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Preface

This is a book about Natural Language Processing. By “natural language” we mean a
language that is used for everyday communication by humans; languages such as Eng-
lish, Hindi, or Portuguese. In contrast to artificial languages such as programming lan-
guages and mathematical notations, natural languages have evolved as they pass from
generation to generation, and are hard to pin down with explicit rules. We will take
Natural Language Processing—or NLP for short—in a wide sense to cover any kind of
computer manipulation of natural language. At one extreme, it could be as simple as
counting word frequencies to compare different writing styles. At the other extreme,
NLP involves “understanding” complete human utterances, at least to the extent of
being able to give useful responses to them.

Technologies based on NLP are becoming increasingly widespread. For example,
phones and handheld computers support predictive text and handwriting recognition;
web search engines give access to information locked up in unstructured text; machine
translation allows us to retrieve texts written in Chinese and read them in Spanish. By
providing more natural human-machine interfaces, and more sophisticated access to
stored information, language processing has come to play a central role in the multi-
lingual information society.

This book provides a highly accessible introduction to the field of NLP. It can be used
for individual study or as the textbook for a course on natural language processing or
computational linguistics, or as a supplement to courses in artificial intelligence, text
mining, or corpus linguistics. The book is intensely practical, containing hundreds of
fully worked examples and graded exercises.

The book is based on the Python programming language together with an open source
library called the Natural Language Toolkit (NLTK). NLTK includes extensive soft-
ware, data, and documentation, all freely downloadable from http://www.nltk.org/.
Distributions are provided for Windows, Macintosh, and Unix platforms. We strongly
encourage you to download Python and NLTK, and try out the examples and exercises
along the way.
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Audience
NLP is important for scientific, economic, social, and cultural reasons. NLP is experi-
encing rapid growth as its theories and methods are deployed in a variety of new lan-
guage technologies. For this reason it is important for a wide range of people to have a
working knowledge of NLP. Within industry, this includes people in human-computer
interaction, business information analysis, and web software development. Within
academia, it includes people in areas from humanities computing and corpus linguistics
through to computer science and artificial intelligence. (To many people in academia,
NLP is known by the name of “Computational Linguistics.”)

This book is intended for a diverse range of people who want to learn how to write
programs that analyze written language, regardless of previous programming
experience:

New to programming?
The early chapters of the book are suitable for readers with no prior knowledge of
programming, so long as you aren’t afraid to tackle new concepts and develop new
computing skills. The book is full of examples that you can copy and try for your-
self, together with hundreds of graded exercises. If you need a more general intro-
duction to Python, see the list of Python resources at http://docs.python.org/.

New to Python?
Experienced programmers can quickly learn enough Python using this book to get
immersed in natural language processing. All relevant Python features are carefully
explained and exemplified, and you will quickly come to appreciate Python’s suit-
ability for this application area. The language index will help you locate relevant
discussions in the book.

Already dreaming in Python?
Skim the Python examples and dig into the interesting language analysis material
that starts in Chapter 1. You’ll soon be applying your skills to this fascinating
domain.

Emphasis
This book is a practical introduction to NLP. You will learn by example, write real
programs, and grasp the value of being able to test an idea through implementation. If
you haven’t learned already, this book will teach you programming. Unlike other
programming books, we provide extensive illustrations and exercises from NLP. The
approach we have taken is also principled, in that we cover the theoretical underpin-
nings and don’t shy away from careful linguistic and computational analysis. We have
tried to be pragmatic in striking a balance between theory and application, identifying
the connections and the tensions. Finally, we recognize that you won’t get through this
unless it is also pleasurable, so we have tried to include many applications and ex-
amples that are interesting and entertaining, and sometimes whimsical.
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Note that this book is not a reference work. Its coverage of Python and NLP is selective,
and presented in a tutorial style. For reference material, please consult the substantial
quantity of searchable resources available at http://python.org/ and http://www.nltk
.org/.

This book is not an advanced computer science text. The content ranges from intro-
ductory to intermediate, and is directed at readers who want to learn how to analyze
text using Python and the Natural Language Toolkit. To learn about advanced algo-
rithms implemented in NLTK, you can examine the Python code linked from http://
www.nltk.org/, and consult the other materials cited in this book.

What You Will Learn
By digging into the material presented here, you will learn:

• How simple programs can help you manipulate and analyze language data, and
how to write these programs

• How key concepts from NLP and linguistics are used to describe and analyze
language

• How data structures and algorithms are used in NLP

• How language data is stored in standard formats, and how data can be used to
evaluate the performance of NLP techniques

Depending on your background, and your motivation for being interested in NLP, you
will gain different kinds of skills and knowledge from this book, as set out in Table P-1.

Table P-1. Skills and knowledge to be gained from reading this book, depending on readers’ goals and
background

Goals Background in arts and humanities Background in science and engineering

Language
analysis

Manipulating large corpora, exploring linguistic
models, and testing empirical claims.

Using techniques in data modeling, data mining, and
knowledge discovery to analyze natural language.

Language
technology

Building robust systems to perform linguistic tasks
with technological applications.

Using linguistic algorithms and data structures in robust
language processing software.

Organization
The early chapters are organized in order of conceptual difficulty, starting with a prac-
tical introduction to language processing that shows how to explore interesting bodies
of text using tiny Python programs (Chapters 1–3). This is followed by a chapter on
structured programming (Chapter 4) that consolidates the programming topics scat-
tered across the preceding chapters. After this, the pace picks up, and we move on to
a series of chapters covering fundamental topics in language processing: tagging, clas-
sification, and information extraction (Chapters 5–7). The next three chapters look at
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we can use to break a line into its words. To apply a method to an object, we write the
object name, followed by a period, followed by the method name, i.e., line.split().
Third, methods have arguments expressed inside parentheses. For instance, in the ex-
ample, word.endswith('ing') had the argument 'ing' to indicate that we wanted words
ending with ing and not something else. Finally—and most importantly—Python is
highly readable, so much so that it is fairly easy to guess what this program does even
if you have never written a program before.

We chose Python because it has a shallow learning curve, its syntax and semantics are
transparent, and it has good string-handling functionality. As an interpreted language,
Python facilitates interactive exploration. As an object-oriented language, Python per-
mits data and methods to be encapsulated and re-used easily. As a dynamic language,
Python permits attributes to be added to objects on the fly, and permits variables to be
typed dynamically, facilitating rapid development. Python comes with an extensive
standard library, including components for graphical programming, numerical pro-
cessing, and web connectivity.

Python is heavily used in industry, scientific research, and education around the world.
Python is often praised for the way it facilitates productivity, quality, and main-
tainability of software. A collection of Python success stories is posted at http://www
.python.org/about/success/.

NLTK defines an infrastructure that can be used to build NLP programs in Python. It
provides basic classes for representing data relevant to natural language processing;
standard interfaces for performing tasks such as part-of-speech tagging, syntactic pars-
ing, and text classification; and standard implementations for each task that can be
combined to solve complex problems.

NLTK comes with extensive documentation. In addition to this book, the website at
http://www.nltk.org/ provides API documentation that covers every module, class, and
function in the toolkit, specifying parameters and giving examples of usage. The website
also provides many HOWTOs with extensive examples and test cases, intended for
users, developers, and instructors.

Software Requirements
To get the most out of this book, you should install several free software packages.
Current download pointers and instructions are available at http://www.nltk.org/.

Python
The material presented in this book assumes that you are using Python version 2.4
or 2.5. We are committed to porting NLTK to Python 3.0 once the libraries that
NLTK depends on have been ported.

NLTK
The code examples in this book use NLTK version 2.0. Subsequent releases of
NLTK will be backward-compatible.
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NLTK-Data
This contains the linguistic corpora that are analyzed and processed in the book.

NumPy (recommended)
This is a scientific computing library with support for multidimensional arrays and
linear algebra, required for certain probability, tagging, clustering, and classifica-
tion tasks.

Matplotlib (recommended)
This is a 2D plotting library for data visualization, and is used in some of the book’s
code samples that produce line graphs and bar charts.

NetworkX (optional)
This is a library for storing and manipulating network structures consisting of
nodes and edges. For visualizing semantic networks, also install the Graphviz
library.

Prover9 (optional)
This is an automated theorem prover for first-order and equational logic, used to
support inference in language processing.

Natural Language Toolkit (NLTK)
NLTK was originally created in 2001 as part of a computational linguistics course in
the Department of Computer and Information Science at the University of Pennsylva-
nia. Since then it has been developed and expanded with the help of dozens of con-
tributors. It has now been adopted in courses in dozens of universities, and serves as
the basis of many research projects. Table P-2 lists the most important NLTK modules.

Table P-2. Language processing tasks and corresponding NLTK modules with examples of
functionality

Language processing task NLTK modules Functionality

Accessing corpora nltk.corpus Standardized interfaces to corpora and lexicons

String processing nltk.tokenize, nltk.stem Tokenizers, sentence tokenizers, stemmers

Collocation discovery nltk.collocations t-test, chi-squared, point-wise mutual information

Part-of-speech tagging nltk.tag n-gram, backoff, Brill, HMM, TnT

Classification nltk.classify, nltk.cluster Decision tree, maximum entropy, naive Bayes, EM, k-means

Chunking nltk.chunk Regular expression, n-gram, named entity

Parsing nltk.parse Chart, feature-based, unification, probabilistic, dependency

Semantic interpretation nltk.sem, nltk.inference Lambda calculus, first-order logic, model checking

Evaluation metrics nltk.metrics Precision, recall, agreement coefficients

Probability and estimation nltk.probability Frequency distributions, smoothed probability distributions

Applications nltk.app, nltk.chat Graphical concordancer, parsers, WordNet browser, chatbots
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Language processing task NLTK modules Functionality

Linguistic fieldwork nltk.toolbox Manipulate data in SIL Toolbox format

NLTK was designed with four primary goals in mind:

Simplicity
To provide an intuitive framework along with substantial building blocks, giving
users a practical knowledge of NLP without getting bogged down in the tedious
house-keeping usually associated with processing annotated language data

Consistency
To provide a uniform framework with consistent interfaces and data structures,
and easily guessable method names

Extensibility
To provide a structure into which new software modules can be easily accommo-
dated, including alternative implementations and competing approaches to the
same task

Modularity
To provide components that can be used independently without needing to un-
derstand the rest of the toolkit

Contrasting with these goals are three non-requirements—potentially useful qualities
that we have deliberately avoided. First, while the toolkit provides a wide range of
functions, it is not encyclopedic; it is a toolkit, not a system, and it will continue to
evolve with the field of NLP. Second, while the toolkit is efficient enough to support
meaningful tasks, it is not highly optimized for runtime performance; such optimiza-
tions often involve more complex algorithms, or implementations in lower-level pro-
gramming languages such as C or C++. This would make the software less readable
and more difficult to install. Third, we have tried to avoid clever programming tricks,
since we believe that clear implementations are preferable to ingenious yet indecipher-
able ones.

For Instructors
Natural Language Processing is often taught within the confines of a single-semester
course at the advanced undergraduate level or postgraduate level. Many instructors
have found that it is difficult to cover both the theoretical and practical sides of the
subject in such a short span of time. Some courses focus on theory to the exclusion of
practical exercises, and deprive students of the challenge and excitement of writing
programs to automatically process language. Other courses are simply designed to
teach programming for linguists, and do not manage to cover any significant NLP con-
tent. NLTK was originally developed to address this problem, making it feasible to
cover a substantial amount of theory and practice within a single-semester course, even
if students have no prior programming experience.
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A significant fraction of any NLP syllabus deals with algorithms and data structures.
On their own these can be rather dry, but NLTK brings them to life with the help of
interactive graphical user interfaces that make it possible to view algorithms step-by-
step. Most NLTK components include a demonstration that performs an interesting
task without requiring any special input from the user. An effective way to deliver the
materials is through interactive presentation of the examples in this book, entering
them in a Python session, observing what they do, and modifying them to explore some
empirical or theoretical issue.

This book contains hundreds of exercises that can be used as the basis for student
assignments. The simplest exercises involve modifying a supplied program fragment in
a specified way in order to answer a concrete question. At the other end of the spectrum,
NLTK provides a flexible framework for graduate-level research projects, with standard
implementations of all the basic data structures and algorithms, interfaces to dozens
of widely used datasets (corpora), and a flexible and extensible architecture. Additional
support for teaching using NLTK is available on the NLTK website.

We believe this book is unique in providing a comprehensive framework for students
to learn about NLP in the context of learning to program. What sets these materials
apart is the tight coupling of the chapters and exercises with NLTK, giving students—
even those with no prior programming experience—a practical introduction to NLP.
After completing these materials, students will be ready to attempt one of the more
advanced textbooks, such as Speech and Language Processing, by Jurafsky and Martin
(Prentice Hall, 2008).

This book presents programming concepts in an unusual order, beginning with a non-
trivial data type—lists of strings—then introducing non-trivial control structures such
as comprehensions and conditionals. These idioms permit us to do useful language
processing from the start. Once this motivation is in place, we return to a systematic
presentation of fundamental concepts such as strings, loops, files, and so forth. In this
way, we cover the same ground as more conventional approaches, without expecting
readers to be interested in the programming language for its own sake.

Two possible course plans are illustrated in Table P-3. The first one presumes an arts/
humanities audience, whereas the second one presumes a science/engineering audi-
ence. Other course plans could cover the first five chapters, then devote the remaining
time to a single area, such as text classification (Chapters 6 and 7), syntax (Chapters
8 and 9), semantics (Chapter 10), or linguistic data management (Chapter 11).

Table P-3. Suggested course plans; approximate number of lectures per chapter

Chapter Arts and Humanities Science and Engineering

Chapter 1, Language Processing and Python 2–4 2

Chapter 2, Accessing Text Corpora and Lexical Resources 2–4 2

Chapter 3, Processing Raw Text 2–4 2

Chapter 4, Writing Structured Programs 2–4 1–2
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Chapter Arts and Humanities Science and Engineering

Chapter 5, Categorizing and Tagging Words 2–4 2–4

Chapter 6, Learning to Classify Text 0–2 2–4

Chapter 7, Extracting Information from Text 2 2–4

Chapter 8, Analyzing Sentence Structure 2–4 2–4

Chapter 9, Building Feature-Based Grammars 2–4 1–4

Chapter 10, Analyzing the Meaning of Sentences 1–2 1–4

Chapter 11, Managing Linguistic Data 1–2 1–4

Total 18–36 18–36

Conventions Used in This Book
The following typographical conventions are used in this book:

Bold
Indicates new terms.

Italic
Used within paragraphs to refer to linguistic examples, the names of texts, and
URLs; also used for filenames and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, statements, and keywords; also used for pro-
gram names.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context; also used for metavariables within program code examples.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
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writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Natural Language Processing with Py-
thon, by Steven Bird, Ewan Klein, and Edward Loper. Copyright 2009 Steven Bird,
Ewan Klein, and Edward Loper, 978-0-596-51649-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596516499
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Figure P-1. Edward Loper, Ewan Klein, and Steven Bird, Stanford, July 2007
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CHAPTER 1

Language Processing and Python

It is easy to get our hands on millions of words of text. What can we do with it, assuming
we can write some simple programs? In this chapter, we’ll address the following
questions:

1. What can we achieve by combining simple programming techniques with large
quantities of text?

2. How can we automatically extract key words and phrases that sum up the style
and content of a text?

3. What tools and techniques does the Python programming language provide for
such work?

4. What are some of the interesting challenges of natural language processing?

This chapter is divided into sections that skip between two quite different styles. In the
“computing with language” sections, we will take on some linguistically motivated
programming tasks without necessarily explaining how they work. In the “closer look
at Python” sections we will systematically review key programming concepts. We’ll
flag the two styles in the section titles, but later chapters will mix both styles without
being so up-front about it. We hope this style of introduction gives you an authentic
taste of what will come later, while covering a range of elementary concepts in linguis-
tics and computer science. If you have basic familiarity with both areas, you can skip
to Section 1.5; we will repeat any important points in later chapters, and if you miss
anything you can easily consult the online reference material at http://www.nltk.org/. If
the material is completely new to you, this chapter will raise more questions than it
answers, questions that are addressed in the rest of this book.

1.1  Computing with Language: Texts and Words
We’re all very familiar with text, since we read and write it every day. Here we will treat
text as raw data for the programs we write, programs that manipulate and analyze it in
a variety of interesting ways. But before we can do this, we have to get started with the
Python interpreter.

1
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Getting Started with Python
One of the friendly things about Python is that it allows you to type directly into the
interactive interpreter—the program that will be running your Python programs. You
can access the Python interpreter using a simple graphical interface called the In-
teractive DeveLopment Environment (IDLE). On a Mac you can find this under Ap-
plications→MacPython, and on Windows under All Programs→Python. Under Unix
you can run Python from the shell by typing idle (if this is not installed, try typing
python). The interpreter will print a blurb about your Python version; simply check that
you are running Python 2.4 or 2.5 (here it is 2.5.1):

Python 2.5.1 (r251:54863, Apr 15 2008, 22:57:26)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

If you are unable to run the Python interpreter, you probably don’t have
Python installed correctly. Please visit http://python.org/ for detailed in-
structions.

The >>> prompt indicates that the Python interpreter is now waiting for input. When
copying examples from this book, don’t type the “>>>” yourself. Now, let’s begin by
using Python as a calculator:

>>> 1 + 5 * 2 - 3
8
>>>

Once the interpreter has finished calculating the answer and displaying it, the prompt
reappears. This means the Python interpreter is waiting for another instruction.

Your Turn: Enter a few more expressions of your own. You can use
asterisk (*) for multiplication and slash (/) for division, and parentheses
for bracketing expressions. Note that division doesn’t always behave as
you might expect—it does integer division (with rounding of fractions
downwards) when you type 1/3 and “floating-point” (or decimal) divi-
sion when you type 1.0/3.0. In order to get the expected behavior of
division (standard in Python 3.0), you need to type: from __future__
import division.

The preceding examples demonstrate how you can work interactively with the Python
interpreter, experimenting with various expressions in the language to see what they
do. Now let’s try a non-sensical expression to see how the interpreter handles it:
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>>> 1 +
  File "<stdin>", line 1
    1 +
      ^
SyntaxError: invalid syntax
>>>

This produced a syntax error. In Python, it doesn’t make sense to end an instruction
with a plus sign. The Python interpreter indicates the line where the problem occurred
(line 1 of <stdin>, which stands for “standard input”).

Now that we can use the Python interpreter, we’re ready to start working with language
data.

Getting Started with NLTK
Before going further you should install NLTK, downloadable for free from http://www
.nltk.org/. Follow the instructions there to download the version required for your
platform.

Once you’ve installed NLTK, start up the Python interpreter as before, and install the
data required for the book by typing the following two commands at the Python
prompt, then selecting the book collection as shown in Figure 1-1.

>>> import nltk
>>> nltk.download()

Figure 1-1. Downloading the NLTK Book Collection: Browse the available packages using
nltk.download(). The Collections tab on the downloader shows how the packages are grouped into
sets, and you should select the line labeled book to obtain all data required for the examples and
exercises in this book. It consists of about 30 compressed files requiring about 100Mb disk space. The
full collection of data (i.e., all in the downloader) is about five times this size (at the time of writing)
and continues to expand.

Once the data is downloaded to your machine, you can load some of it using the Python
interpreter. The first step is to type a special command at the Python prompt, which
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tells the interpreter to load some texts for us to explore: from nltk.book import *. This
says “from NLTK’s book module, load all items.” The book module contains all the data
you will need as you read this chapter. After printing a welcome message, it loads the
text of several books (this will take a few seconds). Here’s the command again, together
with the output that you will see. Take care to get spelling and punctuation right, and
remember that you don’t type the >>>.

>>> from nltk.book import *
*** Introductory Examples for the NLTK Book ***
Loading text1, ..., text9 and sent1, ..., sent9
Type the name of the text or sentence to view it.
Type: 'texts()' or 'sents()' to list the materials.
text1: Moby Dick by Herman Melville 1851
text2: Sense and Sensibility by Jane Austen 1811
text3: The Book of Genesis
text4: Inaugural Address Corpus
text5: Chat Corpus
text6: Monty Python and the Holy Grail
text7: Wall Street Journal
text8: Personals Corpus
text9: The Man Who Was Thursday by G . K . Chesterton 1908
>>>

Any time we want to find out about these texts, we just have to enter their names at
the Python prompt:

>>> text1
<Text: Moby Dick by Herman Melville 1851>
>>> text2
<Text: Sense and Sensibility by Jane Austen 1811>
>>>

Now that we can use the Python interpreter, and have some data to work with, we’re
ready to get started.

