cloud from tweet entities (see http://github.com/ptwobrussell/Recipes
-for-Mining-Twitter/blob/master/recipe__tweet_entities_tagcloud.py)

-*- coding: utf-8 -*-

import os
import sys
import webbrowser
import json
from cgi import escape
from math import log
import couchdb
from couchdb.design import ViewDefinition

Use recipe__harvest_timeline.py to load some data before running
this script. It loads data from CouchDB, not Twitter's API.

DB = sys.argv[1]

HTML_TEMPLATE = 'etc/tagcloud_template.html'
MIN_FREQUENCY = 2
MIN_FONT_SIZE = 3
MAX_FONT_SIZE = 20

30 | The Recipes

server = couchdb.Server('http://localhost:5984')
db = server[DB]

Map entities in tweets to the docs that they appear in.

def entity_count_mapper(doc):
 if not doc.get('entities'):
 import twitter_text

 def get_entities(tweet):

 # Now extract various entities from it and build up a familiar structure.

 extractor = twitter_text.Extractor(tweet['text'])

 # Note that the production Twitter API contains a few additional fields in
 # the entities hash that would require additional API calls to resolve.

 entities = {}
 entities['user_mentions'] = []
 for um in extractor.extract_mentioned_screen_names_with_indices():
 entities['user_mentions'].append(um)

 entities['hashtags'] = []
 for ht in extractor.extract_hashtags_with_indices():

 # Massage field name to match production twitter api.

 ht['text'] = ht['hashtag']
 del ht['hashtag']
 entities['hashtags'].append(ht)

 entities['urls'] = []
 for url in extractor.extract_urls_with_indices():
 entities['urls'].append(url)

 return entities

 doc['entities'] = get_entities(doc)

 # A mapper can, and often does, include multiple calls to "yield" which
 # emits a key, value tuple. This tuple can be whatever you'd like. Here,
 # we emit a tweet entity as the key and the tweet id as the value, even
 # though it's really only the key that we're interested in analyzing.

 if doc['entities'].get('user_mentions'):
 for user_mention in doc['entities']['user_mentions']:
 yield ('@' + user_mention['screen_name'].lower(), doc['id'])

 if doc['entities'].get('hashtags'):
 for hashtag in doc['entities']['hashtags']:
 yield ('#' + hashtag['text'], doc['id'])

Count the frequencies of each entity.

1.11 Creating a Tag Cloud from Tweet Entities | 31

def summing_reducer(keys, values, rereduce):
 if rereduce:
 return sum(values)
 else:
 return len(values)

Creating a "view" in a "design document" is the mechanism that you use
to set up your map/reduce query.

view = ViewDefinition('index', 'entity_count_by_doc', entity_count_mapper,
 reduce_fun=summing_reducer, language='python')

view.sync(db)

entities_freqs = [(row.key, row.value) for row in
 db.view('index/entity_count_by_doc', group=True)]

Create output for the WP-Cumulus tag cloud and sort terms by freq along the way.

raw_output = sorted([[escape(term), '', freq] for (term, freq) in entities_freqs
 if freq > MIN_FREQUENCY], key=lambda x: x[2])

Implementation details for the size of terms in the tag cloud were adapted from
http://help.com/post/383276-anyone-knows-the-formula-for-font-s

min_freq = raw_output[0][2]
max_freq = raw_output[-1][2]

def weightTermByFreq(f):
 return (f - min_freq) * (MAX_FONT_SIZE - MIN_FONT_SIZE) / (max_freq
 - min_freq) + MIN_FONT_SIZE

weighted_output = [[i[0], i[1], weightTermByFreq(i[2])] for i in raw_output]

Substitute the JSON data structure into the template.

html_page = open(HTML_TEMPLATE).read() % \
 (json.dumps(weighted_output),)

if not os.path.isdir('out'):
 os.mkdir('out')

f = open(os.path.join(os.getcwd(), 'out', os.path.basename(HTML_TEMPLATE)), 'w')
f.write(html_page)
f.close()

print >> sys.stderr, 'Tagcloud stored in: %s' % f.name

Open up the web page in your browser.

webbrowser.open("file://" + f.name)

32 | The Recipes

The following discussion is somewhat advanced and focuses on trying
to explain how the summing_reducer function works, depending on
whether the value of its rereduce parameter is True or False. Feel free to
skip this section if you're not interested in honing in on those details just
yet.

In short, a mapper will take a tweet and emit normalized entities such as #hashtags
and @mentions, and a reducer will perform aggregate analysis on those values emitted
from the mapper by counting them. The output from multiple mappers is then passed
into a reducer for the purpose of performing an aggregate operation. The important
subtlety with the way that the reducer is invoked is that it is passed keys and values
such that each invocation’s values parameter guarantees matching keys. This turns out
to be a very convenient characteristic, and for the problem of tabulating frequencies,
it means that you only need to count the number of values to know the frequency for
the key if the rereduce parameter is False. In other words, if the keys were ['@user',
'@user', '@user'], you’d only need to compute the length of that list to get the fre-
quency of @user for that particular invocation of the reduction function.

The actual number of keys and values that are passed into each invocation of a reduction
function is a function of the underlying B-Tree used in CouchDB, and here, the illus-
tration used a tiny size of 3 for simplicity. The subtlety to note is that multiple calls to
the reducer could occur with the same keys—which conceptually means that you
wouldn’t have a final aggregated answer. Instead you’d end up with something like
[(“@user”, 3), (“@user”, 3), “@user”, 3), ...], which represents an intermediate
result. When this happens, it’s necessary for the output of these reductions to be
rereduced, in which case the rereduce flag will be set to True. The value for the keys is
of no consequence, since we are already operating on output that’s guaranteed to have
been produced from the same keys. In the working example, all that needs to happen
is a sum of the values, 3 + 3 + 3 +, ... + 3, in order to come to a final aggregate value.
A discussion of rereduce is inherently a slightly advanced topic, but is fundamental to
an understanding of the map/reduce paradigm. It may bend your brain just a little
bit, but manually working through some examples is very conducive to getting the hang
of it.

Once the frequency maps are computed, the details for visualizing the entities in a tag
cloud amount to little more than scaling the size of each entity and writing out the
JSON data structure that the WP-Cumulus tag cloud expects. The HTML_TEMPLATE in
the example contains the necessary SCRIPT tag references to pull the JavaScript libraries
and other necessary artifacts. Only the data needs to be written to a %s placeholder in
the template.

See Also
http://labs.mudynamics.com/wp-content/uploads/2009/04/icouch.html, http://help.com/
post/383276-anyone-knows-the-formula-for-font-s

1.11 Creating a Tag Cloud from Tweet Entities | 33

1.12 Summarizing Link Targets
Problem
You want to summarize the text of a web page that’s indicated by a short URL in a tweet.

Solution
Extract the text from the web page, and then use a natural language processing (NLP)
toolkit such as the Natural Language Toolkit (NLTK) to help you extract the most
important sentences to create a machine-generated abstract.

Discussion
Summarizing web pages is a very powerful capability, and this is especially the case in
the context of a tweet where you have a lot of additional metadata (or “reactions”)
about the page from one or more tweets. Summarizing web pages is a particularly hard
and messy problem, but you can bootstrap a reasonable solution with less effort than
you might think. The problem is essentially two-fold: extracting the text from the page,
and summarizing the text.