Searching Text
There are many ways to examine the context of a text apart from simply reading it. A
concordance view shows us every occurrence of a given word, together with some
context. Here we look up the word monstrous in Moby Dick by entering text1 followed
by a period, then the term concordance, and then placing "monstrous" in parentheses:

>>> text1.concordance("monstrous")
Building index...
Displaying 11 of 11 matches:
ong the former , one was of a most monstrous size . ... This came towards us ,
ON OF THE PSALMS . " Touching that monstrous bulk of the whale or ork we have r
ll over with a heathenish array of monstrous clubs and spears . Some were thick
d as you gazed , and wondered what monstrous cannibal and savage could ever hav
that has survived the flood ; most monstrous and most mountainous ! That Himmal
they might scout at Moby Dick as a monstrous fable , or still worse and more de
th of Radney .'" CHAPTER 55 Of the monstrous Pictures of Whales . I shall ere l
ing Scenes . In connexion with the monstrous pictures of whales , I am strongly
ere to enter upon those still more monstrous stories of them which are to be fo

4 | Chapter 1: Language Processing and Python



ght have been rummaged out of this monstrous cabinet there is no telling . But
of Whale - Bones ; for Whales of a monstrous size are oftentimes cast up dead u
>>>

Your Turn: Try searching for other words; to save re-typing, you might
be able to use up-arrow, Ctrl-up-arrow, or Alt-p to access the previous
command and modify the word being searched. You can also try search-
es on some of the other texts we have included. For example, search
Sense and Sensibility for the word affection, using text2.concord
ance("affection"). Search the book of Genesis to find out how long
some people lived, using: text3.concordance("lived"). You could look
at text4, the Inaugural Address Corpus, to see examples of English going
back to 1789, and search for words like nation, terror, god to see how
these words have been used differently over time. We’ve also included
text5, the NPS Chat Corpus: search this for unconventional words like
im, ur, lol. (Note that this corpus is uncensored!)

Once you’ve spent a little while examining these texts, we hope you have a new sense
of the richness and diversity of language. In the next chapter you will learn how to
access a broader range of text, including text in languages other than English.

A concordance permits us to see words in context. For example, we saw that mon-
strous occurred in contexts such as the ___ pictures and the ___ size. What other words
appear in a similar range of contexts? We can find out by appending the term
similar to the name of the text in question, then inserting the relevant word in
parentheses:

>>> text1.similar("monstrous")
Building word-context index...
subtly impalpable pitiable curious imperial perilous trustworthy
abundant untoward singular lamentable few maddens horrible loving lazy
mystifying christian exasperate puzzled
>>> text2.similar("monstrous")
Building word-context index...
very exceedingly so heartily a great good amazingly as sweet
remarkably extremely vast
>>>

Observe that we get different results for different texts. Austen uses this word quite
differently from Melville; for her, monstrous has positive connotations, and sometimes
functions as an intensifier like the word very.

The term common_contexts allows us to examine just the contexts that are shared by
two or more words, such as monstrous and very. We have to enclose these words by
square brackets as well as parentheses, and separate them with a comma:

>>> text2.common_contexts(["monstrous", "very"])
be_glad am_glad a_pretty is_pretty a_lucky
>>>
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Your Turn: Pick another pair of words and compare their usage in two
different texts, using the similar() and common_contexts() functions.

It is one thing to automatically detect that a particular word occurs in a text, and to
display some words that appear in the same context. However, we can also determine
the location of a word in the text: how many words from the beginning it appears. This
positional information can be displayed using a dispersion plot. Each stripe represents
an instance of a word, and each row represents the entire text. In Figure 1-2 we see
some striking patterns of word usage over the last 220 years (in an artificial text con-
structed by joining the texts of the Inaugural Address Corpus end-to-end). You can
produce this plot as shown below. You might like to try more words (e.g., liberty,
constitution) and different texts. Can you predict the dispersion of a word before you
view it? As before, take care to get the quotes, commas, brackets, and parentheses
exactly right.

>>> text4.dispersion_plot(["citizens", "democracy", "freedom", "duties", "America"])
>>>

Important: You need to have Python’s NumPy and Matplotlib pack-
ages installed in order to produce the graphical plots used in this book.
Please see http://www.nltk.org/ for installation instructions.

Now, just for fun, let’s try generating some random text in the various styles we have
just seen. To do this, we type the name of the text followed by the term generate. (We
need to include the parentheses, but there’s nothing that goes between them.)

Figure 1-2. Lexical dispersion plot for words in U.S. Presidential Inaugural Addresses: This can be
used to investigate changes in language use over time.
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>>> text3.generate()
In the beginning of his brother is a hairy man , whose top may reach
unto heaven ; and ye shall sow the land of Egypt there was no bread in
all that he was taken out of the month , upon the earth . So shall thy
wages be ? And they made their father ; and Isaac was old , and kissed
him : and Laban with his cattle in the midst of the hands of Esau thy
first born , and Phichol the chief butler unto his son Isaac , she
>>>

Note that the first time you run this command, it is slow because it gathers statistics
about word sequences. Each time you run it, you will get different output text. Now
try generating random text in the style of an inaugural address or an Internet chat room.
Although the text is random, it reuses common words and phrases from the source text
and gives us a sense of its style and content. (What is lacking in this randomly generated
text?)

When generate produces its output, punctuation is split off from the
preceding word. While this is not correct formatting for English text,
we do it to make clear that words and punctuation are independent of
one another. You will learn more about this in Chapter 3.

Counting Vocabulary
The most obvious fact about texts that emerges from the preceding examples is that
they differ in the vocabulary they use. In this section, we will see how to use the com-
puter to count the words in a text in a variety of useful ways. As before, you will jump
right in and experiment with the Python interpreter, even though you may not have
studied Python systematically yet. Test your understanding by modifying the examples,
and trying the exercises at the end of the chapter.

Let’s begin by finding out the length of a text from start to finish, in terms of the words
and punctuation symbols that appear. We use the term len to get the length of some-
thing, which we’ll apply here to the book of Genesis:

>>> len(text3)
44764
>>>

So Genesis has 44,764 words and punctuation symbols, or “tokens.” A token is the
technical name for a sequence of characters—such as hairy, his, or :)—that we want
to treat as a group. When we count the number of tokens in a text, say, the phrase to
be or not to be, we are counting occurrences of these sequences. Thus, in our example
phrase there are two occurrences of to, two of be, and one each of or and not. But there
are only four distinct vocabulary items in this phrase. How many distinct words does
the book of Genesis contain? To work this out in Python, we have to pose the question
slightly differently. The vocabulary of a text is just the set of tokens that it uses, since
in a set, all duplicates are collapsed together. In Python we can obtain the vocabulary
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items of text3 with the command: set(text3). When you do this, many screens of
words will fly past. Now try the following:

>>> sorted(set(text3)) 
['!', "'", '(', ')', ',', ',)', '.', '.)', ':', ';', ';)', '?', '?)',
'A', 'Abel', 'Abelmizraim', 'Abidah', 'Abide', 'Abimael', 'Abimelech',
'Abr', 'Abrah', 'Abraham', 'Abram', 'Accad', 'Achbor', 'Adah', ...]
>>> len(set(text3)) 
2789
>>>

By wrapping sorted() around the Python expression set(text3) , we obtain a sorted
list of vocabulary items, beginning with various punctuation symbols and continuing
with words starting with A. All capitalized words precede lowercase words. We dis-
cover the size of the vocabulary indirectly, by asking for the number of items in the set,
and again we can use len to obtain this number . Although it has 44,764 tokens, this
book has only 2,789 distinct words, or “word types.” A word type is the form or
spelling of the word independently of its specific occurrences in a text—that is, the
word considered as a unique item of vocabulary. Our count of 2,789 items will include
punctuation symbols, so we will generally call these unique items types instead of word
types.

Now, let’s calculate a measure of the lexical richness of the text. The next example
shows us that each word is used 16 times on average (we need to make sure Python
uses floating-point division):

>>> from __future__ import division
>>> len(text3) / len(set(text3))
16.050197203298673
>>>

Next, let’s focus on particular words. We can count how often a word occurs in a text,
and compute what percentage of the text is taken up by a specific word:

>>> text3.count("smote")
5
>>> 100 * text4.count('a') / len(text4)
1.4643016433938312
>>>

Your Turn: How many times does the word lol appear in text5? How
much is this as a percentage of the total number of words in this text?

You may want to repeat such calculations on several texts, but it is tedious to keep
retyping the formula. Instead, you can come up with your own name for a task, like
“lexical_diversity” or “percentage”, and associate it with a block of code. Now you
only have to type a short name instead of one or more complete lines of Python code,
and you can reuse it as often as you like. The block of code that does a task for us is
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called a function, and we define a short name for our function with the keyword def.
The next example shows how to define two new functions, lexical_diversity() and
percentage():

>>> def lexical_diversity(text): 
...     return len(text) / len(set(text)) 
...
>>> def percentage(count, total): 
...     return 100 * count / total
...

Caution!
The Python interpreter changes the prompt from >>> to ... after en-
countering the colon at the end of the first line. The ... prompt indicates
that Python expects an indented code block to appear next. It is up to
you to do the indentation, by typing four spaces or hitting the Tab key.
To finish the indented block, just enter a blank line.

In the definition of lexical diversity() , we specify a parameter labeled text. This
parameter is a “placeholder” for the actual text whose lexical diversity we want to
compute, and reoccurs in the block of code that will run when the function is used, in
line . Similarly, percentage() is defined to take two parameters, labeled count and
total .

Once Python knows that lexical_diversity() and percentage() are the names for spe-
cific blocks of code, we can go ahead and use these functions:

>>> lexical_diversity(text3)
16.050197203298673
>>> lexical_diversity(text5)
7.4200461589185629
>>> percentage(4, 5)
80.0
>>> percentage(text4.count('a'), len(text4))
1.4643016433938312
>>>

To recap, we use or call a function such as lexical_diversity() by typing its name,
followed by an open parenthesis, the name of the text, and then a close parenthesis.
These parentheses will show up often; their role is to separate the name of a task—such
as lexical_diversity()—from the data that the task is to be performed on—such as
text3. The data value that we place in the parentheses when we call a function is an
argument to the function.

You have already encountered several functions in this chapter, such as len(), set(),
and sorted(). By convention, we will always add an empty pair of parentheses after a
function name, as in len(), just to make clear that what we are talking about is a func-
tion rather than some other kind of Python expression. Functions are an important
concept in programming, and we only mention them at the outset to give newcomers
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a sense of the power and creativity of programming. Don’t worry if you find it a bit
confusing right now.

Later we’ll see how to use functions when tabulating data, as in Table 1-1. Each row
of the table will involve the same computation but with different data, and we’ll do this
repetitive work using a function.

Table 1-1. Lexical diversity of various genres in the Brown Corpus

Genre Tokens Types Lexical diversity

skill and hobbies 82345 11935 6.9

humor 21695 5017 4.3

fiction: science 14470 3233 4.5

press: reportage 100554 14394 7.0

fiction: romance 70022 8452 8.3

religion 39399 6373 6.2

1.2  A Closer Look at Python: Texts as Lists of Words
You’ve seen some important elements of the Python programming language. Let’s take
a few moments to review them systematically.

Lists
What is a text? At one level, it is a sequence of symbols on a page such as this one. At
another level, it is a sequence of chapters, made up of a sequence of sections, where
each section is a sequence of paragraphs, and so on. However, for our purposes, we
will think of a text as nothing more than a sequence of words and punctuation. Here’s
how we represent text in Python, in this case the opening sentence of Moby Dick:

>>> sent1 = ['Call', 'me', 'Ishmael', '.']
>>>

After the prompt we’ve given a name we made up, sent1, followed by the equals sign,
and then some quoted words, separated with commas, and surrounded with brackets.
This bracketed material is known as a list in Python: it is how we store a text. We can
inspect it by typing the name . We can ask for its length . We can even apply our
own lexical_diversity() function to it .

>>> sent1 
['Call', 'me', 'Ishmael', '.']
>>> len(sent1) 
4
>>> lexical_diversity(sent1) 
1.0
>>>
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Some more lists have been defined for you, one for the opening sentence of each of our
texts, sent2 … sent9. We inspect two of them here; you can see the rest for yourself
using the Python interpreter (if you get an error saying that sent2 is not defined, you
need to first type from nltk.book import *).

>>> sent2
['The', 'family', 'of', 'Dashwood', 'had', 'long',
'been', 'settled', 'in', 'Sussex', '.']
>>> sent3
['In', 'the', 'beginning', 'God', 'created', 'the',
'heaven', 'and', 'the', 'earth', '.']
>>>

Your Turn: Make up a few sentences of your own, by typing a name,
equals sign, and a list of words, like this: ex1 = ['Monty', 'Python',
'and', 'the', 'Holy', 'Grail']. Repeat some of the other Python op-
erations we saw earlier in Section 1.1, e.g., sorted(ex1), len(set(ex1)),
ex1.count('the').

A pleasant surprise is that we can use Python’s addition operator on lists. Adding two
lists  creates a new list with everything from the first list, followed by everything from
the second list:

>>> ['Monty', 'Python'] + ['and', 'the', 'Holy', 'Grail'] 
['Monty', 'Python', 'and', 'the', 'Holy', 'Grail']

This special use of the addition operation is called concatenation; it
combines the lists together into a single list. We can concatenate sen-
tences to build up a text.

We don’t have to literally type the lists either; we can use short names that refer to pre-
defined lists.

>>> sent4 + sent1
['Fellow', '-', 'Citizens', 'of', 'the', 'Senate', 'and', 'of', 'the',
'House', 'of', 'Representatives', ':', 'Call', 'me', 'Ishmael', '.']
>>>

What if we want to add a single item to a list? This is known as appending. When we
append() to a list, the list itself is updated as a result of the operation.

>>> sent1.append("Some")
>>> sent1
['Call', 'me', 'Ishmael', '.', 'Some']
>>>
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Indexing Lists
As we have seen, a text in Python is a list of words, represented using a combination
of brackets and quotes. Just as with an ordinary page of text, we can count up the total
number of words in text1 with len(text1), and count the occurrences in a text of a
particular word—say, heaven—using text1.count('heaven').

With some patience, we can pick out the 1st, 173rd, or even 14,278th word in a printed
text. Analogously, we can identify the elements of a Python list by their order of oc-
currence in the list. The number that represents this position is the item’s index. We
instruct Python to show us the item that occurs at an index such as 173 in a text by
writing the name of the text followed by the index inside square brackets:

>>> text4[173]
'awaken'
>>>

We can do the converse; given a word, find the index of when it first occurs:

>>> text4.index('awaken')
173
>>>

Indexes are a common way to access the words of a text, or, more generally, the ele-
ments of any list. Python permits us to access sublists as well, extracting manageable
pieces of language from large texts, a technique known as slicing.

>>> text5[16715:16735]
['U86', 'thats', 'why', 'something', 'like', 'gamefly', 'is', 'so', 'good',
'because', 'you', 'can', 'actually', 'play', 'a', 'full', 'game', 'without',
'buying', 'it']
>>> text6[1600:1625]
['We', "'", 're', 'an', 'anarcho', '-', 'syndicalist', 'commune', '.', 'We',
'take', 'it', 'in', 'turns', 'to', 'act', 'as', 'a', 'sort', 'of', 'executive',
'officer', 'for', 'the', 'week']
>>>

Indexes have some subtleties, and we’ll explore these with the help of an artificial
sentence:

>>> sent = ['word1', 'word2', 'word3', 'word4', 'word5',
...         'word6', 'word7', 'word8', 'word9', 'word10']
>>> sent[0]
'word1'
>>> sent[9]
'word10'
>>>

Notice that our indexes start from zero: sent element zero, written sent[0], is the first
word, 'word1', whereas sent element 9 is 'word10'. The reason is simple: the moment
Python accesses the content of a list from the computer’s memory, it is already at the
first element; we have to tell it how many elements forward to go. Thus, zero steps
forward leaves it at the first element.
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This practice of counting from zero is initially confusing, but typical of
modern programming languages. You’ll quickly get the hang of it if
you’ve mastered the system of counting centuries where 19XY is a year
in the 20th century, or if you live in a country where the floors of a
building are numbered from 1, and so walking up n-1 flights of stairs
takes you to level n.

Now, if we accidentally use an index that is too large, we get an error:

>>> sent[10]
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
IndexError: list index out of range
>>>

This time it is not a syntax error, because the program fragment is syntactically correct.
Instead, it is a runtime error, and it produces a Traceback message that shows the
context of the error, followed by the name of the error, IndexError, and a brief
explanation.

Let’s take a closer look at slicing, using our artificial sentence again. Here we verify that
the slice 5:8 includes sent elements at indexes 5, 6, and 7:

>>> sent[5:8]
['word6', 'word7', 'word8']
>>> sent[5]
'word6'
>>> sent[6]
'word7'
>>> sent[7]
'word8'
>>>

By convention, m:n means elements m…n-1. As the next example shows, we can omit
the first number if the slice begins at the start of the list , and we can omit the second
number if the slice goes to the end :

>>> sent[:3] 
['word1', 'word2', 'word3']
>>> text2[141525:] 
['among', 'the', 'merits', 'and', 'the', 'happiness', 'of', 'Elinor', 'and', 'Marianne',
',', 'let', 'it', 'not', 'be', 'ranked', 'as', 'the', 'least', 'considerable', ',',
'that', 'though', 'sisters', ',', 'and', 'living', 'almost', 'within', 'sight', 'of',
'each', 'other', ',', 'they', 'could', 'live', 'without', 'disagreement', 'between',
'themselves', ',', 'or', 'producing', 'coolness', 'between', 'their', 'husbands', '.',
'THE', 'END']
>>>

We can modify an element of a list by assigning to one of its index values. In the next
example, we put sent[0] on the left of the equals sign . We can also replace an entire
slice with new material . A consequence of this last change is that the list only has
four elements, and accessing a later value generates an error .
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>>> sent[0] = 'First' 
>>> sent[9] = 'Last'
>>> len(sent)
10
>>> sent[1:9] = ['Second', 'Third'] 
>>> sent
['First', 'Second', 'Third', 'Last']
>>> sent[9] 
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
IndexError: list index out of range
>>>

Your Turn: Take a few minutes to define a sentence of your own and
modify individual words and groups of words (slices) using the same
methods used earlier. Check your understanding by trying the exercises
on lists at the end of this chapter.

Variables
From the start of Section 1.1, you have had access to texts called text1, text2, and so
on. It saved a lot of typing to be able to refer to a 250,000-word book with a short name
like this! In general, we can make up names for anything we care to calculate. We did
this ourselves in the previous sections, e.g., defining a variable sent1, as follows:

>>> sent1 = ['Call', 'me', 'Ishmael', '.']
>>>

Such lines have the form: variable = expression. Python will evaluate the expression,
and save its result to the variable. This process is called assignment. It does not gen-
erate any output; you have to type the variable on a line of its own to inspect its contents.
The equals sign is slightly misleading, since information is moving from the right side
to the left. It might help to think of it as a left-arrow. The name of the variable can be
anything you like, e.g., my_sent, sentence, xyzzy. It must start with a letter, and can
include numbers and underscores. Here are some examples of variables and
assignments:

>>> my_sent = ['Bravely', 'bold', 'Sir', 'Robin', ',', 'rode',
... 'forth', 'from', 'Camelot', '.']
>>> noun_phrase = my_sent[1:4]
>>> noun_phrase
['bold', 'Sir', 'Robin']
>>> wOrDs = sorted(noun_phrase)
>>> wOrDs
['Robin', 'Sir', 'bold']
>>>

Remember that capitalized words appear before lowercase words in sorted lists.
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Notice in the previous example that we split the definition of my_sent
over two lines. Python expressions can be split across multiple lines, so
long as this happens within any kind of brackets. Python uses the ...
prompt to indicate that more input is expected. It doesn’t matter how
much indentation is used in these continuation lines, but some inden-
tation usually makes them easier to read.

It is good to choose meaningful variable names to remind you—and to help anyone
else who reads your Python code—what your code is meant to do. Python does not try
to make sense of the names; it blindly follows your instructions, and does not object if
you do something confusing, such as one = 'two' or two = 3. The only restriction is
that a variable name cannot be any of Python’s reserved words, such as def, if, not,
and import. If you use a reserved word, Python will produce a syntax error:

>>> not = 'Camelot'
File "<stdin>", line 1
    not = 'Camelot'
        ^
SyntaxError: invalid syntax
>>>

We will often use variables to hold intermediate steps of a computation, especially
when this makes the code easier to follow. Thus len(set(text1)) could also be written:

>>> vocab = set(text1)
>>> vocab_size = len(vocab)
>>> vocab_size
19317
>>>

Caution!
Take care with your choice of names (or identifiers) for Python varia-
bles. First, you should start the name with a letter, optionally followed
by digits (0 to 9) or letters. Thus, abc23 is fine, but 23abc will cause a
syntax error. Names are case-sensitive, which means that myVar and
myvar are distinct variables. Variable names cannot contain whitespace,
but you can separate words using an underscore, e.g., my_var. Be careful
not to insert a hyphen instead of an underscore: my-var is wrong, since
Python interprets the - as a minus sign.

Strings
Some of the methods we used to access the elements of a list also work with individual
words, or strings. For example, we can assign a string to a variable , index a string

, and slice a string .
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>>> name = 'Monty' 
>>> name[0] 
'M'
>>> name[:4] 
'Mont'
>>>

We can also perform multiplication and addition with strings:

>>> name * 2
'MontyMonty'
>>> name + '!'
'Monty!'
>>>

We can join the words of a list to make a single string, or split a string into a list, as
follows:

>>> ' '.join(['Monty', 'Python'])
'Monty Python'
>>> 'Monty Python'.split()
['Monty', 'Python']
>>>

We will come back to the topic of strings in Chapter 3. For the time being, we have
two important building blocks—lists and strings—and are ready to get back to some
language analysis.

1.3  Computing with Language: Simple Statistics
Let’s return to our exploration of the ways we can bring our computational resources
to bear on large quantities of text. We began this discussion in Section 1.1, and saw
how to search for words in context, how to compile the vocabulary of a text, how to
generate random text in the same style, and so on.

In this section, we pick up the question of what makes a text distinct, and use automatic
methods to find characteristic words and expressions of a text. As in Section 1.1, you
can try new features of the Python language by copying them into the interpreter, and
you’ll learn about these features systematically in the following section.

Before continuing further, you might like to check your understanding of the last sec-
tion by predicting the output of the following code. You can use the interpreter to check
whether you got it right. If you’re not sure how to do this task, it would be a good idea
to review the previous section before continuing further.

>>> saying = ['After', 'all', 'is', 'said', 'and', 'done',
...           'more', 'is', 'said', 'than', 'done']
>>> tokens = set(saying)
>>> tokens = sorted(tokens)
>>> tokens[-2:]
what output do you expect here?
>>>
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Frequency Distributions
How can we automatically identify the words of a text that are most informative about
the topic and genre of the text? Imagine how you might go about finding the 50 most
frequent words of a book. One method would be to keep a tally for each vocabulary
item, like that shown in Figure 1-3. The tally would need thousands of rows, and it
would be an exceedingly laborious process—so laborious that we would rather assign
the task to a machine.

Figure 1-3. Counting words appearing in a text (a frequency distribution).

The table in Figure 1-3 is known as a frequency distribution , and it tells us the
frequency of each vocabulary item in the text. (In general, it could count any kind of
observable event.) It is a “distribution” since it tells us how the total number of word
tokens in the text are distributed across the vocabulary items. Since we often need
frequency distributions in language processing, NLTK provides built-in support for
them. Let’s use a FreqDist to find the 50 most frequent words of Moby Dick. Try to
work out what is going on here, then read the explanation that follows.

>>> fdist1 = FreqDist(text1) 
>>> fdist1 
<FreqDist with 260819 outcomes>
>>> vocabulary1 = fdist1.keys() 
>>> vocabulary1[:50] 
[',', 'the', '.', 'of', 'and', 'a', 'to', ';', 'in', 'that', "'", '-',
'his', 'it', 'I', 's', 'is', 'he', 'with', 'was', 'as', '"', 'all', 'for',
'this', '!', 'at', 'by', 'but', 'not', '--', 'him', 'from', 'be', 'on',
'so', 'whale', 'one', 'you', 'had', 'have', 'there', 'But', 'or', 'were',
'now', 'which', '?', 'me', 'like']
>>> fdist1['whale']
906
>>>

When we first invoke FreqDist, we pass the name of the text as an argument . We
can inspect the total number of words (“outcomes”) that have been counted up —
260,819 in the case of Moby Dick. The expression keys() gives us a list of all the distinct
types in the text , and we can look at the first 50 of these by slicing the list .
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Your Turn: Try the preceding frequency distribution example for your-
self, for text2. Be careful to use the correct parentheses and uppercase
letters. If you get an error message NameError: name 'FreqDist' is not
defined, you need to start your work with from nltk.book import *.

Do any words produced in the last example help us grasp the topic or genre of this text?
Only one word, whale, is slightly informative! It occurs over 900 times. The rest of the
words tell us nothing about the text; they’re just English “plumbing.” What proportion
of the text is taken up with such words? We can generate a cumulative frequency plot
for these words, using fdist1.plot(50, cumulative=True), to produce the graph in
Figure 1-4. These 50 words account for nearly half the book!

Figure 1-4. Cumulative frequency plot for the 50 most frequently used words in Moby Dick, which
account for nearly half of the tokens.
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If the frequent words don’t help us, how about the words that occur once only, the so-
called hapaxes? View them by typing fdist1.hapaxes(). This list contains
lexicographer, cetological, contraband, expostulations, and about 9,000 others. It seems
that there are too many rare words, and without seeing the context we probably can’t
guess what half of the hapaxes mean in any case! Since neither frequent nor infrequent
words help, we need to try something else.

Fine-Grained Selection of Words
Next, let’s look at the long words of a text; perhaps these will be more characteristic
and informative. For this we adapt some notation from set theory. We would like to
find the words from the vocabulary of the text that are more than 15 characters long.
Let’s call this property P, so that P(w) is true if and only if w is more than 15 characters
long. Now we can express the words of interest using mathematical set notation as
shown in (1a). This means “the set of all w such that w is an element of V (the vocabu-
lary) and w has property P.”

(1) a. {w | w ∈ V & P(w)}

b. [w for w in V if p(w)]

The corresponding Python expression is given in (1b). (Note that it produces a list, not
a set, which means that duplicates are possible.) Observe how similar the two notations
are. Let’s go one more step and write executable Python code:

>>> V = set(text1)
>>> long_words = [w for w in V if len(w) > 15]
>>> sorted(long_words)
['CIRCUMNAVIGATION', 'Physiognomically', 'apprehensiveness', 'cannibalistically',
'characteristically', 'circumnavigating', 'circumnavigation', 'circumnavigations',
'comprehensiveness', 'hermaphroditical', 'indiscriminately', 'indispensableness',
'irresistibleness', 'physiognomically', 'preternaturalness', 'responsibilities',
'simultaneousness', 'subterraneousness', 'supernaturalness', 'superstitiousness',
'uncomfortableness', 'uncompromisedness', 'undiscriminating', 'uninterpenetratingly']
>>>

For each word w in the vocabulary V, we check whether len(w) is greater than 15; all
other words will be ignored. We will discuss this syntax more carefully later.

Your Turn: Try out the previous statements in the Python interpreter,
and experiment with changing the text and changing the length condi-
tion. Does it make an difference to your results if you change the variable
names, e.g., using [word for word in vocab if ...]?
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Let’s return to our task of finding words that characterize a text. Notice that the long
words in text4 reflect its national focus—constitutionally, transcontinental—whereas
those in text5 reflect its informal content: boooooooooooglyyyyyy and
yuuuuuuuuuuuummmmmmmmmmmm. Have we succeeded in automatically extract-
ing words that typify a text? Well, these very long words are often hapaxes (i.e., unique)
and perhaps it would be better to find frequently occurring long words. This seems
promising since it eliminates frequent short words (e.g., the) and infrequent long words
(e.g., antiphilosophists). Here are all words from the chat corpus that are longer than
seven characters, that occur more than seven times:

>>> fdist5 = FreqDist(text5)
>>> sorted([w for w in set(text5) if len(w) > 7 and fdist5[w] > 7])
['#14-19teens', '#talkcity_adults', '((((((((((', '........', 'Question',
'actually', 'anything', 'computer', 'cute.-ass', 'everyone', 'football',
'innocent', 'listening', 'remember', 'seriously', 'something', 'together',
'tomorrow', 'watching']
>>>

Notice how we have used two conditions: len(w) > 7 ensures that the words are longer
than seven letters, and fdist5[w] > 7 ensures that these words occur more than seven
times. At last we have managed to automatically identify the frequently occurring con-
tent-bearing words of the text. It is a modest but important milestone: a tiny piece of
code, processing tens of thousands of words, produces some informative output.

Collocations and Bigrams
A collocation is a sequence of words that occur together unusually often. Thus red
wine is a collocation, whereas the wine is not. A characteristic of collocations is that
they are resistant to substitution with words that have similar senses; for example,
maroon wine sounds very odd.

To get a handle on collocations, we start off by extracting from a text a list of word
pairs, also known as bigrams. This is easily accomplished with the function bigrams():

>>> bigrams(['more', 'is', 'said', 'than', 'done'])
[('more', 'is'), ('is', 'said'), ('said', 'than'), ('than', 'done')]
>>>

Here we see that the pair of words than-done is a bigram, and we write it in Python as
('than', 'done'). Now, collocations are essentially just frequent bigrams, except that
we want to pay more attention to the cases that involve rare words. In particular, we
want to find bigrams that occur more often than we would expect based on the fre-
quency of individual words. The collocations() function does this for us (we will see
how it works later):

>>> text4.collocations()
Building collocations list
United States; fellow citizens; years ago; Federal Government; General
Government; American people; Vice President; Almighty God; Fellow
citizens; Chief Magistrate; Chief Justice; God bless; Indian tribes;
public debt; foreign nations; political parties; State governments;
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National Government; United Nations; public money
>>> text8.collocations()
Building collocations list
medium build; social drinker; quiet nights; long term; age open;
financially secure; fun times; similar interests; Age open; poss
rship; single mum; permanent relationship; slim build; seeks lady;
Late 30s; Photo pls; Vibrant personality; European background; ASIAN
LADY; country drives
>>>

The collocations that emerge are very specific to the genre of the texts. In order to find
red wine as a collocation, we would need to process a much larger body of text.

Counting Other Things
Counting words is useful, but we can count other things too. For example, we can look
at the distribution of word lengths in a text, by creating a FreqDist out of a long list of
numbers, where each number is the length of the corresponding word in the text:

>>> [len(w) for w in text1] 
[1, 4, 4, 2, 6, 8, 4, 1, 9, 1, 1, 8, 2, 1, 4, 11, 5, 2, 1, 7, 6, 1, 3, 4, 5, 2, ...]
>>> fdist = FreqDist([len(w) for w in text1])  
>>> fdist  
<FreqDist with 260819 outcomes>
>>> fdist.keys()
[3, 1, 4, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20]
>>>

We start by deriving a list of the lengths of words in text1 , and the FreqDist then
counts the number of times each of these occurs . The result  is a distribution
containing a quarter of a million items, each of which is a number corresponding to a
word token in the text. But there are only 20 distinct items being counted, the numbers
1 through 20, because there are only 20 different word lengths. I.e., there are words
consisting of just 1 character, 2 characters, ..., 20 characters, but none with 21 or more
characters. One might wonder how frequent the different lengths of words are (e.g.,
how many words of length 4 appear in the text, are there more words of length 5 than
length 4, etc.). We can do this as follows:

>>> fdist.items()
[(3, 50223), (1, 47933), (4, 42345), (2, 38513), (5, 26597), (6, 17111), (7, 14399),
(8, 9966), (9, 6428), (10, 3528), (11, 1873), (12, 1053), (13, 567), (14, 177),
(15, 70), (16, 22), (17, 12), (18, 1), (20, 1)]
>>> fdist.max()
3
>>> fdist[3]
50223
>>> fdist.freq(3)
0.19255882431878046
>>>

From this we see that the most frequent word length is 3, and that words of length 3
account for roughly 50,000 (or 20%) of the words making up the book. Although we
will not pursue it here, further analysis of word length might help us understand
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differences between authors, genres, or languages. Table 1-2 summarizes the functions
defined in frequency distributions.

Table 1-2. Functions defined for NLTK’s frequency distributions

Example Description

fdist = FreqDist(samples) Create a frequency distribution containing the given samples

fdist.inc(sample) Increment the count for this sample

fdist['monstrous'] Count of the number of times a given sample occurred

fdist.freq('monstrous') Frequency of a given sample

fdist.N() Total number of samples

fdist.keys() The samples sorted in order of decreasing frequency

for sample in fdist: Iterate over the samples, in order of decreasing frequency

fdist.max() Sample with the greatest count

fdist.tabulate() Tabulate the frequency distribution

fdist.plot() Graphical plot of the frequency distribution

fdist.plot(cumulative=True) Cumulative plot of the frequency distribution

fdist1 < fdist2 Test if samples in fdist1 occur less frequently than in fdist2

Our discussion of frequency distributions has introduced some important Python con-
cepts, and we will look at them systematically in Section 1.4.

1.4  Back to Python: Making Decisions and Taking Control
So far, our little programs have had some interesting qualities: the ability to work with
language, and the potential to save human effort through automation. A key feature of
programming is the ability of machines to make decisions on our behalf, executing
instructions when certain conditions are met, or repeatedly looping through text data
until some condition is satisfied. This feature is known as control, and is the focus of
this section.

Conditionals
Python supports a wide range of operators, such as < and >=, for testing the relationship
between values. The full set of these relational operators are shown in Table 1-3.

Table 1-3. Numerical comparison operators

Operator Relationship

< Less than

<= Less than or equal to

== Equal to (note this is two “=”signs, not one)
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Operator Relationship

!= Not equal to

> Greater than

>= Greater than or equal to

We can use these to select different words from a sentence of news text. Here are some
examples—notice only the operator is changed from one line to the next. They all use
sent7, the first sentence from text7 (Wall Street Journal). As before, if you get an error
saying that sent7 is undefined, you need to first type: from nltk.book import *.

>>> sent7
['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', 'will', 'join', 'the',
'board', 'as', 'a', 'nonexecutive', 'director', 'Nov.', '29', '.']
>>> [w for w in sent7 if len(w) < 4]
[',', '61', 'old', ',', 'the', 'as', 'a', '29', '.']
>>> [w for w in sent7 if len(w) <= 4]
[',', '61', 'old', ',', 'will', 'join', 'the', 'as', 'a', 'Nov.', '29', '.']
>>> [w for w in sent7 if len(w) == 4]
['will', 'join', 'Nov.']
>>> [w for w in sent7 if len(w) != 4]
['Pierre', 'Vinken', ',', '61', 'years', 'old', ',', 'the', 'board',
'as', 'a', 'nonexecutive', 'director', '29', '.']
>>>

There is a common pattern to all of these examples: [w for w in text if condition],
where condition is a Python “test” that yields either true or false. In the cases shown
in the previous code example, the condition is always a numerical comparison. How-
ever, we can also test various properties of words, using the functions listed in Table 1-4.

Table 1-4. Some word comparison operators

Function Meaning

s.startswith(t) Test if s starts with t

s.endswith(t) Test if s ends with t

t in s Test if t is contained inside s

s.islower() Test if all cased characters in s are lowercase

s.isupper() Test if all cased characters in s are uppercase

s.isalpha() Test if all characters in s are alphabetic

s.isalnum() Test if all characters in s are alphanumeric

s.isdigit() Test if all characters in s are digits

s.istitle() Test if s is titlecased (all words in s have initial capitals)

Here are some examples of these operators being used to select words from our texts:
words ending with -ableness; words containing gnt; words having an initial capital; and
words consisting entirely of digits.
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>>> sorted([w for w in set(text1) if w.endswith('ableness')])
['comfortableness', 'honourableness', 'immutableness', 'indispensableness', ...]
>>> sorted([term for term in set(text4) if 'gnt' in term])
['Sovereignty', 'sovereignties', 'sovereignty']
>>> sorted([item for item in set(text6) if item.istitle()])
['A', 'Aaaaaaaaah', 'Aaaaaaaah', 'Aaaaaah', 'Aaaah', 'Aaaaugh', 'Aaagh', ...]
>>> sorted([item for item in set(sent7) if item.isdigit()])
['29', '61']
>>>

We can also create more complex conditions. If c is a condition, then not c is also a
condition. If we have two conditions c1 and c2, then we can combine them to form a
new condition using conjunction and disjunction: c1 and c2, c1 or c2.

Your Turn: Run the following examples and try to explain what is going
on in each one. Next, try to make up some conditions of your own.

>>> sorted([w for w in set(text7) if '-' in w and 'index' in w])
>>> sorted([wd for wd in set(text3) if wd.istitle() and len(wd) > 10])
>>> sorted([w for w in set(sent7) if not w.islower()])
>>> sorted([t for t in set(text2) if 'cie' in t or 'cei' in t])

Operating on Every Element
In Section 1.3, we saw some examples of counting items other than words. Let’s take
a closer look at the notation we used:

>>> [len(w) for w in text1]
[1, 4, 4, 2, 6, 8, 4, 1, 9, 1, 1, 8, 2, 1, 4, 11, 5, 2, 1, 7, 6, 1, 3, 4, 5, 2, ...]
>>> [w.upper() for w in text1]
['[', 'MOBY', 'DICK', 'BY', 'HERMAN', 'MELVILLE', '1851', ']', 'ETYMOLOGY', '.', ...]
>>>

These expressions have the form [f(w) for ...] or [w.f() for ...], where f is a
function that operates on a word to compute its length, or to convert it to uppercase.
For now, you don’t need to understand the difference between the notations f(w) and
w.f(). Instead, simply learn this Python idiom which performs the same operation on
every element of a list. In the preceding examples, it goes through each word in
text1, assigning each one in turn to the variable w and performing the specified oper-
ation on the variable.

The notation just described is called a “list comprehension.” This is our
first example of a Python idiom, a fixed notation that we use habitually
without bothering to analyze each time. Mastering such idioms is an
important part of becoming a fluent Python programmer.

Let’s return to the question of vocabulary size, and apply the same idiom here:

>>> len(text1)
260819
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>>> len(set(text1))
19317
>>> len(set([word.lower() for word in text1]))
17231
>>>

Now that we are not double-counting words like This and this, which differ only in
capitalization, we’ve wiped 2,000 off the vocabulary count! We can go a step further
and eliminate numbers and punctuation from the vocabulary count by filtering out any
non-alphabetic items:

>>> len(set([word.lower() for word in text1 if word.isalpha()]))
16948
>>>

This example is slightly complicated: it lowercases all the purely alphabetic items. Per-
haps it would have been simpler just to count the lowercase-only items, but this gives
the wrong answer (why?).

Don’t worry if you don’t feel confident with list comprehensions yet, since you’ll see
many more examples along with explanations in the following chapters.

Nested Code Blocks
Most programming languages permit us to execute a block of code when a conditional
expression, or if statement, is satisfied. We already saw examples of conditional tests
in code like [w for w in sent7 if len(w) < 4]. In the following program, we have
created a variable called word containing the string value 'cat'. The if statement checks
whether the test len(word) < 5 is true. It is, so the body of the if statement is invoked
and the print statement is executed, displaying a message to the user. Remember to
indent the print statement by typing four spaces.

>>> word = 'cat'
>>> if len(word) < 5:
...     print 'word length is less than 5'
...   
word length is less than 5
>>>

When we use the Python interpreter we have to add an extra blank line  in order for
it to detect that the nested block is complete.

If we change the conditional test to len(word) >= 5, to check that the length of word is
greater than or equal to 5, then the test will no longer be true. This time, the body of
the if statement will not be executed, and no message is shown to the user:

>>> if len(word) >= 5:
...   print 'word length is greater than or equal to 5'
...
>>>
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An if statement is known as a control structure because it controls whether the code
in the indented block will be run. Another control structure is the for loop. Try the
following, and remember to include the colon and the four spaces:

>>> for word in ['Call', 'me', 'Ishmael', '.']:
...     print word
...
Call
me
Ishmael
.
>>>

This is called a loop because Python executes the code in circular fashion. It starts by
performing the assignment word = 'Call', effectively using the word variable to name
the first item of the list. Then, it displays the value of word to the user. Next, it goes
back to the for statement, and performs the assignment word = 'me' before displaying
this new value to the user, and so on. It continues in this fashion until every item of the
list has been processed.

Looping with Conditions
Now we can combine the if and for statements. We will loop over every item of the
list, and print the item only if it ends with the letter l. We’ll pick another name for the
variable to demonstrate that Python doesn’t try to make sense of variable names.

>>> sent1 = ['Call', 'me', 'Ishmael', '.']
>>> for xyzzy in sent1:
...     if xyzzy.endswith('l'):
...         print xyzzy
...
Call
Ishmael
>>>

You will notice that if and for statements have a colon at the end of the line, before
the indentation begins. In fact, all Python control structures end with a colon. The
colon indicates that the current statement relates to the indented block that follows.

We can also specify an action to be taken if the condition of the if statement is not
met. Here we see the elif (else if) statement, and the else statement. Notice that these
also have colons before the indented code.

>>> for token in sent1:
...     if token.islower():
...         print token, 'is a lowercase word'
...     elif token.istitle():
...         print token, 'is a titlecase word'
...     else:
...         print token, 'is punctuation'
...
Call is a titlecase word
me is a lowercase word
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Ishmael is a titlecase word
. is punctuation
>>>

As you can see, even with this small amount of Python knowledge, you can start to
build multiline Python programs. It’s important to develop such programs in pieces,
testing that each piece does what you expect before combining them into a program.
This is why the Python interactive interpreter is so invaluable, and why you should get
comfortable using it.

Finally, let’s combine the idioms we’ve been exploring. First, we create a list of cie and
cei words, then we loop over each item and print it. Notice the comma at the end of
the print statement, which tells Python to produce its output on a single line.

>>> tricky = sorted([w for w in set(text2) if 'cie' in w or 'cei' in w])
>>> for word in tricky:
...     print word,
ancient ceiling conceit conceited conceive conscience
conscientious conscientiously deceitful deceive ...
>>>

1.5  Automatic Natural Language Understanding
We have been exploring language bottom-up, with the help of texts and the Python
programming language. However, we’re also interested in exploiting our knowledge of
language and computation by building useful language technologies. We’ll take the
opportunity now to step back from the nitty-gritty of code in order to paint a bigger
picture of natural language processing.