The difficulty of extracting the text from a web page can vary wildly depending on the
source and layout of the page. A good starting point is to simply use some out-of-the-
box functionality and see if it’ll work before taking matters into your own hands.
One possible approach is to run the text through NLTK’s clean_html function
(easy_install nltk) and then use BeautifulSoup to decode the HTML entities such as &,
<, >, etc., into their English equivalents. In a perfect world, all HTML would be authored
such that the content and presentation are perfectly divided, but in reality, you’ll hardly
ever be lucky enough to work within such ideal conditions. Simple heuristics and pat-
tern matching will get you a long way, and the summarization algorithm that we’ll use
to summarize the content is fortunately very tolerant of noise and artifacts in the page.

Given some text data, one possible approach to summarization is to develop a heuristic
that picks out the most important sentences and return those sentences in the same
order that they appeared in the document. All the way back in 1958, H.P. Luhn pub-
lished an algorithm for doing just that by using frequency analysis of the words in the
document as the fundamental linchpin of the heuristic. Luhn determined that it is often
the case that sentences containing frequently appearing terms are the most important
sentences, and the more closely together the frequently appearing terms occur, the
better.

Example 1-22 illustrates a routine for fetching a web page, extracting its text, and using
Luhn’s algorithm to summarize the text in the web page. NLTK is used to segment the
sentences into text, and the rest of the routine is fairly algorithmic. Luhn’s original
paper is well worth a read and provides a very easy-to-understand discussion of this
approach.

34 | The Recipes

Example 1-22. Summarizing link targets (see http://github.com/ptwobrussell/Recipes-for-Mining-
Twitter/blob/master/recipe__summarize_webpage.py)

-*- coding: utf-8 -*-

import sys
import json
import nltk
import numpy
import urllib2
from BeautifulSoup import BeautifulStoneSoup

URL = sys.argv[1]

Some parameters you can use to tune the core algorithm.

N = 100 # Number of words to consider
CLUSTER_THRESHOLD = 5 # Distance between words to consider
TOP_SENTENCES = 5 # Number of sentences to return for a "top n" summary

Approach taken from "The Automatic Creation of Literature Abstracts" by H.P. Luhn.

def _score_sentences(sentences, important_words):
 scores = []
 sentence_idx = -1

 for s in [nltk.tokenize.word_tokenize(s) for s in sentences]:

 sentence_idx += 1
 word_idx = []

 # For each word in the word list...
 for w in important_words:
 try:
 # Compute an index for where any important words occur in the sentence.

 word_idx.append(s.index(w))
 except ValueError, e: # w not in this particular sentence
 pass

 word_idx.sort()

 # It is possible that some sentences may not contain any important words at all.
 if len(word_idx)== 0: continue

 # Using the word index, compute clusters by using a max distance threshold
 # for any two consecutive words.

 clusters = []
 cluster = [word_idx[0]]
 i = 1
 while i < len(word_idx):
 if word_idx[i] - word_idx[i - 1] < CLUSTER_THRESHOLD:
 cluster.append(word_idx[i])

1.12 Summarizing Link Targets | 35

 else:
 clusters.append(cluster[:])
 cluster = [word_idx[i]]
 i += 1
 clusters.append(cluster)

 # Score each cluster. The max score for any given cluster is the score
 # for the sentence.

 max_cluster_score = 0
 for c in clusters:
 significant_words_in_cluster = len(c)
 total_words_in_cluster = c[-1] - c[0] + 1
 score = 1.0 * significant_words_in_cluster \
 * significant_words_in_cluster / total_words_in_cluster

 if score > max_cluster_score:
 max_cluster_score = score

 scores.append((sentence_idx, score))

 return scores

def summarize(txt):
 sentences = [s for s in nltk.tokenize.sent_tokenize(txt)]
 normalized_sentences = [s.lower() for s in sentences]

 words = [w.lower() for sentence in normalized_sentences for w in
 nltk.tokenize.word_tokenize(sentence)]

 fdist = nltk.FreqDist(words)

 top_n_words = [w[0] for w in fdist.items()
 if w[0] not in nltk.corpus.stopwords.words('english')][:N]

 scored_sentences = _score_sentences(normalized_sentences, top_n_words)

 # Summarization Approach 1:
 # Filter out non-significant sentences by using the average score plus a
 # fraction of the std dev as a filter.

 avg = numpy.mean([s[1] for s in scored_sentences])
 std = numpy.std([s[1] for s in scored_sentences])
 mean_scored = [(sent_idx, score) for (sent_idx, score) in scored_sentences
 if score > avg + 0.5 * std]

 # Summarization Approach 2:
 # Another approach would be to return only the top N ranked sentences.

 top_n_scored = sorted(scored_sentences, key=lambda s: s[1])[-TOP_SENTENCES:]
 top_n_scored = sorted(top_n_scored, key=lambda s: s[0])

 # Decorate the post object with summaries

36 | The Recipes

 return dict(top_n_summary=[sentences[idx] for (idx, score) in top_n_scored],
 mean_scored_summary=[sentences[idx] for (idx, score) in mean_scored])

A minimalist approach or scraping the text out of a web page. Lots of time could
be spent here trying to extract the core content, detecting headers, footers, margins,
navigation, etc.

def clean_html(html):
 return BeautifulStoneSoup(nltk.clean_html(html),
 convertEntities=BeautifulStoneSoup.HTML_ENTITIES).contents[0]

if __name__ == '__main__':
 page = urllib2.urlopen(URL).read()

 # It's entirely possible that this "clean page" will be a big mess. YMMV.
 # The good news is that summarize algorithm inherently accounts for handling
 # a lot of this noise.

 clean_page = clean_html(page)

 summary = summarize(clean_page)

 print "---"
 print " 'Top N Summary'"
 print "---"
 print " ".join(summary['top_n_summary'])
 print
 print
 print "---"
 print " 'Mean Scored' Summary"
 print "---"
 print " ".join(summary['mean_scored_summary'])

NLTK is an incredibly powerful and useful resource, and it’s well worth the time and
energy to familiarize yourself with what it can do. Likewise, BeautifulSoup is an indis-
pensible package—you'll be glad you don’t have to live without it when processing
HTML or XML data. Try running this script on a variety of web pages. It should work
especially well for lengthier blog entries or news stories.

1.13 Harvesting Friends and Followers
Problem
You want to harvest all of the friends or followers for a particular user.

Solution
Use the robust make_twitter_request function from Recipe 1.9 to collect all of the friend
or follower ids via a long-running process.

1.13 Harvesting Friends and Followers | 37

Discussion
Twitter provides the /friends/ids and /followers/ids resources that you can use to
get up to 5,000 friend or follower ids at a time; a cursor is returned that you can use
to iteratively access additional batches of ids until you have them all. It’s not terribly
uncommon for you to want to fetch all of the friends or followers for a group of users,
and for the more popular Twitterers, it’ll take more than your 350 requests per-hour
rate limit will afford you. For example, 350 requests per hour at 5,000 ids per request
works out to be 1.75 million ids per hour. However, some of the most interesting
Twitterers have many more than 1.75 million followers. Lady Gaga is one of the most
(if not the most) popular, with around 8 million followers. Fetching all of those ids
would take about 4.5 hours, which is a bit of a wait, but it’s still pretty amazing that
you could harvest that much data in less than a business day.