At a purely practical level, we all need help to navigate the universe of information
locked up in text on the Web. Search engines have been crucial to the growth and
popularity of the Web, but have some shortcomings. It takes skill, knowledge, and
some luck, to extract answers to such questions as: What tourist sites can I visit between
Philadelphia and Pittsburgh on a limited budget? What do experts say about digital SLR
cameras? What predictions about the steel market were made by credible commentators
in the past week? Getting a computer to answer them automatically involves a range of
language processing tasks, including information extraction, inference, and summari-
zation, and would need to be carried out on a scale and with a level of robustness that
is still beyond our current capabilities.

On a more philosophical level, a long-standing challenge within artificial intelligence
has been to build intelligent machines, and a major part of intelligent behavior is un-
derstanding language. For many years this goal has been seen as too difficult. However,
as NLP technologies become more mature, and robust methods for analyzing unre-
stricted text become more widespread, the prospect of natural language understanding
has re-emerged as a plausible goal.

1.5  Automatic Natural Language Understanding | 27



In this section we describe some language understanding technologies, to give you a
sense of the interesting challenges that are waiting for you.

Word Sense Disambiguation
In word sense disambiguation we want to work out which sense of a word was in-
tended in a given context. Consider the ambiguous words serve and dish:

(2) a. serve: help with food or drink; hold an office; put ball into play

b. dish: plate; course of a meal; communications device

In a sentence containing the phrase: he served the dish, you can detect that both serve
and dish are being used with their food meanings. It’s unlikely that the topic of discus-
sion shifted from sports to crockery in the space of three words. This would force you
to invent bizarre images, like a tennis pro taking out his frustrations on a china tea-set
laid out beside the court. In other words, we automatically disambiguate words using
context, exploiting the simple fact that nearby words have closely related meanings. As
another example of this contextual effect, consider the word by, which has several
meanings, for example, the book by Chesterton (agentive—Chesterton was the author
of the book); the cup by the stove (locative—the stove is where the cup is); and submit
by Friday (temporal—Friday is the time of the submitting). Observe in (3) that the
meaning of the italicized word helps us interpret the meaning of by.

(3) a. The lost children were found by the searchers (agentive)

b. The lost children were found by the mountain (locative)

c. The lost children were found by the afternoon (temporal)

Pronoun Resolution
A deeper kind of language understanding is to work out “who did what to whom,” i.e.,
to detect the subjects and objects of verbs. You learned to do this in elementary school,
but it’s harder than you might think. In the sentence the thieves stole the paintings, it is
easy to tell who performed the stealing action. Consider three possible following sen-
tences in (4), and try to determine what was sold, caught, and found (one case is
ambiguous).

(4) a. The thieves stole the paintings. They were subsequently sold.

b. The thieves stole the paintings. They were subsequently caught.

c. The thieves stole the paintings. They were subsequently found.

Answering this question involves finding the antecedent of the pronoun they, either
thieves or paintings. Computational techniques for tackling this problem include ana-
phora resolution—identifying what a pronoun or noun phrase refers to—and
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ways to parse a sentence, recognize its syntactic structure, and construct representa-
tions of meaning (Chapters 8–10). The final chapter is devoted to linguistic data and
how it can be managed effectively (Chapter 11). The book concludes with an After-
word, briefly discussing the past and future of the field.

Within each chapter, we switch between different styles of presentation. In one style,
natural language is the driver. We analyze language, explore linguistic concepts, and
use programming examples to support the discussion. We often employ Python con-
structs that have not been introduced systematically, so you can see their purpose before
delving into the details of how and why they work. This is just like learning idiomatic
expressions in a foreign language: you’re able to buy a nice pastry without first having
learned the intricacies of question formation. In the other style of presentation, the
programming language will be the driver. We’ll analyze programs, explore algorithms,
and the linguistic examples will play a supporting role.

Each chapter ends with a series of graded exercises, which are useful for consolidating
the material. The exercises are graded according to the following scheme: ○ is for easy
exercises that involve minor modifications to supplied code samples or other simple
activities; ◑ is for intermediate exercises that explore an aspect of the material in more
depth, requiring careful analysis and design; ● is for difficult, open-ended tasks that
will challenge your understanding of the material and force you to think independently
(readers new to programming should skip these).

Each chapter has a further reading section and an online “extras” section at http://www
.nltk.org/, with pointers to more advanced materials and online resources. Online ver-
sions of all the code examples are also available there.

Why Python?
Python is a simple yet powerful programming language with excellent functionality for
processing linguistic data. Python can be downloaded for free from http://www.python
.org/. Installers are available for all platforms.

Here is a five-line Python program that processes file.txt and prints all the words ending
in ing:

>>> for line in open("file.txt"):
...     for word in line.split():
...         if word.endswith('ing'):
...             print word

This program illustrates some of the main features of Python. First, whitespace is used
to nest lines of code; thus the line starting with if falls inside the scope of the previous
line starting with for; this ensures that the ing test is performed for each word. Second,
Python is object-oriented; each variable is an entity that has certain defined attributes
and methods. For example, the value of the variable line is more than a sequence of
characters. It is a string object that has a “method” (or operation) called split() that
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semantic role labeling—identifying how a noun phrase relates to the verb (as agent,
patient, instrument, and so on).

Generating Language Output
If we can automatically solve such problems of language understanding, we will be able
to move on to tasks that involve generating language output, such as question
answering and machine translation. In the first case, a machine should be able to
answer a user’s questions relating to collection of texts:

(5) a. Text: ... The thieves stole the paintings. They were subsequently sold. ...

b. Human: Who or what was sold?

c. Machine: The paintings.

The machine’s answer demonstrates that it has correctly worked out that they refers to
paintings and not to thieves. In the second case, the machine should be able to translate
the text into another language, accurately conveying the meaning of the original text.
In translating the example text into French, we are forced to choose the gender of the
pronoun in the second sentence: ils (masculine) if the thieves are sold, and elles (fem-
inine) if the paintings are sold. Correct translation actually depends on correct under-
standing of the pronoun.

(6) a. The thieves stole the paintings. They were subsequently found.

b. Les voleurs ont volé les peintures. Ils ont été trouvés plus tard. (the thieves)

c. Les voleurs ont volé les peintures. Elles ont été trouvées plus tard. (the
paintings)

In all of these examples, working out the sense of a word, the subject of a verb, and the
antecedent of a pronoun are steps in establishing the meaning of a sentence, things we
would expect a language understanding system to be able to do.

Machine Translation
For a long time now, machine translation (MT) has been the holy grail of language
understanding, ultimately seeking to provide high-quality, idiomatic translation be-
tween any pair of languages. Its roots go back to the early days of the Cold War, when
the promise of automatic translation led to substantial government sponsorship, and
with it, the genesis of NLP itself.

Today, practical translation systems exist for particular pairs of languages, and some
are integrated into web search engines. However, these systems have some serious
shortcomings. We can explore them with the help of NLTK’s “babelizer” (which is
automatically loaded when you import this chapter’s materials using from nltk.book
import *). This program submits a sentence for translation into a specified language,
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then submits the resulting sentence for translation back into English. It stops after 12
iterations, or if it receives a translation that was produced already (indicating a loop):

>>> babelize_shell()
NLTK Babelizer: type 'help' for a list of commands.
Babel> how long before the next flight to Alice Springs?
Babel> german
Babel> run
0> how long before the next flight to Alice Springs?
1> wie lang vor dem folgenden Flug zu Alice Springs?
2> how long before the following flight to Alice jump?
3> wie lang vor dem folgenden Flug zu Alice springen Sie?
4> how long before the following flight to Alice do you jump?
5> wie lang, bevor der folgende Flug zu Alice tun, Sie springen?
6> how long, before the following flight to Alice does, do you jump?
7> wie lang bevor der folgende Flug zu Alice tut, tun Sie springen?
8> how long before the following flight to Alice does, do you jump?
9> wie lang, bevor der folgende Flug zu Alice tut, tun Sie springen?
10> how long, before the following flight does to Alice, do do you jump?
11> wie lang bevor der folgende Flug zu Alice tut, Sie tun Sprung?
12> how long before the following flight does leap to Alice, does you?

Observe that the system correctly translates Alice Springs from English to German (in
the line starting 1>), but on the way back to English, this ends up as Alice jump
(line 2). The preposition before is initially translated into the corresponding German
preposition vor, but later into the conjunction bevor (line 5). After line 5 the sentences
become non-sensical (but notice the various phrasings indicated by the commas, and
the change from jump to leap). The translation system did not recognize when a word
was part of a proper name, and it misinterpreted the grammatical structure. The gram-
matical problems are more obvious in the following example. Did John find the pig, or
did the pig find John?

>>> babelize_shell()
Babel> The pig that John found looked happy
Babel> german
Babel> run
0> The pig that John found looked happy
1> Das Schwein, das John fand, schaute gl?cklich
2> The pig, which found John, looked happy

Machine translation is difficult because a given word could have several possible trans-
lations (depending on its meaning), and because word order must be changed in keep-
ing with the grammatical structure of the target language. Today these difficulties are
being faced by collecting massive quantities of parallel texts from news and government
websites that publish documents in two or more languages. Given a document in Ger-
man and English, and possibly a bilingual dictionary, we can automatically pair up the
sentences, a process called text alignment. Once we have a million or more sentence
pairs, we can detect corresponding words and phrases, and build a model that can be
used for translating new text.
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Spoken Dialogue Systems
In the history of artificial intelligence, the chief measure of intelligence has been a lin-
guistic one, namely the Turing Test: can a dialogue system, responding to a user’s text
input, perform so naturally that we cannot distinguish it from a human-generated re-
sponse? In contrast, today’s commercial dialogue systems are very limited, but still
perform useful functions in narrowly defined domains, as we see here:

S: How may I help you?
U: When is Saving Private Ryan playing?
S: For what theater?
U: The Paramount theater.
S: Saving Private Ryan is not playing at the Paramount theater, but
it’s playing at the Madison theater at 3:00, 5:30, 8:00, and 10:30.

You could not ask this system to provide driving instructions or details of nearby res-
taurants unless the required information had already been stored and suitable question-
answer pairs had been incorporated into the language processing system.

Observe that this system seems to understand the user’s goals: the user asks when a
movie is showing and the system correctly determines from this that the user wants to
see the movie. This inference seems so obvious that you probably didn’t notice it was
made, yet a natural language system needs to be endowed with this capability in order
to interact naturally. Without it, when asked, Do you know when Saving Private Ryan
is playing?, a system might unhelpfully respond with a cold Yes. However, the devel-
opers of commercial dialogue systems use contextual assumptions and business logic
to ensure that the different ways in which a user might express requests or provide
information are handled in a way that makes sense for the particular application. So,
if you type When is ..., or I want to know when ..., or Can you tell me when ..., simple
rules will always yield screening times. This is enough for the system to provide a useful
service.

Dialogue systems give us an opportunity to mention the commonly assumed pipeline
for NLP. Figure 1-5 shows the architecture of a simple dialogue system. Along the top
of the diagram, moving from left to right, is a “pipeline” of some language understand-
ing components. These map from speech input via syntactic parsing to some kind of
meaning representation. Along the middle, moving from right to left, is the reverse
pipeline of components for converting concepts to speech. These components make
up the dynamic aspects of the system. At the bottom of the diagram are some repre-
sentative bodies of static information: the repositories of language-related data that the
processing components draw on to do their work.

Your Turn: For an example of a primitive dialogue system, try having
a conversation with an NLTK chatbot. To see the available chatbots,
run nltk.chat.chatbots(). (Remember to import nltk first.)
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Textual Entailment
The challenge of language understanding has been brought into focus in recent years
by a public “shared task” called Recognizing Textual Entailment (RTE). The basic
scenario is simple. Suppose you want to find evidence to support the hypothesis: Sandra
Goudie was defeated by Max Purnell, and that you have another short text that seems
to be relevant, for example, Sandra Goudie was first elected to Parliament in the 2002
elections, narrowly winning the seat of Coromandel by defeating Labour candidate Max
Purnell and pushing incumbent Green MP Jeanette Fitzsimons into third place. Does the
text provide enough evidence for you to accept the hypothesis? In this particular case,
the answer will be “No.” You can draw this conclusion easily, but it is very hard to
come up with automated methods for making the right decision. The RTE Challenges
provide data that allow competitors to develop their systems, but not enough data for
“brute force” machine learning techniques (a topic we will cover in Chapter 6). Con-
sequently, some linguistic analysis is crucial. In the previous example, it is important
for the system to note that Sandra Goudie names the person being defeated in the
hypothesis, not the person doing the defeating in the text. As another illustration of
the difficulty of the task, consider the following text-hypothesis pair:

(7) a. Text: David Golinkin is the editor or author of 18 books, and over 150
responsa, articles, sermons and books

b. Hypothesis: Golinkin has written 18 books

Figure 1-5. Simple pipeline architecture for a spoken dialogue system: Spoken input (top left) is
analyzed, words are recognized, sentences are parsed and interpreted in context, application-specific
actions take place (top right); a response is planned, realized as a syntactic structure, then to suitably
inflected words, and finally to spoken output; different types of linguistic knowledge inform each stage
of the process.
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In order to determine whether the hypothesis is supported by the text, the system needs
the following background knowledge: (i) if someone is an author of a book, then he/
she has written that book; (ii) if someone is an editor of a book, then he/she has not
written (all of) that book; (iii) if someone is editor or author of 18 books, then one
cannot conclude that he/she is author of 18 books.

Limitations of NLP
Despite the research-led advances in tasks such as RTE, natural language systems that
have been deployed for real-world applications still cannot perform common-sense
reasoning or draw on world knowledge in a general and robust manner. We can wait
for these difficult artificial intelligence problems to be solved, but in the meantime it is
necessary to live with some severe limitations on the reasoning and knowledge capa-
bilities of natural language systems. Accordingly, right from the beginning, an impor-
tant goal of NLP research has been to make progress on the difficult task of building
technologies that “understand language,” using superficial yet powerful techniques
instead of unrestricted knowledge and reasoning capabilities. Indeed, this is one of the
goals of this book, and we hope to equip you with the knowledge and skills to build
useful NLP systems, and to contribute to the long-term aspiration of building intelligent
machines.

1.6  Summary
• Texts are represented in Python using lists: ['Monty', 'Python']. We can use in-

dexing, slicing, and the len() function on lists.

• A word “token” is a particular appearance of a given word in a text; a word “type”
is the unique form of the word as a particular sequence of letters. We count word
tokens using len(text) and word types using len(set(text)).

• We obtain the vocabulary of a text t using sorted(set(t)).

• We operate on each item of a text using [f(x) for x in text].

• To derive the vocabulary, collapsing case distinctions and ignoring punctuation,
we can write set([w.lower() for w in text if w.isalpha()]).

• We process each word in a text using a for statement, such as for w in t: or for
word in text:. This must be followed by the colon character and an indented block
of code, to be executed each time through the loop.

• We test a condition using an if statement: if len(word) < 5:. This must be fol-
lowed by the colon character and an indented block of code, to be executed only
if the condition is true.

• A frequency distribution is a collection of items along with their frequency counts
(e.g., the words of a text and their frequency of appearance).
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• A function is a block of code that has been assigned a name and can be reused.
Functions are defined using the def keyword, as in def mult(x, y); x and y are
parameters of the function, and act as placeholders for actual data values.

• A function is called by specifying its name followed by one or more arguments
inside parentheses, like this: mult(3, 4), e.g., len(text1).

1.7  Further Reading
This chapter has introduced new concepts in programming, natural language process-
ing, and linguistics, all mixed in together. Many of them are consolidated in the fol-
lowing chapters. However, you may also want to consult the online materials provided
with this chapter (at http://www.nltk.org/), including links to additional background
materials, and links to online NLP systems. You may also like to read up on some
linguistics and NLP-related concepts in Wikipedia (e.g., collocations, the Turing Test,
the type-token distinction).

You should acquaint yourself with the Python documentation available at http://docs
.python.org/, including the many tutorials and comprehensive reference materials
linked there. A Beginner’s Guide to Python is available at http://wiki.python.org/moin/
BeginnersGuide. Miscellaneous questions about Python might be answered in the FAQ
at http://www.python.org/doc/faq/general/.

As you delve into NLTK, you might want to subscribe to the mailing list where new
releases of the toolkit are announced. There is also an NLTK-Users mailing list, where
users help each other as they learn how to use Python and NLTK for language analysis
work. Details of these lists are available at http://www.nltk.org/.

For more information on the topics covered in Section 1.5, and on NLP more generally,
you might like to consult one of the following excellent books:

• Indurkhya, Nitin and Fred Damerau (eds., 2010) Handbook of Natural Language
Processing (second edition), Chapman & Hall/CRC.

• Jurafsky, Daniel and James Martin (2008) Speech and Language Processing (second
edition), Prentice Hall.

• Mitkov, Ruslan (ed., 2002) The Oxford Handbook of Computational Linguistics.
Oxford University Press. (second edition expected in 2010).

The Association for Computational Linguistics is the international organization that
represents the field of NLP. The ACL website hosts many useful resources, including:
information about international and regional conferences and workshops; the ACL
Wiki with links to hundreds of useful resources; and the ACL Anthology, which contains
most of the NLP research literature from the past 50 years, fully indexed and freely
downloadable.
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Some excellent introductory linguistics textbooks are: (Finegan, 2007), (O’Grady et
al., 2004), (OSU, 2007). You might like to consult LanguageLog, a popular linguistics
blog with occasional posts that use the techniques described in this book.

1.8  Exercises
1. ○ Try using the Python interpreter as a calculator, and typing expressions like 12 /

(4 + 1).

2. ○ Given an alphabet of 26 letters, there are 26 to the power 10, or 26 ** 10, 10-
letter strings we can form. That works out to 141167095653376L (the L at the end
just indicates that this is Python’s long-number format). How many hundred-letter
strings are possible?

3. ○ The Python multiplication operation can be applied to lists. What happens when
you type ['Monty', 'Python'] * 20, or 3 * sent1?

4. ○ Review Section 1.1 on computing with language. How many words are there in
text2? How many distinct words are there?

5. ○ Compare the lexical diversity scores for humor and romance fiction in Ta-
ble 1-1. Which genre is more lexically diverse?

6. ○ Produce a dispersion plot of the four main protagonists in Sense and Sensibility:
Elinor, Marianne, Edward, and Willoughby. What can you observe about the
different roles played by the males and females in this novel? Can you identify the
couples?

7. ○ Find the collocations in text5.

8. ○ Consider the following Python expression: len(set(text4)). State the purpose
of this expression. Describe the two steps involved in performing this computation.

9. ○ Review Section 1.2 on lists and strings.

a. Define a string and assign it to a variable, e.g., my_string = 'My String' (but
put something more interesting in the string). Print the contents of this variable
in two ways, first by simply typing the variable name and pressing Enter, then
by using the print statement.

b. Try adding the string to itself using my_string + my_string, or multiplying it
by a number, e.g., my_string * 3. Notice that the strings are joined together
without any spaces. How could you fix this?

10. ○ Define a variable my_sent to be a list of words, using the syntax my_sent = ["My",
"sent"] (but with your own words, or a favorite saying).

a. Use ' '.join(my_sent) to convert this into a string.

b. Use split() to split the string back into the list form you had to start with.

11. ○ Define several variables containing lists of words, e.g., phrase1, phrase2, and so
on. Join them together in various combinations (using the plus operator) to form
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whole sentences. What is the relationship between len(phrase1 + phrase2) and
len(phrase1) + len(phrase2)?

12. ○ Consider the following two expressions, which have the same value. Which one
will typically be more relevant in NLP? Why?

a. "Monty Python"[6:12]

b. ["Monty", "Python"][1]

13. ○ We have seen how to represent a sentence as a list of words, where each word is
a sequence of characters. What does sent1[2][2] do? Why? Experiment with other
index values.

14. ○ The first sentence of text3 is provided to you in the variable sent3. The index of
the in sent3 is 1, because sent3[1] gives us 'the'. What are the indexes of the two
other occurrences of this word in sent3?

15. ○ Review the discussion of conditionals in Section 1.4. Find all words in the Chat
Corpus (text5) starting with the letter b. Show them in alphabetical order.

16. ○ Type the expression range(10) at the interpreter prompt. Now try range(10,
20), range(10, 20, 2), and range(20, 10, -2). We will see a variety of uses for this
built-in function in later chapters.

17. ◑ Use text9.index() to find the index of the word sunset. You’ll need to insert this
word as an argument between the parentheses. By a process of trial and error, find
the slice for the complete sentence that contains this word.

18. ◑ Using list addition, and the set and sorted operations, compute the vocabulary
of the sentences sent1 ... sent8.

19. ◑ What is the difference between the following two lines? Which one will give a
larger value? Will this be the case for other texts?

>>> sorted(set([w.lower() for w in text1]))
>>> sorted([w.lower() for w in set(text1)])

20. ◑ What is the difference between the following two tests: w.isupper() and not
w.islower()?

21. ◑ Write the slice expression that extracts the last two words of text2.

22. ◑ Find all the four-letter words in the Chat Corpus (text5). With the help of a
frequency distribution (FreqDist), show these words in decreasing order of fre-
quency.

23. ◑ Review the discussion of looping with conditions in Section 1.4. Use a combi-
nation of for and if statements to loop over the words of the movie script for
Monty Python and the Holy Grail (text6) and print all the uppercase words, one
per line.

24. ◑ Write expressions for finding all words in text6 that meet the following condi-
tions. The result should be in the form of a list of words: ['word1', 'word2', ...].
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a. Ending in ize

b. Containing the letter z

c. Containing the sequence of letters pt

d. All lowercase letters except for an initial capital (i.e., titlecase)

25. ◑ Define sent to be the list of words ['she', 'sells', 'sea', 'shells', 'by',
'the', 'sea', 'shore']. Now write code to perform the following tasks:

a. Print all words beginning with sh.

b. Print all words longer than four characters

26. ◑ What does the following Python code do? sum([len(w) for w in text1]) Can
you use it to work out the average word length of a text?

27. ◑ Define a function called vocab_size(text) that has a single parameter for the
text, and which returns the vocabulary size of the text.

28. ◑ Define a function percent(word, text) that calculates how often a given word
occurs in a text and expresses the result as a percentage.

29. ◑ We have been using sets to store vocabularies. Try the following Python expres-
sion: set(sent3) < set(text1). Experiment with this using different arguments to
set(). What does it do? Can you think of a practical application for this?
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CHAPTER 2

Accessing Text Corpora
and Lexical Resources

Practical work in Natural Language Processing typically uses large bodies of linguistic
data, or corpora. The goal of this chapter is to answer the following questions:

1. What are some useful text corpora and lexical resources, and how can we access
them with Python?

2. Which Python constructs are most helpful for this work?

3. How do we avoid repeating ourselves when writing Python code?

This chapter continues to present programming concepts by example, in the context
of a linguistic processing task. We will wait until later before exploring each Python
construct systematically. Don’t worry if you see an example that contains something
unfamiliar; simply try it out and see what it does, and—if you’re game—modify it by
substituting some part of the code with a different text or word. This way you will
associate a task with a programming idiom, and learn the hows and whys later.

2.1  Accessing Text Corpora
As just mentioned, a text corpus is a large body of text. Many corpora are designed to
contain a careful balance of material in one or more genres. We examined some small
text collections in Chapter 1, such as the speeches known as the US Presidential Inau-
gural Addresses. This particular corpus actually contains dozens of individual texts—
one per address—but for convenience we glued them end-to-end and treated them as
a single text. Chapter 1 also used various predefined texts that we accessed by typing
from book import *. However, since we want to be able to work with other texts, this
section examines a variety of text corpora. We’ll see how to select individual texts, and
how to work with them.

39



Gutenberg Corpus
NLTK includes a small selection of texts from the Project Gutenberg electronic text
archive, which contains some 25,000 free electronic books, hosted at http://www.gu
tenberg.org/. We begin by getting the Python interpreter to load the NLTK package,
then ask to see nltk.corpus.gutenberg.fileids(), the file identifiers in this corpus:

>>> import nltk
>>> nltk.corpus.gutenberg.fileids()
['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', 'bible-kjv.txt',
'blake-poems.txt', 'bryant-stories.txt', 'burgess-busterbrown.txt',
'carroll-alice.txt', 'chesterton-ball.txt', 'chesterton-brown.txt',
'chesterton-thursday.txt', 'edgeworth-parents.txt', 'melville-moby_dick.txt',
'milton-paradise.txt', 'shakespeare-caesar.txt', 'shakespeare-hamlet.txt',
'shakespeare-macbeth.txt', 'whitman-leaves.txt']

Let’s pick out the first of these texts—Emma by Jane Austen—and give it a short name,
emma, then find out how many words it contains:

>>> emma = nltk.corpus.gutenberg.words('austen-emma.txt')
>>> len(emma)
192427

In Section 1.1, we showed how you could carry out concordancing of a
text such as text1 with the command text1.concordance(). However,
this assumes that you are using one of the nine texts obtained as a result
of doing from nltk.book import *. Now that you have started examining
data from nltk.corpus, as in the previous example, you have to employ
the following pair of statements to perform concordancing and other
tasks from Section 1.1:

>>> emma = nltk.Text(nltk.corpus.gutenberg.words('austen-emma.txt'))
>>> emma.concordance("surprize")

When we defined emma, we invoked the words() function of the gutenberg object in
NLTK’s corpus package. But since it is cumbersome to type such long names all the
time, Python provides another version of the import statement, as follows:

>>> from nltk.corpus import gutenberg
>>> gutenberg.fileids()
['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', ...]
>>> emma = gutenberg.words('austen-emma.txt')

Let’s write a short program to display other information about each text, by looping
over all the values of fileid corresponding to the gutenberg file identifiers listed earlier
and then computing statistics for each text. For a compact output display, we will make
sure that the numbers are all integers, using int().

>>> for fileid in gutenberg.fileids():
...     num_chars = len(gutenberg.raw(fileid)) 
...     num_words = len(gutenberg.words(fileid))
...     num_sents = len(gutenberg.sents(fileid))
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...     num_vocab = len(set([w.lower() for w in gutenberg.words(fileid)]))

...     print int(num_chars/num_words), int(num_words/num_sents), int(num_words/num_vocab), 
        fileid
...
4 21 26 austen-emma.txt
4 23 16 austen-persuasion.txt
4 24 22 austen-sense.txt
4 33 79 bible-kjv.txt
4 18 5 blake-poems.txt
4 17 14 bryant-stories.txt
4 17 12 burgess-busterbrown.txt
4 16 12 carroll-alice.txt
4 17 11 chesterton-ball.txt
4 19 11 chesterton-brown.txt
4 16 10 chesterton-thursday.txt
4 18 24 edgeworth-parents.txt
4 24 15 melville-moby_dick.txt
4 52 10 milton-paradise.txt
4 12 8 shakespeare-caesar.txt
4 13 7 shakespeare-hamlet.txt
4 13 6 shakespeare-macbeth.txt
4 35 12 whitman-leaves.txt

This program displays three statistics for each text: average word length, average sen-
tence length, and the number of times each vocabulary item appears in the text on
average (our lexical diversity score). Observe that average word length appears to be a
general property of English, since it has a recurrent value of 4. (In fact, the average word
length is really 3, not 4, since the num_chars variable counts space characters.) By con-
trast average sentence length and lexical diversity appear to be characteristics of par-
ticular authors.

The previous example also showed how we can access the “raw” text of the book ,
not split up into tokens. The raw() function gives us the contents of the file without
any linguistic processing. So, for example, len(gutenberg.raw('blake-poems.txt') tells
us how many letters occur in the text, including the spaces between words. The
sents() function divides the text up into its sentences, where each sentence is a list of
words:

>>> macbeth_sentences = gutenberg.sents('shakespeare-macbeth.txt')
>>> macbeth_sentences
[['[', 'The', 'Tragedie', 'of', 'Macbeth', 'by', 'William', 'Shakespeare',
'1603', ']'], ['Actus', 'Primus', '.'], ...]
>>> macbeth_sentences[1037]
['Double', ',', 'double', ',', 'toile', 'and', 'trouble', ';',
'Fire', 'burne', ',', 'and', 'Cauldron', 'bubble']
>>> longest_len = max([len(s) for s in macbeth_sentences])
>>> [s for s in macbeth_sentences if len(s) == longest_len]
[['Doubtfull', 'it', 'stood', ',', 'As', 'two', 'spent', 'Swimmers', ',', 'that',
'doe', 'cling', 'together', ',', 'And', 'choake', 'their', 'Art', ':', 'The',
'mercilesse', 'Macdonwald', ...], ...]
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Most NLTK corpus readers include a variety of access methods apart
from words(), raw(), and sents(). Richer linguistic content is available
from some corpora, such as part-of-speech tags, dialogue tags, syntactic
trees, and so forth; we will see these in later chapters.

Web and Chat Text
Although Project Gutenberg contains thousands of books, it represents established
literature. It is important to consider less formal language as well. NLTK’s small col-
lection of web text includes content from a Firefox discussion forum, conversations
overheard in New York, the movie script of Pirates of the Carribean, personal adver-
tisements, and wine reviews:

>>> from nltk.corpus import webtext
>>> for fileid in webtext.fileids():
...     print fileid, webtext.raw(fileid)[:65], '...'
...
firefox.txt Cookie Manager: "Don't allow sites that set removed cookies to se...
grail.txt SCENE 1: [wind] [clop clop clop] KING ARTHUR: Whoa there!  [clop...
overheard.txt White guy: So, do you have any plans for this evening? Asian girl...
pirates.txt PIRATES OF THE CARRIBEAN: DEAD MAN'S CHEST, by Ted Elliott & Terr...
singles.txt 25 SEXY MALE, seeks attrac older single lady, for discreet encoun...
wine.txt Lovely delicate, fragrant Rhone wine. Polished leather and strawb...

There is also a corpus of instant messaging chat sessions, originally collected by the
Naval Postgraduate School for research on automatic detection of Internet predators.
The corpus contains over 10,000 posts, anonymized by replacing usernames with
generic names of the form “UserNNN”, and manually edited to remove any other
identifying information. The corpus is organized into 15 files, where each file contains
several hundred posts collected on a given date, for an age-specific chatroom (teens,
20s, 30s, 40s, plus a generic adults chatroom). The filename contains the date, chat-
room, and number of posts; e.g., 10-19-20s_706posts.xml contains 706 posts gathered
from the 20s chat room on 10/19/2006.

>>> from nltk.corpus import nps_chat
>>> chatroom = nps_chat.posts('10-19-20s_706posts.xml')
>>> chatroom[123]
['i', 'do', "n't", 'want', 'hot', 'pics', 'of', 'a', 'female', ',',
'I', 'can', 'look', 'in', 'a', 'mirror', '.']

Brown Corpus
The Brown Corpus was the first million-word electronic corpus of English, created in
1961 at Brown University. This corpus contains text from 500 sources, and the sources
have been categorized by genre, such as news, editorial, and so on. Table 2-1 gives an
example of each genre (for a complete list, see http://icame.uib.no/brown/bcm-los.html).
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Table 2-1. Example document for each section of the Brown Corpus

ID File Genre Description

A16 ca16 news Chicago Tribune: Society Reportage

B02 cb02 editorial Christian Science Monitor: Editorials

C17 cc17 reviews Time Magazine: Reviews

D12 cd12 religion Underwood: Probing the Ethics of Realtors

E36 ce36 hobbies Norling: Renting a Car in Europe

F25 cf25 lore Boroff: Jewish Teenage Culture

G22 cg22 belles_lettres Reiner: Coping with Runaway Technology

H15 ch15 government US Office of Civil and Defence Mobilization: The Family Fallout Shelter

J17 cj19 learned Mosteller: Probability with Statistical Applications

K04 ck04 fiction W.E.B. Du Bois: Worlds of Color

L13 cl13 mystery Hitchens: Footsteps in the Night

M01 cm01 science_fiction Heinlein: Stranger in a Strange Land

N14 cn15 adventure Field: Rattlesnake Ridge

P12 cp12 romance Callaghan: A Passion in Rome

R06 cr06 humor Thurber: The Future, If Any, of Comedy

We can access the corpus as a list of words or a list of sentences (where each sentence
is itself just a list of words). We can optionally specify particular categories or files to
read:

>>> from nltk.corpus import brown
>>> brown.categories()
['adventure', 'belles_lettres', 'editorial', 'fiction', 'government', 'hobbies',
'humor', 'learned', 'lore', 'mystery', 'news', 'religion', 'reviews', 'romance',
'science_fiction']
>>> brown.words(categories='news')
['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', ...]
>>> brown.words(fileids=['cg22'])
['Does', 'our', 'society', 'have', 'a', 'runaway', ',', ...]
>>> brown.sents(categories=['news', 'editorial', 'reviews'])
[['The', 'Fulton', 'County'...], ['The', 'jury', 'further'...], ...]

The Brown Corpus is a convenient resource for studying systematic differences between
genres, a kind of linguistic inquiry known as stylistics. Let’s compare genres in their
usage of modal verbs. The first step is to produce the counts for a particular genre.
Remember to import nltk before doing the following:

>>> from nltk.corpus import brown
>>> news_text = brown.words(categories='news')
>>> fdist = nltk.FreqDist([w.lower() for w in news_text])
>>> modals = ['can', 'could', 'may', 'might', 'must', 'will']
>>> for m in modals:
...     print m + ':', fdist[m],
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...
can: 94 could: 87 may: 93 might: 38 must: 53 will: 389

Your Turn: Choose a different section of the Brown Corpus, and adapt
the preceding example to count a selection of wh words, such as what,
when, where, who and why.

Next, we need to obtain counts for each genre of interest. We’ll use NLTK’s support
for conditional frequency distributions. These are presented systematically in Sec-
tion 2.2, where we also unpick the following code line by line. For the moment, you
can ignore the details and just concentrate on the output.

>>> cfd = nltk.ConditionalFreqDist(
...           (genre, word)
...           for genre in brown.categories()
...           for word in brown.words(categories=genre))
>>> genres = ['news', 'religion', 'hobbies', 'science_fiction', 'romance', 'humor']
>>> modals = ['can', 'could', 'may', 'might', 'must', 'will']
>>> cfd.tabulate(conditions=genres, samples=modals)
                 can could  may might must will
           news   93   86   66   38   50  389
       religion   82   59   78   12   54   71
        hobbies  268   58  131   22   83  264
science_fiction   16   49    4   12    8   16
        romance   74  193   11   51   45   43
          humor   16   30    8    8    9   13

Observe that the most frequent modal in the news genre is will, while the most frequent
modal in the romance genre is could. Would you have predicted this? The idea that
word counts might distinguish genres will be taken up again in Chapter 6.

Reuters Corpus
The Reuters Corpus contains 10,788 news documents totaling 1.3 million words. The
documents have been classified into 90 topics, and grouped into two sets, called “train-
ing” and “test”; thus, the text with fileid 'test/14826' is a document drawn from the
test set. This split is for training and testing algorithms that automatically detect the
topic of a document, as we will see in Chapter 6.

>>> from nltk.corpus import reuters
>>> reuters.fileids()
['test/14826', 'test/14828', 'test/14829', 'test/14832', ...]
>>> reuters.categories()
['acq', 'alum', 'barley', 'bop', 'carcass', 'castor-oil', 'cocoa',
'coconut', 'coconut-oil', 'coffee', 'copper', 'copra-cake', 'corn',
'cotton', 'cotton-oil', 'cpi', 'cpu', 'crude', 'dfl', 'dlr', ...]

Unlike the Brown Corpus, categories in the Reuters Corpus overlap with each other,
simply because a news story often covers multiple topics. We can ask for the topics
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covered by one or more documents, or for the documents included in one or more
categories. For convenience, the corpus methods accept a single fileid or a list of fileids.

>>> reuters.categories('training/9865')
['barley', 'corn', 'grain', 'wheat']
>>> reuters.categories(['training/9865', 'training/9880'])
['barley', 'corn', 'grain', 'money-fx', 'wheat']
>>> reuters.fileids('barley')
['test/15618', 'test/15649', 'test/15676', 'test/15728', 'test/15871', ...]
>>> reuters.fileids(['barley', 'corn'])
['test/14832', 'test/14858', 'test/15033', 'test/15043', 'test/15106',
'test/15287', 'test/15341', 'test/15618', 'test/15618', 'test/15648', ...]

Similarly, we can specify the words or sentences we want in terms of files or categories.
The first handful of words in each of these texts are the titles, which by convention are
stored as uppercase.

>>> reuters.words('training/9865')[:14]
['FRENCH', 'FREE', 'MARKET', 'CEREAL', 'EXPORT', 'BIDS',
'DETAILED', 'French', 'operators', 'have', 'requested', 'licences', 'to', 'export']
>>> reuters.words(['training/9865', 'training/9880'])
['FRENCH', 'FREE', 'MARKET', 'CEREAL', 'EXPORT', ...]
>>> reuters.words(categories='barley')
['FRENCH', 'FREE', 'MARKET', 'CEREAL', 'EXPORT', ...]
>>> reuters.words(categories=['barley', 'corn'])
['THAI', 'TRADE', 'DEFICIT', 'WIDENS', 'IN', 'FIRST', ...]

Inaugural Address Corpus
In Section 1.1, we looked at the Inaugural Address Corpus, but treated it as a single
text. The graph in Figure 1-2 used “word offset” as one of the axes; this is the numerical
index of the word in the corpus, counting from the first word of the first address.
However, the corpus is actually a collection of 55 texts, one for each presidential ad-
dress. An interesting property of this collection is its time dimension:

>>> from nltk.corpus import inaugural
>>> inaugural.fileids()
['1789-Washington.txt', '1793-Washington.txt', '1797-Adams.txt', ...]
>>> [fileid[:4] for fileid in inaugural.fileids()]
['1789', '1793', '1797', '1801', '1805', '1809', '1813', '1817', '1821', ...]

Notice that the year of each text appears in its filename. To get the year out of the
filename, we extracted the first four characters, using fileid[:4].

Let’s look at how the words America and citizen are used over time. The following code
converts the words in the Inaugural corpus to lowercase using w.lower() , then checks
whether they start with either of the “targets” america or citizen using startswith()

. Thus it will count words such as American’s and Citizens. We’ll learn about condi-
tional frequency distributions in Section 2.2; for now, just consider the output, shown
in Figure 2-1.
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>>> cfd = nltk.ConditionalFreqDist(
...           (target, file[:4])
...           for fileid in inaugural.fileids()
...           for w in inaugural.words(fileid)
...           for target in ['america', 'citizen']
...           if w.lower().startswith(target)) 
>>> cfd.plot()

Figure 2-1. Plot of a conditional frequency distribution: All words in the Inaugural Address Corpus
that begin with america or citizen are counted; separate counts are kept for each address; these are
plotted so that trends in usage over time can be observed; counts are not normalized for document
length.

Annotated Text Corpora
Many text corpora contain linguistic annotations, representing part-of-speech tags,
named entities, syntactic structures, semantic roles, and so forth. NLTK provides
convenient ways to access several of these corpora, and has data packages containing
corpora and corpus samples, freely downloadable for use in teaching and research.
Table 2-2  lists some of the corpora. For information about downloading them, see
http://www.nltk.org/data. For more examples of how to access NLTK corpora, please
consult the Corpus HOWTO at http://www.nltk.org/howto.

Table 2-2. Some of the corpora and corpus samples distributed with NLTK

Corpus Compiler Contents

Brown Corpus Francis, Kucera 15 genres, 1.15M words, tagged, categorized

CESS Treebanks CLiC-UB 1M words, tagged and parsed (Catalan, Spanish)

Chat-80 Data Files Pereira & Warren World Geographic Database

CMU Pronouncing Dictionary CMU 127k entries

CoNLL 2000 Chunking Data CoNLL 270k words, tagged and chunked
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Corpus Compiler Contents

CoNLL 2002 Named Entity CoNLL 700k words, POS and named entity tagged (Dutch, Spanish)

CoNLL 2007 Dependency Parsed Tree-
banks (selections)

CoNLL 150k words, dependency parsed (Basque, Catalan)

Dependency Treebank Narad Dependency parsed version of Penn Treebank sample

Floresta Treebank Diana Santos et al. 9k sentences, tagged and parsed (Portuguese)

Gazetteer Lists Various Lists of cities and countries

Genesis Corpus Misc web sources 6 texts, 200k words, 6 languages

Gutenberg (selections) Hart, Newby, et al. 18 texts, 2M words

Inaugural Address Corpus CSpan U.S. Presidential Inaugural Addresses (1789–present)

Indian POS Tagged Corpus Kumaran et al. 60k words, tagged (Bangla, Hindi, Marathi, Telugu)

MacMorpho Corpus NILC, USP, Brazil 1M words, tagged (Brazilian Portuguese)

Movie Reviews Pang, Lee 2k movie reviews with sentiment polarity classification

Names Corpus Kantrowitz, Ross 8k male and female names

NIST 1999 Info Extr (selections) Garofolo 63k words, newswire and named entity SGML markup

NPS Chat Corpus Forsyth, Martell 10k IM chat posts, POS and dialogue-act tagged

Penn Treebank (selections) LDC 40k words, tagged and parsed

PP Attachment Corpus Ratnaparkhi 28k prepositional phrases, tagged as noun or verb modifiers

Proposition Bank Palmer 113k propositions, 3,300 verb frames

Question Classification Li, Roth 6k questions, categorized

Reuters Corpus Reuters 1.3M words, 10k news documents, categorized

Roget’s Thesaurus Project Gutenberg 200k words, formatted text

RTE Textual Entailment Dagan et al. 8k sentence pairs, categorized

SEMCOR Rus, Mihalcea 880k words, POS and sense tagged

Senseval 2 Corpus Pedersen 600k words, POS and sense tagged

Shakespeare texts (selections) Bosak 8 books in XML format

State of the Union Corpus CSpan 485k words, formatted text

Stopwords Corpus Porter et al. 2,400 stopwords for 11 languages

Swadesh Corpus Wiktionary Comparative wordlists in 24 languages

Switchboard Corpus (selections) LDC 36 phone calls, transcribed, parsed

TIMIT Corpus (selections) NIST/LDC Audio files and transcripts for 16 speakers

Univ Decl of Human Rights United Nations 480k words, 300+ languages

VerbNet 2.1 Palmer et al. 5k verbs, hierarchically organized, linked to WordNet

Wordlist Corpus OpenOffice.org et al. 960k words and 20k affixes for 8 languages

WordNet 3.0 (English) Miller, Fellbaum 145k synonym sets
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Corpora in Other Languages
NLTK comes with corpora for many languages, though in some cases you will need to
learn how to manipulate character encodings in Python before using these corpora (see
Section 3.3).