While the make_twitter_request function is certainly a handy abstraction, the use of
functools.partial (http://docs.python.org/library/functools.html) can be used to layer
on some additional sugar to illustrate how you could ultimately create the
get_friends_ids and get_followers_ids functions that you’ve really always wanted.
Example 1-23 illustrates how to use make_twitter_request in the manner described to
fetch some friends and followers ids.

Example 1-23. Harvesting friends and followers (see http://github.com/ptwobrussell/Recipes-for
-Mining-Twitter/blob/master/recipe__get_friends_followers.py)

-*- coding: utf-8 -*-

import sys
import twitter
from recipe__make_twitter_request import make_twitter_request
import functools

SCREEN_NAME = sys.argv[1]
MAX_IDS = int(sys.argv[2])

if __name__ == '__main__':

 # Not authenticating lowers your rate limit to 150 requests per hr.
 # Authenticate to get 350 requests per hour.

 t = twitter.Twitter(domain='api.twitter.com', api_version='1')

 # You could call make_twitter_request(t, t.friends.ids, *args, **kw) or
 # use functools to "partially bind" a new callable with these parameters

 get_friends_ids = functools.partial(make_twitter_request, t, t.friends.ids)

 # Ditto if you want to do the same thing to get followers...

 # getFollowerIds = functools.partial(make_twitter_request, t, t.followers.ids)

38 | The Recipes

 cursor = -1
 ids = []
 while cursor != 0:

 # Use make_twitter_request via the partially bound callable...

 response = get_friends_ids(screen_name=SCREEN_NAME, cursor=cursor)
 ids += response['ids']
 cursor = response['next_cursor']

 print >> sys.stderr, 'Fetched %i total ids for %s' % (len(ids), SCREEN_NAME)

 # Consider storing the ids to disk during each iteration to provide an
 # an additional layer of protection from exceptional circumstances.

 if len(ids) >= MAX_IDS:
 break

 # Do something useful with the ids like store them to disk...

 print ids

Note that once you have all of the ids in hand, an additional set of operations is required
to resolve the screen names and other basic profile information for these users; see
Recipe 1.15 for details. If you don’t need all of it for batch analysis, you might consider
lazy loading it versus harvesting it all up front.

See Also
http://dev.twitter.com/doc/get/friends/ids, http://dev.twitter.com/doc/get/followers/ids

1.14 Performing Setwise Operations on Friendship Data
Problem
You want to operate on collections of friends and followers to answer questions such
as “Who isn’t following me back?”, “Who are my mutual friends?”, and “What friends/
followers do certain users have in common?”.

Solution
Use setwise operations such as the difference and intersection operations to answer
these questions.

Discussion
A set is an unordered collection of items, and basic setwise operations such as
difference and intersection can answer many interesting questions you might have.
For example, given the follower ids for various users, you could find the followers in

1.14 Performing Setwise Operations on Friendship Data | 39

common for all of those users by computing the intersection of all of the sets of follower
ids. Likewise, the intersection of a particular user’s friend ids and follower ids could
be interpreted as the user’s “mutual friends”—the friends that are following back.
Computing who isn’t following you back is also just a setwise operation away. Logi-
cally, subtracting out any follower id that doesn’t exist in your friend ids (the people
you are following) would be the people who aren’t following you back. In set opera-
tions, this would be called taking the difference of your followers from your friends, or
mathematically: Friends - Followers. Unlike the intersection operator, the difference
operator isn’t symmetric. In other words the result of Followers - Friends does not yield
the same result as Friends - Followers.

Python 2.6+ directly exposes the built-in set type that you can use to learn more about
sets, as shown in Example 1-24.

Example 1-24. Using sets in Python

>>> s1 = set([1,2,3])
>>> s2 = set([2,4,5])
>>> s1.intersection(s2)
set([2])
>>> s1.difference(s2)
set([1, 3])

Given that you’ll more than likely get to the point of analyzing fairly large amounts of
friends and followers with setwise operations, you might find yourself pulling data from
a database such as SQLite, performing a set operation in memory with Python, and
then storing the result back to your database. While there’s nothing necessarily wrong
with this approach, you should at least be aware of Redis, a project that makes this type
of computation much more efficient. You might think of Redis as a “data structures
server”—it’s a key-value store, but the values for each key can be typed. Hashes, lists,
sets, and ordered sets are just a few of the possibilities. Redis is trivial to get up and
running, written in extremely lean C code, and can perform operations in memory and
store the result as another key-value pair. In the case of sets, that means that you can
perform intersections and differences directly in Redis and fetch the result in a manner
that is dramatically more efficient than fetching data, performing the computation in
your own application logic, and then sending data back to whatever you retrieved it
for storage.

Full instructions for installing Redis can be found at http://redis.io/download, and for
Unix users, amounts to little more than a make command followed by invoking the
redis-server binary. Windows users should consult https://github.com/mythz/Service
Stack.Redis. With a Redis server up and running, it’s quite easy to adapt scripts such
as Example 1-23 to store friend and follower ids for a user in Redis so that Redis can
perform the set operations. Example 1-25 is an adaptation of Example 1-23 that illus-
trates one possible approach. Note that you’ll also need to easy_install redis to get
the redis package so that you can easily access it from Python.

40 | The Recipes

Example 1-25. Performing setwise operations in Python (see http://github.com/ptwobrussell/Recipes
-for-Mining-Twitter/blob/master/recipe__setwise_operations.py)

-*- coding: utf-8 -*-

import sys
import functools
import twitter
import locale
import redis
from recipe__make_twitter_request import make_twitter_request

A convenience function for consistently creating keys for a
screen name, user id, or anything else you'd like.

def get_redis_id(key_name, screen_name=None, user_id=None):

 if screen_name is not None:
 return 'screen_name$' + screen_name + '$' + key_name
 elif user_id is not None:
 return 'user_id$' + user_id + '$' + key_name
 else:
 raise Exception("No screen_name or user_id provided to get_redis_id")

if __name__ == '__main__':

 SCREEN_NAME = sys.argv[1]
 MAX_IDS = int(sys.argv[2])

 # Create a client to connect to a running redis-server with default
 # connection settings. It is recommended that you run Redis in
 # "append only mode" -- Search for "appendonly yes" in redis.conf for details.

 r = redis.Redis()

 # Not authenticating lowers your rate limit to 150 requests per hr.
 # Authenticate to get 350 requests per hour.

 t = twitter.Twitter(domain='api.twitter.com', api_version='1')

 # Harvest some friend ids.

 get_friends_ids = functools.partial(make_twitter_request, t, t.friends.ids)

 cursor = -1
 ids = []
 while cursor != 0:

 # Use make_twitter_request via the partially bound callable...

 response = get_friends_ids(screen_name=SCREEN_NAME, cursor=cursor)

 # Add the ids to the set in redis with the sadd (set add) operator.

 rid = get_redis_id('friend_ids', screen_name=SCREEN_NAME)

1.14 Performing Setwise Operations on Friendship Data | 41

 [r.sadd(rid, _id) for _id in response['ids']]

 cursor = response['next_cursor']

 print >> sys.stderr, \
 'Fetched %i total friend ids for %s' % (r.scard(rid), SCREEN_NAME)

 if r.scard(rid) >= MAX_IDS:
 break

 # Harvest some follower ids.

 get_followers_ids = functools.partial(make_twitter_request, t, t.followers.ids)

 cursor = -1
 ids = []
 while cursor != 0:

 # Use make_twitter_request via the partially bound callable...

 response = get_followers_ids(screen_name=SCREEN_NAME, cursor=cursor)

 # Add the ids to the set in redis with the sadd (set add) operator.

 rid = get_redis_id('follower_ids', screen_name=SCREEN_NAME)

 [r.sadd(rid, _id) for _id in response['ids']]

 cursor = response['next_cursor']

 print >> sys.stderr, \
 'Fetched %i total follower ids for %s' % (r.scard(rid), SCREEN_NAME)

 if r.scard(rid) >= MAX_IDS:
 break

 # Compute setwise operations the data in Redis.

 n_friends = r.scard(get_redis_id('friend_ids', screen_name=SCREEN_NAME))

 n_followers = r.scard(get_redis_id('follower_ids', screen_name=SCREEN_NAME))

 n_friends_diff_followers = r.sdiffstore('temp',
 [get_redis_id('friend_ids',
 screen_name=SCREEN_NAME),
 get_redis_id('follower_ids',
 screen_name=SCREEN_NAME)])
 r.delete('temp')

 n_followers_diff_friends = r.sdiffstore('temp',
 [get_redis_id('follower_ids',
 screen_name=SCREEN_NAME),
 get_redis_id('friend_ids',
 screen_name=SCREEN_NAME)])

42 | The Recipes

 r.delete('temp')

 n_friends_inter_followers = r.sinterstore('temp',
 [get_redis_id('follower_ids', screen_name=SCREEN_NAME),
 get_redis_id('friend_ids', screen_name=SCREEN_NAME)])
 r.delete('temp')

 print '%s is following %s' % (SCREEN_NAME, locale.format('%d', n_friends, True))

 print '%s is being followed by %s' % (SCREEN_NAME, locale.format('%d',
 n_followers, True))

 print '%s of %s are not following %s back' % (locale.format('%d',
 n_friends_diff_followers, True), locale.format('%d', n_friends, True),
 SCREEN_NAME)

 print '%s of %s are not being followed back by %s' % (locale.format('%d',
 n_followers_diff_friends, True), locale.format('%d', n_followers, True),
 SCREEN_NAME)

 print '%s has %s mutual friends' \
 % (SCREEN_NAME, locale.format('%d', n_friends_inter_followers, True))

Because the people who aren’t following someone back often says a lot about the per-
son, the next step in certain analyses is to resolve those ids to screen names for further
analysis. Example 1-26 shows you how. Another interesting exercise might be to fetch
friends and followers for multiple users and devise similarity metrics for these users
based upon their friends, followers, profile information, etc. Analyzing users who have
been listed via the :user/lists API resources might be another interesting approach to
consider in computing similarity.

1.15 Resolving User Profile Information
Problem
You have a collection of ids and need to resolve basic profile information (such as
screen names) for these users.

Solution
Use the /users/lookup resource to look up profile information for up to 100 users at a
time.

Discussion
The /friends/ids and /followers/ids resources return ids that will ultimately need
to be resolved, and the /users/lookup resource provides the most efficient way to access
this information via Twitter’s API. Example 1-26 shows how to use make_
twitter_request to resolve a large batch of ids.

1.15 Resolving User Profile Information | 43

Example 1-26. Resolving user profile information (see http://github.com/ptwobrussell/Recipes-for
-Mining-Twitter/blob/master/recipe__get_user_info.py)

-*- coding: utf-8 -*-

from recipe__oauth_login import oauth_login
from recipe__make_twitter_request import make_twitter_request

Assume ids have been fetched from a scenario such as the
one presented in recipe__get_friends_followers.py and that
t is an authenticated instance of twitter.Twitter

def get_info_by_id(t, ids):

 id_to_info = {}

 while len(ids) > 0:

 # Process 100 ids at a time...

 ids_str = ','.join([str(_id) for _id in ids[:100]])
 ids = ids[100:]

 response = make_twitter_request(t,
 getattr(getattr(t, "users"), "lookup"),
 user_id=ids_str)

 if response is None:
 break

 if type(response) is dict: # Handle Twitter API quirk
 response = [response]

 for user_info in response:
 id_to_info[user_info['id']] = user_info

 return id_to_info

Similarly, you could resolve the same information by screen name
using code that's virtually identical. These two functions
could easily be combined.

def get_info_by_screen_name(t, screen_names):

 sn_to_info = {}

 while len(screen_names) > 0:

 # Process 100 ids at a time...

 screen_names_str = ','.join([str(sn) for sn in screen_names[:100]])
 screen_names = screen_names[100:]

44 | The Recipes

 response = make_twitter_request(t,
 getattr(getattr(t, "users"), "lookup"),
 screen_name=screen_names_str)

 if response is None:
 break

 if type(response) is dict: # Handle Twitter API quirk
 response = [response]

 for user_info in response:
 sn_to_info[user_info['screen_name']] = user_info

 return sn_to_info

if __name__ == '__main__':

 # Be sure to pass in any necessary keyword parameters
 # if you don't have a token already stored on file.

 t = oauth_login()

 # Basic usage...

 info = {}
 info.update(get_info_by_screen_name(t, ['ptwobrussell', 'socialwebmining']))
 info.update(get_info_by_id(t, ['2384071']))

 # Do something useful with the profile information like store it to disk.

 import json
 print json.dumps(info, indent=1)

Note that the /users/show resource may only be suitable in some circumstances; it does
not require authentication, but only returns information for only one user per request.
Given the rate limits, this is quite wasteful in terms of API resources if you have more
than one user id that you need to resolve.

See Also
http://dev.twitter.com/doc/get/users/lookup, http://dev.twitter.com/doc/get/users/show

1.16 Crawling Followers to Approximate Potential Influence
Problem
You want to approximate someone’s influence based upon their popularity and the
popularity of their followers.

1.16 Crawling Followers to Approximate Potential Influence | 45

Solution
Use a breadth-first traversal to crawl the followers of the user to a reasonable depth,
and then count the number of nodes in the graph.

Discussion
A breadth-first traversal is a common technique for traversing a graph, the implicit data
structure that underlies social networks. Given a queue, Q1, containing one or more
seed nodes, a breadth-first search systematically visits all of the adjacent nodes (neigh-
bors) for these nodes and places them in another queue, Q2. When Q1 becomes empty,
it means that all of these nodes have been visited, and the process repeats itself for the
nodes in Q2, with Q1 now being used to keep track of neighbors. Once a suitable depth
has been reached, the traversal terminates. A breadth-first traversal is easy to imple-
ment, and the neighbors for each node can be stored on disk and later analyzed as a
graph. The two characteristics that govern the space complexity of a breadth-first tra-
versal are the depth of the traversal and the average branching factor of each node in
the graph. The number of followers for Twitter users varies wildly; all it takes to dra-
matically effect the average branching factor is a very popular follower, so it would be
wise to set an upper threshold.