>>> nltk.corpus.cess_esp.words()
['El', 'grupo', 'estatal', 'Electricit\xe9_de_France', ...]
>>> nltk.corpus.floresta.words()
['Um', 'revivalismo', 'refrescante', 'O', '7_e_Meio', ...]
>>> nltk.corpus.indian.words('hindi.pos')
['\xe0\xa4\xaa\xe0\xa5\x82\xe0\xa4\xb0\xe0\xa5\x8d\xe0\xa4\xa3',
'\xe0\xa4\xaa\xe0\xa5\x8d\xe0\xa4\xb0\xe0\xa4\xa4\xe0\xa4\xbf\xe0\xa4\xac\xe0\xa4
\x82\xe0\xa4\xa7', ...]
>>> nltk.corpus.udhr.fileids()
['Abkhaz-Cyrillic+Abkh', 'Abkhaz-UTF8', 'Achehnese-Latin1', 'Achuar-Shiwiar-Latin1',
'Adja-UTF8', 'Afaan_Oromo_Oromiffa-Latin1', 'Afrikaans-Latin1', 'Aguaruna-Latin1',
'Akuapem_Twi-UTF8', 'Albanian_Shqip-Latin1', 'Amahuaca', 'Amahuaca-Latin1', ...]
>>> nltk.corpus.udhr.words('Javanese-Latin1')[11:]
[u'Saben', u'umat', u'manungsa', u'lair', u'kanthi', ...]

The last of these corpora, udhr, contains the Universal Declaration of Human Rights
in over 300 languages. The fileids for this corpus include information about the char-
acter encoding used in the file, such as UTF8 or Latin1. Let’s use a conditional frequency
distribution to examine the differences in word lengths for a selection of languages
included in the udhr corpus. The output is shown in Figure 2-2 (run the program your-
self to see a color plot). Note that True and False are Python’s built-in Boolean values.

>>> from nltk.corpus import udhr
>>> languages = ['Chickasaw', 'English', 'German_Deutsch',
...     'Greenlandic_Inuktikut', 'Hungarian_Magyar', 'Ibibio_Efik']
>>> cfd = nltk.ConditionalFreqDist(
...           (lang, len(word))
...           for lang in languages
...           for word in udhr.words(lang + '-Latin1'))
>>> cfd.plot(cumulative=True)

Your Turn: Pick a language of interest in udhr.fileids(), and define a
variable raw_text = udhr.raw(Language-Latin1). Now plot a frequency
distribution of the letters of the text using

nltk.FreqDist(raw_text).plot().

Unfortunately, for many languages, substantial corpora are not yet available. Often
there is insufficient government or industrial support for developing language resour-
ces, and individual efforts are piecemeal and hard to discover or reuse. Some languages
have no established writing system, or are endangered. (See Section 2.7 for suggestions
on how to locate language resources.)
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Text Corpus Structure
We have seen a variety of corpus structures so far; these are summarized in Fig-
ure 2-3. The simplest kind lacks any structure: it is just a collection of texts. Often,
texts are grouped into categories that might correspond to genre, source, author, lan-
guage, etc. Sometimes these categories overlap, notably in the case of topical categories,
as a text can be relevant to more than one topic. Occasionally, text collections have
temporal structure, news collections being the most common example.

NLTK’s corpus readers support efficient access to a variety of corpora, and can be used
to work with new corpora. Table 2-3 lists functionality provided by the corpus readers.

Figure 2-2. Cumulative word length distributions: Six translations of the Universal Declaration of
Human Rights are processed; this graph shows that words having five or fewer letters account for
about 80% of Ibibio text, 60% of German text, and 25% of Inuktitut text.
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Figure 2-3. Common structures for text corpora: The simplest kind of corpus is a collection of isolated
texts with no particular organization; some corpora are structured into categories, such as genre
(Brown Corpus); some categorizations overlap, such as topic categories (Reuters Corpus); other
corpora represent language use over time (Inaugural Address Corpus).

Table 2-3. Basic corpus functionality defined in NLTK: More documentation can be found using
help(nltk.corpus.reader) and by reading the online Corpus HOWTO at http://www.nltk.org/howto.

Example Description

fileids() The files of the corpus

fileids([categories]) The files of the corpus corresponding to these categories

categories() The categories of the corpus

categories([fileids]) The categories of the corpus corresponding to these files

raw() The raw content of the corpus

raw(fileids=[f1,f2,f3]) The raw content of the specified files

raw(categories=[c1,c2]) The raw content of the specified categories

words() The words of the whole corpus

words(fileids=[f1,f2,f3]) The words of the specified fileids

words(categories=[c1,c2]) The words of the specified categories

sents() The sentences of the specified categories

sents(fileids=[f1,f2,f3]) The sentences of the specified fileids

sents(categories=[c1,c2]) The sentences of the specified categories

abspath(fileid) The location of the given file on disk

encoding(fileid) The encoding of the file (if known)

open(fileid) Open a stream for reading the given corpus file

root() The path to the root of locally installed corpus

readme() The contents of the README file of the corpus

We illustrate the difference between some of the corpus access methods here:

>>> raw = gutenberg.raw("burgess-busterbrown.txt")
>>> raw[1:20]
'The Adventures of B'
>>> words = gutenberg.words("burgess-busterbrown.txt")
>>> words[1:20]
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['The', 'Adventures', 'of', 'Buster', 'Bear', 'by', 'Thornton', 'W', '.',
'Burgess', '1920', ']', 'I', 'BUSTER', 'BEAR', 'GOES', 'FISHING', 'Buster',
'Bear']
>>> sents = gutenberg.sents("burgess-busterbrown.txt")
>>> sents[1:20]
[['I'], ['BUSTER', 'BEAR', 'GOES', 'FISHING'], ['Buster', 'Bear', 'yawned', 'as',
'he', 'lay', 'on', 'his', 'comfortable', 'bed', 'of', 'leaves', 'and', 'watched',
'the', 'first', 'early', 'morning', 'sunbeams', 'creeping', 'through', ...], ...]

Loading Your Own Corpus
If you have a your own collection of text files that you would like to access using the
methods discussed earlier, you can easily load them with the help of NLTK’s Plain
textCorpusReader. Check the location of your files on your file system; in the following
example, we have taken this to be the directory /usr/share/dict. Whatever the location,
set this to be the value of corpus_root . The second parameter of the PlaintextCor
pusReader initializer  can be a list of fileids, like ['a.txt', 'test/b.txt'], or a pattern
that matches all fileids, like '[abc]/.*\.txt' (see Section 3.4 for information about
regular expressions).

>>> from nltk.corpus import PlaintextCorpusReader
>>> corpus_root = '/usr/share/dict' 
>>> wordlists = PlaintextCorpusReader(corpus_root, '.*') 
>>> wordlists.fileids()
['README', 'connectives', 'propernames', 'web2', 'web2a', 'words']
>>> wordlists.words('connectives')
['the', 'of', 'and', 'to', 'a', 'in', 'that', 'is', ...]

As another example, suppose you have your own local copy of Penn Treebank (release
3), in C:\corpora. We can use the BracketParseCorpusReader to access this corpus. We
specify the corpus_root to be the location of the parsed Wall Street Journal component
of the corpus , and give a file_pattern that matches the files contained within its
subfolders  (using forward slashes).

>>> from nltk.corpus import BracketParseCorpusReader
>>> corpus_root = r"C:\corpora\penntreebank\parsed\mrg\wsj" 
>>> file_pattern = r".*/wsj_.*\.mrg" 
>>> ptb = BracketParseCorpusReader(corpus_root, file_pattern)
>>> ptb.fileids()
['00/wsj_0001.mrg', '00/wsj_0002.mrg', '00/wsj_0003.mrg', '00/wsj_0004.mrg', ...]
>>> len(ptb.sents())
49208
>>> ptb.sents(fileids='20/wsj_2013.mrg')[19]
['The', '55-year-old', 'Mr.', 'Noriega', 'is', "n't", 'as', 'smooth', 'as', 'the',
'shah', 'of', 'Iran', ',', 'as', 'well-born', 'as', 'Nicaragua', "'s", 'Anastasio',
'Somoza', ',', 'as', 'imperial', 'as', 'Ferdinand', 'Marcos', 'of', 'the', 'Philippines',
'or', 'as', 'bloody', 'as', 'Haiti', "'s", 'Baby', Doc', 'Duvalier', '.']
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2.2  Conditional Frequency Distributions
We introduced frequency distributions in Section 1.3. We saw that given some list
mylist of words or other items, FreqDist(mylist) would compute the number of
occurrences of each item in the list. Here we will generalize this idea.

When the texts of a corpus are divided into several categories (by genre, topic, author,
etc.), we can maintain separate frequency distributions for each category. This will
allow us to study systematic differences between the categories. In the previous section,
we achieved this using NLTK’s ConditionalFreqDist data type. A conditional fre-
quency distribution is a collection of frequency distributions, each one for a different
“condition.” The condition will often be the category of the text. Figure 2-4 depicts a
fragment of a conditional frequency distribution having just two conditions, one for
news text and one for romance text.

Figure 2-4. Counting words appearing in a text collection (a conditional frequency distribution).

Conditions and Events
A frequency distribution counts observable events, such as the appearance of words in
a text. A conditional frequency distribution needs to pair each event with a condition.
So instead of processing a sequence of words , we have to process a sequence of
pairs :

>>> text = ['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', ...] 
>>> pairs = [('news', 'The'), ('news', 'Fulton'), ('news', 'County'), ...] 

Each pair has the form (condition, event). If we were processing the entire Brown
Corpus by genre, there would be 15 conditions (one per genre) and 1,161,192 events
(one per word).

Counting Words by Genre
In Section 2.1, we saw a conditional frequency distribution where the condition was
the section of the Brown Corpus, and for each condition we counted words. Whereas
FreqDist() takes a simple list as input, ConditionalFreqDist() takes a list of pairs.
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>>> from nltk.corpus import brown
>>> cfd = nltk.ConditionalFreqDist(
...           (genre, word)
...           for genre in brown.categories()
...           for word in brown.words(categories=genre))

Let’s break this down, and look at just two genres, news and romance. For each genre ,
we loop over every word in the genre , producing pairs consisting of the genre and
the word :

>>> genre_word = [(genre, word) 
...               for genre in ['news', 'romance'] 
...               for word in brown.words(categories=genre)] 
>>> len(genre_word)
170576

So, as we can see in the following code, pairs at the beginning of the list genre_word will
be of the form ('news', word) , whereas those at the end will be of the form ('roman
ce', word) .

>>> genre_word[:4]
[('news', 'The'), ('news', 'Fulton'), ('news', 'County'), ('news', 'Grand')] 
>>> genre_word[-4:]
[('romance', 'afraid'), ('romance', 'not'), ('romance', "''"), ('romance', '.')] 

We can now use this list of pairs to create a ConditionalFreqDist, and save it in a variable
cfd. As usual, we can type the name of the variable to inspect it , and verify it has two
conditions :

>>> cfd = nltk.ConditionalFreqDist(genre_word)
>>> cfd 
<ConditionalFreqDist with 2 conditions>
>>> cfd.conditions()
['news', 'romance'] 

Let’s access the two conditions, and satisfy ourselves that each is just a frequency
distribution:

>>> cfd['news']
<FreqDist with 100554 outcomes>
>>> cfd['romance']
<FreqDist with 70022 outcomes>
>>> list(cfd['romance'])
[',', '.', 'the', 'and', 'to', 'a', 'of', '``', "''", 'was', 'I', 'in', 'he', 'had',
'?', 'her', 'that', 'it', 'his', 'she', 'with', 'you', 'for', 'at', 'He', 'on', 'him',
'said', '!', '--', 'be', 'as', ';', 'have', 'but', 'not', 'would', 'She', 'The', ...]
>>> cfd['romance']['could']
193

Plotting and Tabulating Distributions
Apart from combining two or more frequency distributions, and being easy to initialize,
a ConditionalFreqDist provides some useful methods for tabulation and plotting.
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The plot in Figure 2-1 was based on a conditional frequency distribution reproduced
in the following code. The condition is either of the words america or citizen , and
the counts being plotted are the number of times the word occurred in a particular
speech. It exploits the fact that the filename for each speech—for example,
1865-Lincoln.txt—contains the year as the first four characters . This code generates
the pair ('america', '1865') for every instance of a word whose lowercased form starts
with america—such as Americans—in the file 1865-Lincoln.txt.

>>> from nltk.corpus import inaugural
>>> cfd = nltk.ConditionalFreqDist(
...           (target, fileid[:4]) 
...           for fileid in inaugural.fileids()
...           for w in inaugural.words(fileid)
...           for target in ['america', 'citizen'] 
...           if w.lower().startswith(target))

The plot in Figure 2-2 was also based on a conditional frequency distribution, repro-
duced in the following code. This time, the condition is the name of the language, and
the counts being plotted are derived from word lengths . It exploits the fact that the
filename for each language is the language name followed by '-Latin1' (the character
encoding).

>>> from nltk.corpus import udhr
>>> languages = ['Chickasaw', 'English', 'German_Deutsch',
...     'Greenlandic_Inuktikut', 'Hungarian_Magyar', 'Ibibio_Efik']
>>> cfd = nltk.ConditionalFreqDist(
...           (lang, len(word)) 
...           for lang in languages
...           for word in udhr.words(lang + '-Latin1'))

In the plot() and tabulate() methods, we can optionally specify which conditions to
display with a conditions= parameter. When we omit it, we get all the conditions.
Similarly, we can limit the samples to display with a samples= parameter. This makes
it possible to load a large quantity of data into a conditional frequency distribution,
and then to explore it by plotting or tabulating selected conditions and samples. It also
gives us full control over the order of conditions and samples in any displays. For ex-
ample, we can tabulate the cumulative frequency data just for two languages, and for
words less than 10 characters long, as shown next. We interpret the last cell on the top
row to mean that 1,638 words of the English text have nine or fewer letters.

>>> cfd.tabulate(conditions=['English', 'German_Deutsch'],
...              samples=range(10), cumulative=True)
                  0    1    2    3    4    5    6    7    8    9
       English    0  185  525  883  997 1166 1283 1440 1558 1638
German_Deutsch    0  171  263  614  717  894 1013 1110 1213 1275
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Your Turn: Working with the news and romance genres from the
Brown Corpus, find out which days of the week are most newsworthy,
and which are most romantic. Define a variable called days containing
a list of days of the week, i.e., ['Monday', ...]. Now tabulate the counts
for these words using cfd.tabulate(samples=days). Now try the same
thing using plot in place of tabulate. You may control the output order
of days with the help of an extra parameter: condi
tions=['Monday', ...].

You may have noticed that the multiline expressions we have been using with condi-
tional frequency distributions look like list comprehensions, but without the brackets.
In general, when we use a list comprehension as a parameter to a function, like
set([w.lower for w in t]), we are permitted to omit the square brackets and just write
set(w.lower() for w in t). (See the discussion of “generator expressions” in Sec-
tion 4.2 for more about this.)

Generating Random Text with Bigrams
We can use a conditional frequency distribution to create a table of bigrams (word
pairs, introduced in Section 1.3). The bigrams() function takes a list of words and builds
a list of consecutive word pairs:

>>> sent = ['In', 'the', 'beginning', 'God', 'created', 'the', 'heaven',
...   'and', 'the', 'earth', '.']
>>> nltk.bigrams(sent)
[('In', 'the'), ('the', 'beginning'), ('beginning', 'God'), ('God', 'created'),
('created', 'the'), ('the', 'heaven'), ('heaven', 'and'), ('and', 'the'),
('the', 'earth'), ('earth', '.')]

In Example 2-1, we treat each word as a condition, and for each one we effectively
create a frequency distribution over the following words. The function gener
ate_model() contains a simple loop to generate text. When we call the function, we
choose a word (such as 'living') as our initial context. Then, once inside the loop, we
print the current value of the variable word, and reset word to be the most likely token
in that context (using max()); next time through the loop, we use that word as our new
context. As you can see by inspecting the output, this simple approach to text gener-
ation tends to get stuck in loops. Another method would be to randomly choose the
next word from among the available words.

Example 2-1. Generating random text: This program obtains all bigrams from the text of the book
of Genesis, then constructs a conditional frequency distribution to record which words are most likely
to follow a given word; e.g., after the word living, the most likely word is creature; the
generate_model() function uses this data, and a seed word, to generate random text.

def generate_model(cfdist, word, num=15):
    for i in range(num):
        print word,
        word = cfdist[word].max()
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text = nltk.corpus.genesis.words('english-kjv.txt')
bigrams = nltk.bigrams(text)
cfd = nltk.ConditionalFreqDist(bigrams) 

>>> print cfd['living']
<FreqDist: 'creature': 7, 'thing': 4, 'substance': 2, ',': 1, '.': 1, 'soul': 1>
>>> generate_model(cfd, 'living')
living creature that he said , and the land of the land of the land

Conditional frequency distributions are a useful data structure for many NLP tasks.
Their commonly used methods are summarized in Table 2-4.

Table 2-4. NLTK’s conditional frequency distributions: Commonly used methods and idioms for
defining, accessing, and visualizing a conditional frequency distribution of counters

Example Description

cfdist = ConditionalFreqDist(pairs) Create a conditional frequency distribution from a list of pairs

cfdist.conditions() Alphabetically sorted list of conditions

cfdist[condition] The frequency distribution for this condition

cfdist[condition][sample] Frequency for the given sample for this condition

cfdist.tabulate() Tabulate the conditional frequency distribution

cfdist.tabulate(samples, conditions) Tabulation limited to the specified samples and conditions

cfdist.plot() Graphical plot of the conditional frequency distribution

cfdist.plot(samples, conditions) Graphical plot limited to the specified samples and conditions

cfdist1 < cfdist2 Test if samples in cfdist1 occur less frequently than in cfdist2

2.3  More Python: Reusing Code
By this time you’ve probably typed and retyped a lot of code in the Python interactive
interpreter. If you mess up when retyping a complex example, you have to enter it again.
Using the arrow keys to access and modify previous commands is helpful but only goes
so far. In this section, we see two important ways to reuse code: text editors and Python
functions.

Creating Programs with a Text Editor
The Python interactive interpreter performs your instructions as soon as you type them.
Often, it is better to compose a multiline program using a text editor, then ask Python
to run the whole program at once. Using IDLE, you can do this by going to the File
menu and opening a new window. Try this now, and enter the following one-line
program:

print 'Monty Python'
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Save this program in a file called monty.py, then go to the Run menu and select the
command Run Module. (We’ll learn what modules are shortly.) The result in the main
IDLE window should look like this:

>>> ================================ RESTART ================================
>>>
Monty Python
>>>

You can also type from monty import * and it will do the same thing.

From now on, you have a choice of using the interactive interpreter or a text editor to
create your programs. It is often convenient to test your ideas using the interpreter,
revising a line of code until it does what you expect. Once you’re ready, you can paste
the code (minus any >>> or ... prompts) into the text editor, continue to expand it,
and finally save the program in a file so that you don’t have to type it in again later.
Give the file a short but descriptive name, using all lowercase letters and separating
words with underscore, and using the .py filename extension, e.g., monty_python.py.

Important: Our inline code examples include the >>> and ... prompts
as if we are interacting directly with the interpreter. As they get more
complicated, you should instead type them into the editor, without the
prompts, and run them from the editor as shown earlier. When we pro-
vide longer programs in this book, we will leave out the prompts to
remind you to type them into a file rather than using the interpreter.
You can see this already in Example 2-1. Note that the example still
includes a couple of lines with the Python prompt; this is the interactive
part of the task where you inspect some data and invoke a function.
Remember that all code samples like Example 2-1 are downloadable
from http://www.nltk.org/.

Functions
Suppose that you work on analyzing text that involves different forms of the same word,
and that part of your program needs to work out the plural form of a given singular
noun. Suppose it needs to do this work in two places, once when it is processing some
texts and again when it is processing user input.