Example 1-27 illustrates an approach for crawling a user’s followers. It recycles logic
from Recipe 1.9 to constitute a get_all_followers_ids function that takes into account
exceptional circumstances, and uses this function in crawl_followers—a typical im-
plementation of breadth-first search.

Example 1-27. Crawling a friendship graph (see http://github.com/ptwobrussell/Recipes-for-Mining
-Twitter/blob/master/recipe__crawl.py)

-*- coding: utf-8 -*-

import sys
import redis
from recipe__make_twitter_request import make_twitter_request
from recipe__setwise_operations import get_redis_id
from recipe__oauth_login import oauth_login

def crawl_followers(t, r, follower_ids, limit=1000000, depth=2):

 # Helper function

 def get_all_followers_ids(user_id, limit):

 cursor = -1
 ids = []
 while cursor != 0:

 response = make_twitter_request(t, t.followers.ids,
 user_id=user_id, cursor=cursor)

46 | The Recipes

 if response is not None:
 ids += response['ids']
 cursor = response['next_cursor']

 print >> sys.stderr, 'Fetched %i total ids for %s' % (len(ids), user_id)

 # Consider storing the ids to disk during each iteration to provide an
 # an additional layer of protection from exceptional circumstances.

 if len(ids) >= limit or response is None:
 break

 return ids

 for fid in follower_ids:

 next_queue = get_all_followers_ids(fid, limit)

 # Store a fid => next_queue mapping in Redis or other database of choice
 # In Redis, it might look something like this:

 rid = get_redis_id('follower_ids', user_id=fid)
 [r.sadd(rid, _id) for _id in next_queue]

 d = 1
 while d < depth:
 d += 1
 (queue, next_queue) = (next_queue, [])
 for _fid in queue:
 _follower_ids = get_all_followers_ids(user_id=_fid, limit=limit)

 # Store a fid => _follower_ids mapping in Redis or other
 # database of choice. In Redis, it might look something like this:

 rid = get_redis_id('follower_ids', user_id=fid)
 [r.sadd(rid, _id) for _id in _follower_ids]

 next_queue += _follower_ids

if __name__ == '__main__':

 SCREEN_NAME = sys.argv[1]

 # Remember to pass in keyword parameters if you don't have a
 # token file stored on disk already

 t = oauth_login()

 # Resolve the id for SCREEN_NAME

 _id = str(t.users.show(screen_name=SCREEN_NAME)['id'])

 crawl_followers(t, redis.Redis(), [_id])

1.16 Crawling Followers to Approximate Potential Influence | 47

 # The total number of nodes visited represents one measure of potential influence.
 # You can also use the user => follower ids information to create a
 # graph for analysis.

The code builds upon the foundation established in Recipe 1.13 and Recipe 1.14, and
illustrates how you could use Redis to store the follower ids for users encountered
during the breadth-first traversal. However, you could just as easily use any other stor-
age medium. Once your traversal has completed, the total number of nodes in the graph
is one indicator of the user’s potential influence. For example, if you were given a user
id and traversed its follower graph to a depth of 1, you’d have a hub and spoke graph
that represents the seed node and its adjacent neighbors. A depth of 2 would represent
the user, the user’s followers, and the user’s followers’ followers. Obviously, the higher
the depth, the higher the number of nodes in the graph and the higher the potential
influence. However, it might be the case that the further out you traverse the graph,
the more diverse the users become and the less likely it is that a retweet would occur.
It would be interesting to hold a rigorous experiment to investigate this hypothesis.

1.17 Analyzing Friendship Relationships such as Friends of
Friends
Problem
You want to create a graph that facilitates the analysis of interesting relationships
amongst users, such as friends of friends.

Solution
Systematically harvest all of the friendships for users of interest, and load the data into
a graph toolkit like NetworkX that offers native graph operations.

Discussion
Recipe 1.13 demonstrated how to fetch all of the friends or followers for a user of
interest, and Recipe 1.16 is a logical extension that you can easily adapt to harvest
friends or followers using a breadth-first search. Assuming that you’ve harvested and
stored all of the friendships for a collection of users using one of these options, the core
operation that you need in order to create a graph is the add_edge operation that con-
nects two nodes at a time. Optionally, directionality for the edge and additional
metadata about the nodes or edges may also be embedded.

Example 1-28 illustrates one possible approach to creating a graph of common friend-
ships amongst a group of users and assumes you might have stored the friendship data
in Redis. The end goal of this example is to create a hub and spoke graph of a user and
all of this user’s friends along with any additional friendships that existing amongst this

48 | The Recipes

user’s friends. See Recipe 1.6 for an another useful example of using NetworkX to
construct a graph of retweet relationships.

Example 1-28. Creating friendship graphs (see http://github.com/ptwobrussell/Recipes-for-Mining
-Twitter/blob/master/recipe__create_friendship_graph.py)

-*- coding: utf-8 -*-

import os
import sys
import networkx as nx
import redis
import twitter

from recipe__setwise_operations import get_redis_id

SCREEN_NAME = sys.argv[1]

t = twitter.Twitter(api_version='1', domain='api.twitter.com')

_id = str(t.users.show(screen_name=SCREEN_NAME)['id'])

g = nx.Graph() # An undirected graph
r = redis.Redis()

Compute all ids for nodes appearing in the graph. Let's assume you've
adapted recipe__crawl to harvest all of the friends and friends' friends
for a user so that you can build a graph to inspect how these
friendships relate to one another.

Create a collection of ids for a person and all of this person's friends.

ids = [_id] + list(r.smembers(get_redis_id('friend_ids', user_id=_id)))

Process each id in the collection such that edges are added to the graph
for each of current_id's friends if those friends are also
friends of SCREEN_NAME. In the end, you get a hub and spoke graph of
SCREEN_NAME and SCREEN_NAME's friends, but you also see connections that
existing amongst SCREEN_NAME's friends as well.

for current_id in ids:

 print >> sys.stderr, 'Processing user with id', current_id

 try:
 friend_ids = list(r.smembers(get_redis_id('friend_ids', user_id=current_id)))
 friend_ids = [fid for fid in friend_ids if fid in ids]
 except Exception, e:
 print >> sys.stderr, 'Encountered exception. Skipping', current_id

 for friend_id in friend_ids:
 print >> sys.stderr, 'Adding edge %s => %s' % (current_id, friend_id,)
 g.add_edge(current_id, friend_id)

Optionally, pickle the graph to disk...

1.17 Analyzing Friendship Relationships such as Friends of Friends | 49

if not os.path.isdir('out'):
 os.mkdir('out')

f = os.path.join('out', SCREEN_NAME + '-friendships.gpickle')
nx.write_gpickle(g, f)

print >> sys.stderr, 'Pickle file stored in', f

To further explain how this example works, let’s assume that you have a particular user
that you’re very interested in: @user. Assuming you’ve harvested all of @user’s friend-
ships and all of the friendships for these friendships (friends of friends), you can create
a graph of the common friendships that exist for this entire network— whether or not
@user is one of the nodes in the graph. There are many spins and variations that you
could integrate into this example, and more types of analysis than could fill a small
book. As you add more nodes to the graph and more heuristics to the graph construc-
tion algorithm, it only gets more interesting. It’s well worth the effort to explore the
out-of-the-box features that NetworkX provides and spend a little time harvesting some
friendship data to analyze.

1.18 Analyzing Friendship Cliques
Problem
You want to find the friendship cliques in a graph.

Solution
Construct a graph using NetworkX and use its built-in functionality to find the cliques.

Discussion
A clique is a graph (or subgraph) in which every node is connected to every other node.
For example, a triangle is an example of a 3-clique since it contains only three nodes
and all nodes are connected. Clique detection is a very interesting and highly applicable
problem to analyzing social networking relationships. Triangles, approximate cliques,
trusses, and other topologies can also turn out to have useful properties for analysis.
Example 1-29 illustrates an approach for taking a NetworkX graph and discovering the
cliques in it.

Example 1-29. Analyzing friendship cliques (see http://github.com/ptwobrussell/Recipes-for-Mining
-Twitter/blob/master/recipe__clique_analysis.py)

-*- coding: utf-8 -*-

import sys
import json
import networkx as nx

50 | The Recipes

G = sys.argv[1]

g = nx.read_gpickle(G)

Finding cliques is a hard problem, so this could
take a while for large graphs.
See http://en.wikipedia.org/wiki/NP-complete and
http://en.wikipedia.org/wiki/Clique_problem

cliques = [c for c in nx.find_cliques(g)]

num_cliques = len(cliques)

clique_sizes = [len(c) for c in cliques]
max_clique_size = max(clique_sizes)
avg_clique_size = sum(clique_sizes) / num_cliques

max_cliques = [c for c in cliques if len(c) == max_clique_size]

num_max_cliques = len(max_cliques)

max_clique_sets = [set(c) for c in max_cliques]
people_in_every_max_clique = list(reduce(lambda x, y: x.intersection(y),
 max_clique_sets))

print 'Num cliques:', num_cliques
print 'Avg clique size:', avg_clique_size
print 'Max clique size:', max_clique_size
print 'Num max cliques:', num_max_cliques
print
print 'People in all max cliques:'
print json.dumps(people_in_every_max_clique, indent=4)
print
print 'Max cliques:'
print json.dumps(max_cliques, indent=4)

For purposes of illustration, Mining the Social Web (O’Reilly) included an analysis
conducted in mid-2010 that determined the following statistics for Tim O’Reilly’s ~700
friendships:

Num cliques: 762573
Avg clique size: 14
Max clique size: 26
Num max cliques: 6
Num people in every max clique: 20

Some of the more interesting insight from the analysis was that there are six different
cliques of size 26 in Tim O’Reilly’s friendships, which means that those six variations
of 26 people all “know” one another to the point that they were at least interested in
receiving each other’s status updates in their tweet stream. Perhaps even more inter-
esting is that there are 20 people who appeared in all 6 of those maximum cliques. As
an example of practical application, if you wanted to get Tim’s attention at a conference
or Maker event, but can’t seem to track him down, you might start looking for one of

1.18 Analyzing Friendship Cliques | 51

these other people since there’s more than a reasonable likelihood that they’re closely
connected with him.

As a more technical aside, be advised that finding cliques is a hard problem in both a
figurative sense, but also in the computational sense that it’s a problem that belongs to
a class of problems that are known as NP-Complete. In layman’s terms, being NP-
Complete means that the combinatorics of the problem, whether it be finding cliques
or otherwise, grow explosively as the size of the input for the problem grows. Practically
speaking, this means that for a very large graph, you either need to wait a very long
time to get an exact answer to the problem of finding cliques, or you need to be willing
to settle for an approximate solution. The implementation that NetworkX offers should
work fine on commodity hardware for graphs containing high-hundreds to low-thou-
sands of nodes (possibly even higher) before the time required to compute cliques
becomes unbearable.

See Also
http://networkx.lanl.gov/reference/generated/networkx.algorithms.clique.find_cliques
.html, http://en.wikipedia.org/wiki/Clique_problem

1.19 Analyzing the Authors of Tweets that Appear in Search
Results
Problem
You want to analyze user profile information as it relates to the authors of tweets that
appear in search results.

Solution
Use the /search resource to fetch search results, and then extract the from_user field
from each search result object to look up profile information by screen name using
either the /users/show or /users/lookup resources.

Discussion
Unfortunately, there’s a long-lived bug with the Twitter API’s /search resource; the
basic problem is that the user id values in search results do not correspond to user id
values that you can use with other APIs such as the various /user resources. This means
that you have to perform many more requests to resolve profile information for users
whose tweets appear in your search results than would ideally be the case. One ap-
proach you can take to overcoming this problem is to extract the from_user field in each
search result object and use the /users/lookup resource to resolve profile information
for up to 100 tweet authors with a single request. Given a collection of targeted search
results and corresponding profile information for the authors of those tweets, you can

52 | The Recipes

easily build up useful indices (such as screen names to tweet ids, or screen names to
location information) as it appears in profiles.

Example 1-30 demonstrates some logic that gets you started along this very path: it
searches for a topic of interest, fetches the profile information for authors associated
with those tweets, and exposes some useful indices such as a “screen name to location”
index that could then be geocoded and visualized on a map to determine if there is a
correlation between a tweet author’s home location and topics which that user
discusses.

Example 1-30. Analyzing the authors of tweets that appear in search results (see http://github.com/
ptwobrussell/Recipes-for-Mining-Twitter/blob/master/recipe__analyze_users_in_search_results.py)

-*- coding: utf-8 -*-

import sys
import twitter
from recipe__get_user_info import get_info_by_screen_name
from recipe__oauth_login import oauth_login

def analyze_users_in_search_results(t, q, max_pages=15, results_per_page=100):

 # Search for something

 search_api = twitter.Twitter(domain="search.twitter.com")
 search_results = []
 for page in range(1,max_pages+1):
 search_results += \
 search_api.search(q=q, rpp=results_per_page, page=page)['results']

 # Extract the screen names (the "from_user" field) from the results
 # and optionally map them to a useful field like the tweet id
 # See http://code.google.com/p/twitter-api/issues/detail?id=214 for
 # why you can't use the user id values.

 screen_name_to_tweet_ids = {}
 for result in search_results:

 screen_name = result['from_user']

 if not screen_name_to_tweet_ids.has_key(screen_name):
 screen_name_to_tweet_ids[screen_name] = []

 screen_name_to_tweet_ids[screen_name] += [result['id']]

 # Use the /users/lookup resource to resolve profile information for
 # these screen names.

 screen_name_to_info = get_info_by_screen_name(t, screen_name_to_tweet_ids.keys())

 # Extract the home location for each user. Note that the "location" field can
 # be anything a user has typed in, and may be something like "Everywhere",

1.19 Analyzing the Authors of Tweets that Appear in Search Results | 53

 # "United States" or something else that won't geocode to a specific coordinate
 # on a map.

 screen_name_to_location = dict([(sn, info['location'])
 for sn, info in screen_name_to_info.items()])

 # Use the various screen_name_to{tweet_ids, info, location} maps to determine
 # interesting things about the people who appear in the search results.

 return screen_name_to_info, screen_name_to_location, screen_name_to_tweet_ids

if __name__ == '__main__':

 Q = ' '.join(sys.argv[1:])

 # Don't forget to pass in keyword parameters if you don't have
 # a token file stored to disk

 t = oauth_login()

 sn2info, sn2location, sn2tweet_ids = analyze_users_in_search_results(t, Q)

 # Go off and do interesting things...

1.20 Visualizing Geodata with a Dorling Cartogram
Problem
You want to visualize geolocation information (for example, the location field from
user profile information, included in a batch of tweets such as a search query), in order
to determine if there is a correlation between location and some other criterion.