Rather than repeating the same code several times over, it is more efficient and reliable
to localize this work inside a function. A function is just a named block of code that
performs some well-defined task, as we saw in Section 1.1. A function is usually defined
to take some inputs, using special variables known as parameters, and it may produce
a result, also known as a return value. We define a function using the keyword def
followed by the function name and any input parameters, followed by the body of the
function. Here’s the function we saw in Section 1.1 (including the import statement
that makes division behave as expected):
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>>> from __future__ import division
>>> def lexical_diversity(text):
...     return len(text) / len(set(text))

We use the keyword return to indicate the value that is produced as output by the
function. In this example, all the work of the function is done in the return statement.
Here’s an equivalent definition that does the same work using multiple lines of code.
We’ll change the parameter name from text to my_text_data to remind you that this is
an arbitrary choice:

>>> def lexical_diversity(my_text_data):
...     word_count = len(my_text_data)
...     vocab_size = len(set(my_text_data))
...     diversity_score = word_count / vocab_size
...     return diversity_score

Notice that we’ve created some new variables inside the body of the function. These
are local variables and are not accessible outside the function. So now we have defined
a function with the name lexical_diversity. But just defining it won’t produce any
output! Functions do nothing until they are “called” (or “invoked”).

Let’s return to our earlier scenario, and actually define a simple function to work out
English plurals. The function plural() in Example 2-2 takes a singular noun and gen-
erates a plural form, though it is not always correct. (We’ll discuss functions at greater
length in Section 4.4.)

Example 2-2. A Python function: This function tries to work out the plural form of any English noun;
the keyword def (define) is followed by the function name, then a parameter inside parentheses, and
a colon; the body of the function is the indented block of code; it tries to recognize patterns within the
word and process the word accordingly; e.g., if the word ends with y, delete the y and add ies.

def plural(word):
    if word.endswith('y'):
        return word[:-1] + 'ies'
    elif word[-1] in 'sx' or word[-2:] in ['sh', 'ch']:
        return word + 'es'
    elif word.endswith('an'):
        return word[:-2] + 'en'
    else:
        return word + 's'

>>> plural('fairy')
'fairies'
>>> plural('woman')
'women'

The endswith() function is always associated with a string object (e.g., word in Exam-
ple 2-2). To call such functions, we give the name of the object, a period, and then the
name of the function. These functions are usually known as methods.
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Modules
Over time you will find that you create a variety of useful little text-processing functions,
and you end up copying them from old programs to new ones. Which file contains the
latest version of the function you want to use? It makes life a lot easier if you can collect
your work into a single place, and access previously defined functions without making
copies.

To do this, save your function(s) in a file called (say) textproc.py. Now, you can access
your work simply by importing it from the file:

>>> from textproc import plural
>>> plural('wish')
wishes
>>> plural('fan')
fen

Our plural function obviously has an error, since the plural of fan is fans. Instead of
typing in a new version of the function, we can simply edit the existing one. Thus, at
every stage, there is only one version of our plural function, and no confusion about
which one is being used.

A collection of variable and function definitions in a file is called a Python module. A
collection of related modules is called a package. NLTK’s code for processing the
Brown Corpus is an example of a module, and its collection of code for processing all
the different corpora is an example of a package. NLTK itself is a set of packages,
sometimes called a library.

Caution!
If you are creating a file to contain some of your Python code, do not
name your file nltk.py: it may get imported in place of the “real” NLTK
package. When it imports modules, Python first looks in the current
directory (folder).

2.4  Lexical Resources
A lexicon, or lexical resource, is a collection of words and/or phrases along with asso-
ciated information, such as part-of-speech and sense definitions. Lexical resources are
secondary to texts, and are usually created and enriched with the help of texts. For
example, if we have defined a text my_text, then vocab = sorted(set(my_text)) builds
the vocabulary of my_text, whereas word_freq = FreqDist(my_text) counts the fre-
quency of each word in the text. Both vocab and word_freq are simple lexical resources.
Similarly, a concordance like the one we saw in Section 1.1 gives us information about
word usage that might help in the preparation of a dictionary. Standard terminology
for lexicons is illustrated in Figure 2-5. A lexical entry consists of a headword (also
known as a lemma) along with additional information, such as the part-of-speech and
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the sense definition. Two distinct words having the same spelling are called
homonyms.

The simplest kind of lexicon is nothing more than a sorted list of words. Sophisticated
lexicons include complex structure within and across the individual entries. In this
section, we’ll look at some lexical resources included with NLTK.

Wordlist Corpora
NLTK includes some corpora that are nothing more than wordlists. The Words Corpus
is the /usr/dict/words file from Unix, used by some spellcheckers. We can use it to find
unusual or misspelled words in a text corpus, as shown in Example 2-3.

Example 2-3. Filtering a text: This program computes the vocabulary of a text, then removes all items
that occur in an existing wordlist, leaving just the uncommon or misspelled words.

def unusual_words(text):
    text_vocab = set(w.lower() for w in text if w.isalpha())
    english_vocab = set(w.lower() for w in nltk.corpus.words.words())
    unusual = text_vocab.difference(english_vocab)
    return sorted(unusual)

>>> unusual_words(nltk.corpus.gutenberg.words('austen-sense.txt'))
['abbeyland', 'abhorrence', 'abominably', 'abridgement', 'accordant', 'accustomary',
'adieus', 'affability', 'affectedly', 'aggrandizement', 'alighted', 'allenham',
'amiably', 'annamaria', 'annuities', 'apologising', 'arbour', 'archness', ...]
>>> unusual_words(nltk.corpus.nps_chat.words())
['aaaaaaaaaaaaaaaaa', 'aaahhhh', 'abou', 'abourted', 'abs', 'ack', 'acros',
'actualy', 'adduser', 'addy', 'adoted', 'adreniline', 'ae', 'afe', 'affari', 'afk',
'agaibn', 'agurlwithbigguns', 'ahah', 'ahahah', 'ahahh', 'ahahha', 'ahem', 'ahh', ...]

There is also a corpus of stopwords, that is, high-frequency words such as the, to, and
also that we sometimes want to filter out of a document before further processing.
Stopwords usually have little lexical content, and their presence in a text fails to dis-
tinguish it from other texts.

>>> from nltk.corpus import stopwords
>>> stopwords.words('english')
['a', "a's", 'able', 'about', 'above', 'according', 'accordingly', 'across',

Figure 2-5. Lexicon terminology: Lexical entries for two lemmas having the same spelling
(homonyms), providing part-of-speech and gloss information.
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'actually', 'after', 'afterwards', 'again', 'against', "ain't", 'all', 'allow',
'allows', 'almost', 'alone', 'along', 'already', 'also', 'although', 'always', ...]

Let’s define a function to compute what fraction of words in a text are not in the stop-
words list:

>>> def content_fraction(text):
...     stopwords = nltk.corpus.stopwords.words('english')
...     content = [w for w in text if w.lower() not in stopwords]
...     return len(content) / len(text)
...
>>> content_fraction(nltk.corpus.reuters.words())
0.65997695393285261

Thus, with the help of stopwords, we filter out a third of the words of the text. Notice
that we’ve combined two different kinds of corpus here, using a lexical resource to filter
the content of a text corpus.

Figure 2-6. A word puzzle: A grid of randomly chosen letters with rules for creating words out of the
letters; this puzzle is known as “Target.”

A wordlist is useful for solving word puzzles, such as the one in Figure 2-6. Our program
iterates through every word and, for each one, checks whether it meets the conditions.
It is easy to check obligatory letter  and length  constraints (and we’ll only look for
words with six or more letters here). It is trickier to check that candidate solutions only
use combinations of the supplied letters, especially since some of the supplied letters
appear twice (here, the letter v). The FreqDist comparison method  permits us to
check that the frequency of each letter in the candidate word is less than or equal to the
frequency of the corresponding letter in the puzzle.

>>> puzzle_letters = nltk.FreqDist('egivrvonl')
>>> obligatory = 'r'
>>> wordlist = nltk.corpus.words.words()
>>> [w for w in wordlist if len(w) >= 6 
...                      and obligatory in w 
...                      and nltk.FreqDist(w) <= puzzle_letters] 
['glover', 'gorlin', 'govern', 'grovel', 'ignore', 'involver', 'lienor',
'linger', 'longer', 'lovering', 'noiler', 'overling', 'region', 'renvoi',
'revolving', 'ringle', 'roving', 'violer', 'virole']

One more wordlist corpus is the Names Corpus, containing 8,000 first names catego-
rized by gender. The male and female names are stored in separate files. Let’s find names
that appear in both files, i.e., names that are ambiguous for gender:
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>>> names = nltk.corpus.names
>>> names.fileids()
['female.txt', 'male.txt']
>>> male_names = names.words('male.txt')
>>> female_names = names.words('female.txt')
>>> [w for w in male_names if w in female_names]
['Abbey', 'Abbie', 'Abby', 'Addie', 'Adrian', 'Adrien', 'Ajay', 'Alex', 'Alexis',
'Alfie', 'Ali', 'Alix', 'Allie', 'Allyn', 'Andie', 'Andrea', 'Andy', 'Angel',
'Angie', 'Ariel', 'Ashley', 'Aubrey', 'Augustine', 'Austin', 'Averil', ...]

It is well known that names ending in the letter a are almost always female. We can see
this and some other patterns in the graph in Figure 2-7, produced by the following code.
Remember that name[-1] is the last letter of name.

>>> cfd = nltk.ConditionalFreqDist(
...           (fileid, name[-1])
...           for fileid in names.fileids()
...           for name in names.words(fileid))
>>> cfd.plot()

Figure 2-7. Conditional frequency distribution: This plot shows the number of female and male names
ending with each letter of the alphabet; most names ending with a, e, or i are female; names ending
in h and l are equally likely to be male or female; names ending in k, o, r, s, and t are likely to be male.
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A Pronouncing Dictionary
A slightly richer kind of lexical resource is a table (or spreadsheet), containing a word
plus some properties in each row. NLTK includes the CMU Pronouncing Dictionary
for U.S. English, which was designed for use by speech synthesizers.

>>> entries = nltk.corpus.cmudict.entries()
>>> len(entries)
127012
>>> for entry in entries[39943:39951]:
...     print entry
...
('fir', ['F', 'ER1'])
('fire', ['F', 'AY1', 'ER0'])
('fire', ['F', 'AY1', 'R'])
('firearm', ['F', 'AY1', 'ER0', 'AA2', 'R', 'M'])
('firearm', ['F', 'AY1', 'R', 'AA2', 'R', 'M'])
('firearms', ['F', 'AY1', 'ER0', 'AA2', 'R', 'M', 'Z'])
('firearms', ['F', 'AY1', 'R', 'AA2', 'R', 'M', 'Z'])
('fireball', ['F', 'AY1', 'ER0', 'B', 'AO2', 'L'])

For each word, this lexicon provides a list of phonetic codes—distinct labels for each
contrastive sound—known as phones. Observe that fire has two pronunciations (in
U.S. English): the one-syllable F AY1 R, and the two-syllable F AY1 ER0. The symbols
in the CMU Pronouncing Dictionary are from the Arpabet, described in more detail at
http://en.wikipedia.org/wiki/Arpabet.

Each entry consists of two parts, and we can process these individually using a more
complex version of the for statement. Instead of writing for entry in entries:, we
replace entry with two variable names, word, pron . Now, each time through the loop,
word is assigned the first part of the entry, and pron is assigned the second part of the
entry:

>>> for word, pron in entries: 
...     if len(pron) == 3: 
...         ph1, ph2, ph3 = pron 
...         if ph1 == 'P' and ph3 == 'T':
...             print word, ph2,
...
pait EY1 pat AE1 pate EY1 patt AE1 peart ER1 peat IY1 peet IY1 peete IY1 pert ER1
pet EH1 pete IY1 pett EH1 piet IY1 piette IY1 pit IH1 pitt IH1 pot AA1 pote OW1
pott AA1 pout AW1 puett UW1 purt ER1 put UH1 putt AH1

The program just shown scans the lexicon looking for entries whose pronunciation
consists of three phones . If the condition is true, it assigns the contents of pron to
three new variables: ph1, ph2, and ph3. Notice the unusual form of the statement that
does that work .

Here’s another example of the same for statement, this time used inside a list compre-
hension. This program finds all words whose pronunciation ends with a syllable
sounding like nicks. You could use this method to find rhyming words.
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>>> syllable = ['N', 'IH0', 'K', 'S']
>>> [word for word, pron in entries if pron[-4:] == syllable]
["atlantic's", 'audiotronics', 'avionics', 'beatniks', 'calisthenics', 'centronics',
'chetniks', "clinic's", 'clinics', 'conics', 'cynics', 'diasonics', "dominic's",
'ebonics', 'electronics', "electronics'", 'endotronics', "endotronics'", 'enix', ...]

Notice that the one pronunciation is spelled in several ways: nics, niks, nix, and even
ntic’s with a silent t, for the word atlantic’s. Let’s look for some other mismatches
between pronunciation and writing. Can you summarize the purpose of the following
examples and explain how they work?

>>> [w for w, pron in entries if pron[-1] == 'M' and w[-1] == 'n']
['autumn', 'column', 'condemn', 'damn', 'goddamn', 'hymn', 'solemn']
>>> sorted(set(w[:2] for w, pron in entries if pron[0] == 'N' and w[0] != 'n'))
['gn', 'kn', 'mn', 'pn']

The phones contain digits to represent primary stress (1), secondary stress (2), and no
stress (0). As our final example, we define a function to extract the stress digits and then
scan our lexicon to find words having a particular stress pattern.

>>> def stress(pron):
...     return [char for phone in pron for char in phone if char.isdigit()]
>>> [w for w, pron in entries if stress(pron) == ['0', '1', '0', '2', '0']]
['abbreviated', 'abbreviating', 'accelerated', 'accelerating', 'accelerator',
'accentuated', 'accentuating', 'accommodated', 'accommodating', 'accommodative',
'accumulated', 'accumulating', 'accumulative', 'accumulator', 'accumulators', ...]
>>> [w for w, pron in entries if stress(pron) == ['0', '2', '0', '1', '0']]
['abbreviation', 'abbreviations', 'abomination', 'abortifacient', 'abortifacients',
'academicians', 'accommodation', 'accommodations', 'accreditation', 'accreditations',
'accumulation', 'accumulations', 'acetylcholine', 'acetylcholine', 'adjudication', ...]

A subtlety of this program is that our user-defined function stress() is
invoked inside the condition of a list comprehension. There is also a
doubly nested for loop. There’s a lot going on here, and you might want
to return to this once you’ve had more experience using list compre-
hensions.

We can use a conditional frequency distribution to help us find minimally contrasting
sets of words. Here we find all the p words consisting of three sounds , and group
them according to their first and last sounds .

>>> p3 = [(pron[0]+'-'+pron[2], word) 
...       for (word, pron) in entries
...       if pron[0] == 'P' and len(pron) == 3] 
>>> cfd = nltk.ConditionalFreqDist(p3)
>>> for template in cfd.conditions():
...     if len(cfd[template]) > 10:
...         words = cfd[template].keys()
...         wordlist = ' '.join(words)
...         print template, wordlist[:70] + "..."
...
P-CH perch puche poche peach petsche poach pietsch putsch pautsch piche pet...
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P-K pik peek pic pique paque polk perc poke perk pac pock poch purk pak pa...
P-L pil poehl pille pehl pol pall pohl pahl paul perl pale paille perle po...
P-N paine payne pon pain pin pawn pinn pun pine paign pen pyne pane penn p...
P-P pap paap pipp paup pape pup pep poop pop pipe paape popp pip peep pope...
P-R paar poor par poore pear pare pour peer pore parr por pair porr pier...
P-S pearse piece posts pasts peace perce pos pers pace puss pesce pass pur...
P-T pot puett pit pete putt pat purt pet peart pott pett pait pert pote pa...
P-Z pays p.s pao's pais paws p.'s pas pez paz pei's pose poise peas paiz p...

Rather than iterating over the whole dictionary, we can also access it by looking up
particular words. We will use Python’s dictionary data structure, which we will study
systematically in Section 5.3. We look up a dictionary by specifying its name, followed
by a key (such as the word 'fire') inside square brackets .

>>> prondict = nltk.corpus.cmudict.dict()
>>> prondict['fire'] 
[['F', 'AY1', 'ER0'], ['F', 'AY1', 'R']]
>>> prondict['blog'] 
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'blog'
>>> prondict['blog'] = [['B', 'L', 'AA1', 'G']] 
>>> prondict['blog']
[['B', 'L', 'AA1', 'G']]

If we try to look up a non-existent key , we get a KeyError. This is similar to what
happens when we index a list with an integer that is too large, producing an IndexEr
ror. The word blog is missing from the pronouncing dictionary, so we tweak our version
by assigning a value for this key  (this has no effect on the NLTK corpus; next time
we access it, blog will still be absent).

We can use any lexical resource to process a text, e.g., to filter out words having some
lexical property (like nouns), or mapping every word of the text. For example, the
following text-to-speech function looks up each word of the text in the pronunciation
dictionary:

>>> text = ['natural', 'language', 'processing']
>>> [ph for w in text for ph in prondict[w][0]]
['N', 'AE1', 'CH', 'ER0', 'AH0', 'L', 'L', 'AE1', 'NG', 'G', 'W', 'AH0', 'JH',
'P', 'R', 'AA1', 'S', 'EH0', 'S', 'IH0', 'NG']

Comparative Wordlists
Another example of a tabular lexicon is the comparative wordlist. NLTK includes
so-called Swadesh wordlists, lists of about 200 common words in several languages.
The languages are identified using an ISO 639 two-letter code.

>>> from nltk.corpus import swadesh
>>> swadesh.fileids()
['be', 'bg', 'bs', 'ca', 'cs', 'cu', 'de', 'en', 'es', 'fr', 'hr', 'it', 'la', 'mk',
'nl', 'pl', 'pt', 'ro', 'ru', 'sk', 'sl', 'sr', 'sw', 'uk']
>>> swadesh.words('en')
['I', 'you (singular), thou', 'he', 'we', 'you (plural)', 'they', 'this', 'that',

2.4  Lexical Resources | 65



'here', 'there', 'who', 'what', 'where', 'when', 'how', 'not', 'all', 'many', 'some',
'few', 'other', 'one', 'two', 'three', 'four', 'five', 'big', 'long', 'wide', ...]

We can access cognate words from multiple languages using the entries() method,
specifying a list of languages. With one further step we can convert this into a simple
dictionary (we’ll learn about dict() in Section 5.3).

>>> fr2en = swadesh.entries(['fr', 'en'])
>>> fr2en
[('je', 'I'), ('tu, vous', 'you (singular), thou'), ('il', 'he'), ...]
>>> translate = dict(fr2en)
>>> translate['chien']
'dog'
>>> translate['jeter']
'throw'

We can make our simple translator more useful by adding other source languages. Let’s
get the German-English and Spanish-English pairs, convert each to a dictionary using
dict(), then update our original translate dictionary with these additional mappings:

>>> de2en = swadesh.entries(['de', 'en'])    # German-English
>>> es2en = swadesh.entries(['es', 'en'])    # Spanish-English
>>> translate.update(dict(de2en))
>>> translate.update(dict(es2en))
>>> translate['Hund']
'dog'
>>> translate['perro']
'dog'

We can compare words in various Germanic and Romance languages:

>>> languages = ['en', 'de', 'nl', 'es', 'fr', 'pt', 'la']
>>> for i in [139, 140, 141, 142]:
...     print swadesh.entries(languages)[i]
...
('say', 'sagen', 'zeggen', 'decir', 'dire', 'dizer', 'dicere')
('sing', 'singen', 'zingen', 'cantar', 'chanter', 'cantar', 'canere')
('play', 'spielen', 'spelen', 'jugar', 'jouer', 'jogar, brincar', 'ludere')
('float', 'schweben', 'zweven', 'flotar', 'flotter', 'flutuar, boiar', 'fluctuare')

Shoebox and Toolbox Lexicons
Perhaps the single most popular tool used by linguists for managing data is Toolbox,
previously known as Shoebox since it replaces the field linguist’s traditional shoebox
full of file cards. Toolbox is freely downloadable from http://www.sil.org/computing/
toolbox/.

A Toolbox file consists of a collection of entries, where each entry is made up of one
or more fields. Most fields are optional or repeatable, which means that this kind of
lexical resource cannot be treated as a table or spreadsheet.

Here is a dictionary for the Rotokas language. We see just the first entry, for the word
kaa, meaning “to gag”:
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>>> from nltk.corpus import toolbox
>>> toolbox.entries('rotokas.dic')
[('kaa', [('ps', 'V'), ('pt', 'A'), ('ge', 'gag'), ('tkp', 'nek i pas'),
('dcsv', 'true'), ('vx', '1'), ('sc', '???'), ('dt', '29/Oct/2005'),
('ex', 'Apoka ira kaaroi aioa-ia reoreopaoro.'),
('xp', 'Kaikai i pas long nek bilong Apoka bikos em i kaikai na toktok.'),
('xe', 'Apoka is gagging from food while talking.')]), ...]

Entries consist of a series of attribute-value pairs, such as ('ps', 'V') to indicate that
the part-of-speech is 'V' (verb), and ('ge', 'gag') to indicate that the gloss-into-
English is 'gag'. The last three pairs contain an example sentence in Rotokas and its
translations into Tok Pisin and English.