Solution
Devise a heuristic to extract the state from the location information in user profiles and
visualize it with a Dorling Cartogram.

Discussion
A Dorling Cartogram is essentially a bubble chart where each bubble corresponds to a
geographic area such as a state, and each bubble is situated as close as possible to its
actual location on a map without overlapping with any other bubbles (see Fig-
ure 1-3). Since the size and/or color of each bubble can be used to represent meaningful
things, a Dorling Cartogram can give you a very intuitive view of data as it relates to
geographic boundaries or regions of a larger land mass. The Protovis toolkit comes with
some machinery for creating Dorling Cartograms for locations in the United States,
and one interesting example of something that you could do builds upon Rec-
ipe 1.19, which demonstrated an approach that you could use to analyze the users who
authored tweets from a targeted query.

54 | The Recipes

The thought is that you might attempt to resolve the location field in the user profiles
for users who have tweets appearing in a focused query, and visualize them on a map
in order to determine whether there is any geographic correlation between topics and
locations. Of course, it’s not quite that simple, since you need to account for the relative
population of any given area through some kind of normalization. For example, you
might find that a highly populated state like California almost always has the highest
number of people talking about any given topic.

Example 1-31 illustrates how to recycle some code from previous recipes and produce
a map of state abbreviations and frequency values that correspond to the number of
users from a particular state who appear in targeted search results.

Example 1-31. Visualizing geodata with a Dorling Cartogram (see http://github.com/ptwobrussell/
Recipes-for-Mining-Twitter/blob/master/recipe__dorling_cartogram.py)

-*- coding: utf-8 -*-

import os
import sys
import re
import shutil
import json
import webbrowser
import twitter
from recipe__oauth_login import oauth_login
from recipe__analyze_users_in_search_results import analyze_users_in_search_results

A simple heuristic function that tries to detect the presence of a state
in a short blurb of text by searching for the full state name and the
state abbreviation in a suitable context. It returns a map of state
abbreviations and frequencies. Much more sophisticated alternatives could
be applied; this is simply a starting point to get you on your way.

Figure 1-3. A Dorling Cartogram allows you to associate geographic areas with at least two intuitive
variables by taking advantage of size and color in the visualization

1.20 Visualizing Geodata with a Dorling Cartogram | 55

def get_state_frequencies(locations):

 state_names_to_abbrevs = \
 dict([
 ('ALABAMA', 'AL'),
 ('ALASKA', 'AK'),
 ('ARIZONA', 'AZ'),
 ('ARKANSAS', 'AR'),
 ('CALIFORNIA', 'CA'),
 ('COLORADO', 'CO'),
 ('CONNECTICUT', 'CT'),
 ('DELAWARE', 'DE'),
 ('FLORIDA', 'FL'),
 ('GEORGIA', 'GA'),
 ('HAWAII', 'HI'),
 ('IDAHO', 'ID'),
 ('ILLINOIS', 'IL'),
 ('INDIANA', 'IN'),
 ('IOWA', 'IA'),
 ('KANSAS', 'KS'),
 ('KENTUCKY', 'KY'),
 ('LOUISIANA', 'LA'),
 ('MAINE', 'ME'),
 ('MARYLAND', 'MD'),
 ('MASSACHUSETTS', 'MA'),
 ('MICHIGAN', 'MI'),
 ('MINNESOTA', 'MN'),
 ('MISSISSIPPI', 'MS'),
 ('MISSOURI', 'MO'),
 ('MONTANA', 'MT'),
 ('NEBRASKA', 'NE'),
 ('NEVADA', 'NV'),
 ('NEW HAMPSHIRE', 'NH'),
 ('NEW JERSEY', 'NJ'),
 ('NEW MEXICO', 'NM'),
 ('NEW YORK', 'NY'),
 ('NORTH CAROLINA', 'NC'),
 ('NORTH DAKOTA', 'ND'),
 ('OHIO', 'OH'),
 ('OKLAHOMA', 'OK'),
 ('OREGON', 'OR'),
 ('PENNSYLVANIA', 'PA'),
 ('RHODE ISLAND', 'RI'),
 ('SOUTH CAROLINA', 'SC'),
 ('SOUTH DAKOTA', 'SD'),
 ('TENNESSEE', 'TN'),
 ('TEXAS', 'TX'),
 ('UTAH', 'UT'),
 ('VERMONT', 'VT'),
 ('VIRGINIA', 'VA'),
 ('WASHINGTON', 'WA'),
 ('WEST VIRGINIA', 'WV'),
 ('WISCONSIN', 'WI'),
 ('WYOMING', 'WY')
])

56 | The Recipes

 state_abbrevs = state_names_to_abbrevs.values()

 states_freqs = dict([(abbrev, 0) for abbrev in state_abbrevs])

 for location in locations:
 if location is None:
 continue

 for name, abbrev in state_names_to_abbrevs.items():
 if location.upper().find(name) > -1:
 states_freqs[abbrev] += 1
 break

 if re.findall(r'\b(' + abbrev + r')\b', location, re.IGNORECASE):
 states_freqs[abbrev] += 1
 break

 return states_freqs

Q = ' '.join(sys.argv[1:])

Don't forget to pass in keyword parameters if you don't have
a token file stored to disk.

t = oauth_login()

_, screen_name_to_location, _ = analyze_users_in_search_results(t, Q)
locations = screen_name_to_location.values()

Resolve state abbreviations to the number of times these states appear.
states_freqs = get_state_frequencies(locations)

Munge the data to the format expected by Protovis for Dorling Cartogram.

json_data = {}
for state, freq in states_freqs.items():
 json_data[state] = {'value': freq}

Copy over some scripts for Protovis...
Our html template references some Protovis scripts, which we can
simply copy into out/

if not os.path.isdir('out'):
 os.mkdir('out')

shutil.rmtree('out/dorling_cartogram', ignore_errors=True)
shutil.rmtree('out/protovis-3.2', ignore_errors=True)

shutil.copytree('etc/protovis/dorling_cartogram',
 'out/dorling_cartogram')

shutil.copytree('etc/protovis/protovis-3.2',
 'out/protovis-3.2')

1.20 Visualizing Geodata with a Dorling Cartogram | 57

html = open('etc/protovis/dorling_cartogram/dorling_cartogram.html').read() % \
 (json.dumps(json_data),)

f = open(os.path.join(os.getcwd(), 'out', 'dorling_cartogram',
 'dorling_cartogram.html'), 'w')
f.write(html)
f.close()

print >> sys.stderr, 'Data file written to: %s' % f.name
webbrowser.open('file://' + f.name)

1.21 Geocoding Locations from Profiles (or Elsewhere)
Problem
You want to geocode information in tweets for situations beyond what the /geo
and /status resources currently support.

Solution
Use the geopy package to perform your own geocoding against your web service of
choice, such as Google Maps.

Discussion
You should first consult the capabilities of Twitter’s /geo resources and the potential
geolocation information that may be embedded into /status resources to make sure
that you’re aware of the possibilities offered by the Twitter API, but if neither of these
options are satisfying enough, then consider taking matters into your own hands with
the geopy package (easy_install geopy). Twitter’s /geo resources provides several
useful capabilities, but (somewhat) surprisingly, nothing that’s capable of performing
direct geocoding—taking a location such as “Franklin, TN” and resolving it to a co-
ordinate. Furthermore, while some users may optionally tweet with geolocation infor-
mation embedded into their tweets, it’s more often the case that users won’t enable
this option. The current status quo leaves a fairly wide opportunity for geo analysis by
way of third-party packages such as geopy.

For example, you might want to search or collect a filtered stream of tweets for a par-
ticular topic of interest, and try to determine if there is a correlation between people
who are talking about these topics and their location as indicated in their profile in-
formation (as demonstrated in Recipe 1.19) with a Dorling Cartogram. While the
location field in profile information is a custom text value that could be anything from
“Franklin, TN” to “IN UR FRIDGE. EATIN UR FOODZ”, be advised that a reasonable
number of users do seem to include sensible values that can be geocoded.

58 | The Recipes

Example 1-32. Geocoding locations from profiles (or elsewhere); see http://github.com/ptwobrussell/
Recipes-for-Mining-Twitter/blob/master/recipe__geocode_profile_locations.py

-*- coding: utf-8 -*-

import sys
from urllib2 import HTTPError
import geopy
from recipe__oauth_login import oauth_login
from recipe__analyze_users_in_search_results import analyze_users_in_search_results

def geocode_locations(geocoder, locations):

 # Some basic replacement transforms may be necessary for geocoding services to
 # function properly. You may probably need to add your own as you encounter rough
 # edges in the data or with the geocoding service you settle on. For example, ...

 replacement_transforms = [('San Francisco Bay', 'San Francisco')]

 location_to_coords = {}
 location_to_description = {}

 for location in locations:

 # Avoid unnecessary I/O with a simple cache.

 if location_to_coords.has_key(location):
 continue

 xformed_location = location

 for transform in replacement_transforms:

 xformed_location = xformed_location.replace(*transform)

 while True:

 num_errors = 0

 try:
 # This call returns a generator.

 results = geocoder.geocode(xformed_location, exactly_one=False)
 break
 except HTTPError, e:
 num_errors += 1
 if num_errors >= MAX_HTTP_ERRORS:
 sys.exit()
 print >> sys.stderr, e.message
 print >> sys.stderr, 'A urllib2 error. Retrying...'
 except UnicodeEncodeError, e:
 print >> sys.stderr, e
 print >> sys.stderr, 'A UnicodeEncodeError...', e.message
 break

1.21 Geocoding Locations from Profiles (or Elsewhere) | 59

 except geopy.geocoders.google.GQueryError, e:
 print >> sys.stderr, e
 print >> sys.stderr, 'A GQueryError', e.message
 break

 for result in results:

 # Each result is of the form ("Description", (X,Y))
 # Unless you have a some special logic for picking the best of many
 # possible results, choose the first one returned in results and move
 # along.

 location_to_coords[location] = result[1]
 location_to_description[location] = result[0]
 break

 # Use location_to_coords and other information of interest to populate a
 # visualization. Depending on your particular needs, it is highly likely that
 # you'll want to further post process the geocoded locations to filter out
 # location such as "U.S.A." which will plot a placemarker in the geographic
 # center of the United States yet make the visualization look skewed in favor
 # of places like Oklahoma, for example.

 return location_to_coords, location_to_description

if __name__ == '__main__':

 # Use your own API key here if you use a geocoding service
 # such as Google or Yahoo!

 GEOCODING_API_KEY = sys.argv[1]

 Q = ' '.join(sys.argv[2:])

 MAX_HTTP_ERRORS = 100

 g = geopy.geocoders.Google(GEOCODING_API_KEY)

 # Don't forget to pass in keyword parameters if you don't have
 # a token file stored to disk.

 t = oauth_login()

 # This function returns a few useful maps. Let's use the
 # screen_name => location map and geocode the locations.

 _, screen_name_to_location, _ = analyze_users_in_search_results(t, Q, 2)

 locations = screen_name_to_location.values()
 location2coords, location2description = geocode_locations(g, locations)

Once you’ve successfully resolved location descriptions to geocoordinates, you can
easily create a KML file and visualize the locations in Google Maps or Google Earth.

60 | The Recipes

	Table of Contents
	Preface
	Introduction
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	The Recipes
	1.1 Using OAuth to Access Twitter APIs
	Problem
	Solution
	Discussion
	See Also

	1.2 Looking Up the Trending Topics
	Problem
	Solution
	Discussion
	See Also

	1.3 Extracting Tweet Entities
	Problem
	Solution
	Discussion
	See Also

	1.4 Searching for Tweets
	Problem
	Solution
	Discussion
	See Also

	1.5 Extracting a Retweet’s Origins
	Problem
	Solution
	Discussion
	See Also

	1.6 Creating a Graph of Retweet Relationships
	Problem
	Solution
	Discussion

	1.7 Visualizing a Graph of Retweet Relationships
	Problem
	Solution
	Discussion
	See Also

	1.8 Capturing Tweets in Real-time with the Streaming API
	Problem
	Solution
	Discussion
	See Also

	1.9 Making Robust Twitter Requests
	Problem
	Solution
	Discussion
	See Also

	1.10 Harvesting Tweets
	Problem
	Solution
	Discussion
	See Also

	1.11 Creating a Tag Cloud from Tweet Entities
	Problem
	Solution
	Discussion
	See Also

	1.12 Summarizing Link Targets
	Problem
	Solution
	Discussion

	1.13 Harvesting Friends and Followers
	Problem
	Solution
	Discussion
	See Also

	1.14 Performing Setwise Operations on Friendship Data
	Problem
	Solution
	Discussion

	1.15 Resolving User Profile Information
	Problem
	Solution
	Discussion
	See Also

	1.16 Crawling Followers to Approximate Potential Influence
	Problem
	Solution
	Discussion

	1.17 Analyzing Friendship Relationships such as Friends of Friends
	Problem
	Solution
	Discussion

	1.18 Analyzing Friendship Cliques
	Problem
	Solution
	Discussion
	See Also

	1.19 Analyzing the Authors of Tweets that Appear in Search Results
	Problem
	Solution
	Discussion

	1.20 Visualizing Geodata with a Dorling Cartogram
	Problem
	Solution
	Discussion

	1.21 Geocoding Locations from Profiles (or Elsewhere)
	Problem
	Solution
	Discussion