The loose structure of Toolbox files makes it hard for us to do much more with them
at this stage. XML provides a powerful way to process this kind of corpus, and we will
return to this topic in Chapter 11.

The Rotokas language is spoken on the island of Bougainville, Papua
New Guinea. This lexicon was contributed to NLTK by Stuart Robin-
son. Rotokas is notable for having an inventory of just 12 phonemes
(contrastive sounds); see http://en.wikipedia.org/wiki/Rotokas_language

2.5  WordNet
WordNet is a semantically oriented dictionary of English, similar to a traditional the-
saurus but with a richer structure. NLTK includes the English WordNet, with 155,287
words and 117,659 synonym sets. We’ll begin by looking at synonyms and how they
are accessed in WordNet.

Senses and Synonyms
Consider the sentence in (1a). If we replace the word motorcar in (1a) with automo-
bile, to get (1b), the meaning of the sentence stays pretty much the same:

(1) a. Benz is credited with the invention of the motorcar.

b. Benz is credited with the invention of the automobile.

Since everything else in the sentence has remained unchanged, we can conclude that
the words motorcar and automobile have the same meaning, i.e., they are synonyms.
We can explore these words with the help of WordNet:

>>> from nltk.corpus import wordnet as wn
>>> wn.synsets('motorcar')
[Synset('car.n.01')]

Thus, motorcar has just one possible meaning and it is identified as car.n.01, the first
noun sense of car. The entity car.n.01 is called a synset, or “synonym set,” a collection
of synonymous words (or “lemmas”):
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>>> wn.synset('car.n.01').lemma_names
['car', 'auto', 'automobile', 'machine', 'motorcar']

Each word of a synset can have several meanings, e.g., car can also signify a train car-
riage, a gondola, or an elevator car. However, we are only interested in the single
meaning that is common to all words of this synset. Synsets also come with a prose
definition and some example sentences:

>>> wn.synset('car.n.01').definition
'a motor vehicle with four wheels; usually propelled by an internal combustion engine'
>>> wn.synset('car.n.01').examples
['he needs a car to get to work']

Although definitions help humans to understand the intended meaning of a synset, the
words of the synset are often more useful for our programs. To eliminate ambiguity,
we will identify these words as car.n.01.automobile, car.n.01.motorcar, and so on.
This pairing of a synset with a word is called a lemma. We can get all the lemmas for
a given synset , look up a particular lemma , get the synset corresponding to a lemma

, and get the “name” of a lemma :

>>> wn.synset('car.n.01').lemmas 
[Lemma('car.n.01.car'), Lemma('car.n.01.auto'), Lemma('car.n.01.automobile'),
Lemma('car.n.01.machine'), Lemma('car.n.01.motorcar')]
>>> wn.lemma('car.n.01.automobile') 
Lemma('car.n.01.automobile')
>>> wn.lemma('car.n.01.automobile').synset 
Synset('car.n.01')
>>> wn.lemma('car.n.01.automobile').name 
'automobile'

Unlike the words automobile and motorcar, which are unambiguous and have one syn-
set, the word car is ambiguous, having five synsets:

>>> wn.synsets('car')
[Synset('car.n.01'), Synset('car.n.02'), Synset('car.n.03'), Synset('car.n.04'),
Synset('cable_car.n.01')]
>>> for synset in wn.synsets('car'):
...     print synset.lemma_names
...
['car', 'auto', 'automobile', 'machine', 'motorcar']
['car', 'railcar', 'railway_car', 'railroad_car']
['car', 'gondola']
['car', 'elevator_car']
['cable_car', 'car']

For convenience, we can access all the lemmas involving the word car as follows:

>>> wn.lemmas('car')
[Lemma('car.n.01.car'), Lemma('car.n.02.car'), Lemma('car.n.03.car'),
Lemma('car.n.04.car'), Lemma('cable_car.n.01.car')]
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Your Turn: Write down all the senses of the word dish that you can
think of. Now, explore this word with the help of WordNet, using the
same operations shown earlier.

The WordNet Hierarchy
WordNet synsets correspond to abstract concepts, and they don’t always have corre-
sponding words in English. These concepts are linked together in a hierarchy. Some
concepts are very general, such as Entity, State, Event; these are called unique begin-
ners or root synsets. Others, such as gas guzzler and hatchback, are much more specific.
A small portion of a concept hierarchy is illustrated in Figure 2-8.

Figure 2-8. Fragment of WordNet concept hierarchy: Nodes correspond to synsets; edges indicate the
hypernym/hyponym relation, i.e., the relation between superordinate and subordinate concepts.

WordNet makes it easy to navigate between concepts. For example, given a concept
like motorcar, we can look at the concepts that are more specific—the (immediate)
hyponyms.

>>> motorcar = wn.synset('car.n.01')
>>> types_of_motorcar = motorcar.hyponyms()
>>> types_of_motorcar[26]
Synset('ambulance.n.01')
>>> sorted([lemma.name for synset in types_of_motorcar for lemma in synset.lemmas])
['Model_T', 'S.U.V.', 'SUV', 'Stanley_Steamer', 'ambulance', 'beach_waggon',
'beach_wagon', 'bus', 'cab', 'compact', 'compact_car', 'convertible',
'coupe', 'cruiser', 'electric', 'electric_automobile', 'electric_car',
'estate_car', 'gas_guzzler', 'hack', 'hardtop', 'hatchback', 'heap',
'horseless_carriage', 'hot-rod', 'hot_rod', 'jalopy', 'jeep', 'landrover',
'limo', 'limousine', 'loaner', 'minicar', 'minivan', 'pace_car', 'patrol_car',
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'phaeton', 'police_car', 'police_cruiser', 'prowl_car', 'race_car', 'racer',
'racing_car', 'roadster', 'runabout', 'saloon', 'secondhand_car', 'sedan',
'sport_car', 'sport_utility', 'sport_utility_vehicle', 'sports_car', 'squad_car',
'station_waggon', 'station_wagon', 'stock_car', 'subcompact', 'subcompact_car',
'taxi', 'taxicab', 'tourer', 'touring_car', 'two-seater', 'used-car', 'waggon',
'wagon']

We can also navigate up the hierarchy by visiting hypernyms. Some words have multiple
paths, because they can be classified in more than one way. There are two paths between
car.n.01 and entity.n.01 because wheeled_vehicle.n.01 can be classified as both a
vehicle and a container.

>>> motorcar.hypernyms()
[Synset('motor_vehicle.n.01')]
>>> paths = motorcar.hypernym_paths()
>>> len(paths)
2
>>> [synset.name for synset in paths[0]]
['entity.n.01', 'physical_entity.n.01', 'object.n.01', 'whole.n.02', 'artifact.n.01',
'instrumentality.n.03', 'container.n.01', 'wheeled_vehicle.n.01',
'self-propelled_vehicle.n.01', 'motor_vehicle.n.01', 'car.n.01']
>>> [synset.name for synset in paths[1]]
['entity.n.01', 'physical_entity.n.01', 'object.n.01', 'whole.n.02', 'artifact.n.01',
'instrumentality.n.03', 'conveyance.n.03', 'vehicle.n.01', 'wheeled_vehicle.n.01',
'self-propelled_vehicle.n.01', 'motor_vehicle.n.01', 'car.n.01']

We can get the most general hypernyms (or root hypernyms) of a synset as follows:

>>> motorcar.root_hypernyms()
[Synset('entity.n.01')]

Your Turn: Try out NLTK’s convenient graphical WordNet browser:
nltk.app.wordnet(). Explore the WordNet hierarchy by following the
hypernym and hyponym links.

More Lexical Relations
Hypernyms and hyponyms are called lexical relations because they relate one synset
to another. These two relations navigate up and down the “is-a” hierarchy. Another
important way to navigate the WordNet network is from items to their components
(meronyms) or to the things they are contained in (holonyms). For example, the parts
of a tree are its trunk, crown, and so on; these are the part_meronyms(). The substance
a tree is made of includes heartwood and sapwood, i.e., the substance_meronyms(). A
collection of trees forms a forest, i.e., the member_holonyms():

>>> wn.synset('tree.n.01').part_meronyms()
[Synset('burl.n.02'), Synset('crown.n.07'), Synset('stump.n.01'),
Synset('trunk.n.01'), Synset('limb.n.02')]
>>> wn.synset('tree.n.01').substance_meronyms()
[Synset('heartwood.n.01'), Synset('sapwood.n.01')]
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>>> wn.synset('tree.n.01').member_holonyms()
[Synset('forest.n.01')]

To see just how intricate things can get, consider the word mint, which has several
closely related senses. We can see that mint.n.04 is part of mint.n.02 and the substance
from which mint.n.05 is made.

>>> for synset in wn.synsets('mint', wn.NOUN):
...     print synset.name + ':', synset.definition
...
batch.n.02: (often followed by `of') a large number or amount or extent
mint.n.02: any north temperate plant of the genus Mentha with aromatic leaves and
           small mauve flowers
mint.n.03: any member of the mint family of plants
mint.n.04: the leaves of a mint plant used fresh or candied
mint.n.05: a candy that is flavored with a mint oil
mint.n.06: a plant where money is coined by authority of the government
>>> wn.synset('mint.n.04').part_holonyms()
[Synset('mint.n.02')]
>>> wn.synset('mint.n.04').substance_holonyms()
[Synset('mint.n.05')]

There are also relationships between verbs. For example, the act of walking involves
the act of stepping, so walking entails stepping. Some verbs have multiple entailments:

>>> wn.synset('walk.v.01').entailments()
[Synset('step.v.01')]
>>> wn.synset('eat.v.01').entailments()
[Synset('swallow.v.01'), Synset('chew.v.01')]
>>> wn.synset('tease.v.03').entailments()
[Synset('arouse.v.07'), Synset('disappoint.v.01')]

Some lexical relationships hold between lemmas, e.g., antonymy:

>>> wn.lemma('supply.n.02.supply').antonyms()
[Lemma('demand.n.02.demand')]
>>> wn.lemma('rush.v.01.rush').antonyms()
[Lemma('linger.v.04.linger')]
>>> wn.lemma('horizontal.a.01.horizontal').antonyms()
[Lemma('vertical.a.01.vertical'), Lemma('inclined.a.02.inclined')]
>>> wn.lemma('staccato.r.01.staccato').antonyms()
[Lemma('legato.r.01.legato')]

You can see the lexical relations, and the other methods defined on a synset, using
dir(). For example, try dir(wn.synset('harmony.n.02')).

Semantic Similarity
We have seen that synsets are linked by a complex network of lexical relations. Given
a particular synset, we can traverse the WordNet network to find synsets with related
meanings. Knowing which words are semantically related is useful for indexing a col-
lection of texts, so that a search for a general term such as vehicle will match documents
containing specific terms such as limousine.
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Recall that each synset has one or more hypernym paths that link it to a root hypernym
such as entity.n.01. Two synsets linked to the same root may have several hypernyms
in common (see Figure 2-8). If two synsets share a very specific hypernym—one that
is low down in the hypernym hierarchy—they must be closely related.

>>> right = wn.synset('right_whale.n.01')
>>> orca = wn.synset('orca.n.01')
>>> minke = wn.synset('minke_whale.n.01')
>>> tortoise = wn.synset('tortoise.n.01')
>>> novel = wn.synset('novel.n.01')
>>> right.lowest_common_hypernyms(minke)
[Synset('baleen_whale.n.01')]
>>> right.lowest_common_hypernyms(orca)
[Synset('whale.n.02')]
>>> right.lowest_common_hypernyms(tortoise)
[Synset('vertebrate.n.01')]
>>> right.lowest_common_hypernyms(novel)
[Synset('entity.n.01')]

Of course we know that whale is very specific (and baleen whale even more so), whereas
vertebrate is more general and entity is completely general. We can quantify this concept
of generality by looking up the depth of each synset:

>>> wn.synset('baleen_whale.n.01').min_depth()
14
>>> wn.synset('whale.n.02').min_depth()
13
>>> wn.synset('vertebrate.n.01').min_depth()
8
>>> wn.synset('entity.n.01').min_depth()
0

Similarity measures have been defined over the collection of WordNet synsets that
incorporate this insight. For example, path_similarity assigns a score in the range
0–1 based on the shortest path that connects the concepts in the hypernym hierarchy
(-1 is returned in those cases where a path cannot be found). Comparing a synset with
itself will return 1. Consider the following similarity scores, relating right whale to minke
whale, orca, tortoise, and novel. Although the numbers won’t mean much, they decrease
as we move away from the semantic space of sea creatures to inanimate objects.

>>> right.path_similarity(minke)
0.25
>>> right.path_similarity(orca)
0.16666666666666666
>>> right.path_similarity(tortoise)
0.076923076923076927
>>> right.path_similarity(novel)
0.043478260869565216
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Several other similarity measures are available; you can type help(wn)
for more information. NLTK also includes VerbNet, a hierarchical verb
lexicon linked to WordNet. It can be accessed with nltk.corpus.verb
net.

2.6  Summary
• A text corpus is a large, structured collection of texts. NLTK comes with many

corpora, e.g., the Brown Corpus, nltk.corpus.brown.

• Some text corpora are categorized, e.g., by genre or topic; sometimes the categories
of a corpus overlap each other.

• A conditional frequency distribution is a collection of frequency distributions, each
one for a different condition. They can be used for counting word frequencies,
given a context or a genre.

• Python programs more than a few lines long should be entered using a text editor,
saved to a file with a .py extension, and accessed using an import statement.

• Python functions permit you to associate a name with a particular block of code,
and reuse that code as often as necessary.

• Some functions, known as “methods,” are associated with an object, and we give
the object name followed by a period followed by the method name, like this:
x.funct(y), e.g., word.isalpha().

• To find out about some variable v, type help(v) in the Python interactive interpreter
to read the help entry for this kind of object.

• WordNet is a semantically oriented dictionary of English, consisting of synonym
sets—or synsets—and organized into a network.

• Some functions are not available by default, but must be accessed using Python’s
import statement.

2.7  Further Reading
Extra materials for this chapter are posted at http://www.nltk.org/, including links to
freely available resources on the Web. The corpus methods are summarized in the
Corpus HOWTO, at http://www.nltk.org/howto, and documented extensively in the
online API documentation.

Significant sources of published corpora are the Linguistic Data Consortium (LDC) and
the European Language Resources Agency (ELRA). Hundreds of annotated text and
speech corpora are available in dozens of languages. Non-commercial licenses permit
the data to be used in teaching and research. For some corpora, commercial licenses
are also available (but for a higher fee).
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These and many other language resources have been documented using OLAC Meta-
data, and can be searched via the OLAC home page at http://www.language-archives
.org/. Corpora List (see http://gandalf.aksis.uib.no/corpora/sub.html) is a mailing list for
discussions about corpora, and you can find resources by searching the list archives or
posting to the list. The most complete inventory of the world’s languages is Ethno-
logue, http://www.ethnologue.com/. Of 7,000 languages, only a few dozen have sub-
stantial digital resources suitable for use in NLP.

This chapter has touched on the field of Corpus Linguistics. Other useful books in
this area include (Biber, Conrad, & Reppen, 1998), (McEnery, 2006), (Meyer, 2002),
(Sampson & McCarthy, 2005), and (Scott & Tribble, 2006). Further readings in quan-
titative data analysis in linguistics are: (Baayen, 2008), (Gries, 2009), and (Woods,
Fletcher, & Hughes, 1986).

The original description of WordNet is (Fellbaum, 1998). Although WordNet was
originally developed for research in psycholinguistics, it is now widely used in NLP and
Information Retrieval. WordNets are being developed for many other languages, as
documented at http://www.globalwordnet.org/. For a study of WordNet similarity
measures, see (Budanitsky & Hirst, 2006).

Other topics touched on in this chapter were phonetics and lexical semantics, and we
refer readers to Chapters 7 and 20 of (Jurafsky & Martin, 2008).

2.8  Exercises
1. ○ Create a variable phrase containing a list of words. Experiment with the opera-

tions described in this chapter, including addition, multiplication, indexing, slic-
ing, and sorting.

2. ○ Use the corpus module to explore austen-persuasion.txt. How many word
tokens does this book have? How many word types?

3. ○ Use the Brown Corpus reader nltk.corpus.brown.words() or the Web Text Cor-
pus reader nltk.corpus.webtext.words() to access some sample text in two differ-
ent genres.

4. ○ Read in the texts of the State of the Union addresses, using the state_union corpus
reader. Count occurrences of men, women, and people in each document. What has
happened to the usage of these words over time?

5. ○ Investigate the holonym-meronym relations for some nouns. Remember that
there are three kinds of holonym-meronym relation, so you need to use member_mer
onyms(), part_meronyms(), substance_meronyms(), member_holonyms(),
part_holonyms(), and substance_holonyms().

6. ○ In the discussion of comparative wordlists, we created an object called trans
late, which you could look up using words in both German and Italian in order
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to get corresponding words in English. What problem might arise with this ap-
proach? Can you suggest a way to avoid this problem?

7. ○ According to Strunk and White’s Elements of Style, the word however, used at
the start of a sentence, means “in whatever way” or “to whatever extent,” and not
“nevertheless.” They give this example of correct usage: However you advise him,
he will probably do as he thinks best. (http://www.bartleby.com/141/strunk3.html)
Use the concordance tool to study actual usage of this word in the various texts we
have been considering. See also the LanguageLog posting “Fossilized prejudices
about ‘however’” at http://itre.cis.upenn.edu/~myl/languagelog/archives/001913
.html.

8. ◑ Define a conditional frequency distribution over the Names Corpus that allows
you to see which initial letters are more frequent for males versus females (see
Figure 2-7).

9. ◑ Pick a pair of texts and study the differences between them, in terms of vocabu-
lary, vocabulary richness, genre, etc. Can you find pairs of words that have quite
different meanings across the two texts, such as monstrous in Moby Dick and in
Sense and Sensibility?

10. ◑ Read the BBC News article: “UK’s Vicky Pollards ‘left behind’” at http://news
.bbc.co.uk/1/hi/education/6173441.stm. The article gives the following statistic
about teen language: “the top 20 words used, including yeah, no, but and like,
account for around a third of all words.” How many word types account for a third
of all word tokens, for a variety of text sources? What do you conclude about this
statistic? Read more about this on LanguageLog, at http://itre.cis.upenn.edu/~myl/
languagelog/archives/003993.html.

11. ◑ Investigate the table of modal distributions and look for other patterns. Try to
explain them in terms of your own impressionistic understanding of the different
genres. Can you find other closed classes of words that exhibit significant differ-
ences across different genres?

12. ◑ The CMU Pronouncing Dictionary contains multiple pronunciations for certain
words. How many distinct words does it contain? What fraction of words in this
dictionary have more than one possible pronunciation?

13. ◑ What percentage of noun synsets have no hyponyms? You can get all noun syn-
sets using wn.all_synsets('n').

14. ◑ Define a function supergloss(s) that takes a synset s as its argument and returns
a string consisting of the concatenation of the definition of s, and the definitions
of all the hypernyms and hyponyms of s.

15. ◑ Write a program to find all words that occur at least three times in the Brown
Corpus.

16. ◑ Write a program to generate a table of lexical diversity scores (i.e., token/type
ratios), as we saw in Table 1-1. Include the full set of Brown Corpus genres
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(nltk.corpus.brown.categories()). Which genre has the lowest diversity (greatest
number of tokens per type)? Is this what you would have expected?

17. ◑ Write a function that finds the 50 most frequently occurring words of a text that
are not stopwords.

18. ◑ Write a program to print the 50 most frequent bigrams (pairs of adjacent words)
of a text, omitting bigrams that contain stopwords.

19. ◑ Write a program to create a table of word frequencies by genre, like the one given
in Section 2.1 for modals. Choose your own words and try to find words whose
presence (or absence) is typical of a genre. Discuss your findings.

20. ◑ Write a function word_freq() that takes a word and the name of a section of the
Brown Corpus as arguments, and computes the frequency of the word in that sec-
tion of the corpus.

21. ◑ Write a program to guess the number of syllables contained in a text, making
use of the CMU Pronouncing Dictionary.

22. ◑ Define a function hedge(text) that processes a text and produces a new version
with the word 'like' between every third word.

23. ● Zipf’s Law: Let f(w) be the frequency of a word w in free text. Suppose that all
the words of a text are ranked according to their frequency, with the most frequent
word first. Zipf’s Law states that the frequency of a word type is inversely
proportional to its rank (i.e., f × r = k, for some constant k). For example, the 50th
most common word type should occur three times as frequently as the 150th most
common word type.

a. Write a function to process a large text and plot word frequency against word
rank using pylab.plot. Do you confirm Zipf’s law? (Hint: it helps to use a
logarithmic scale.) What is going on at the extreme ends of the plotted line?

b. Generate random text, e.g., using random.choice("abcdefg "), taking care to
include the space character. You will need to import random first. Use the string
concatenation operator to accumulate characters into a (very) long string.
Then tokenize this string, generate the Zipf plot as before, and compare the
two plots. What do you make of Zipf’s Law in the light of this?

24. ● Modify the text generation program in Example 2-1 further, to do the following
tasks:
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a. Store the n most likely words in a list words, then randomly choose a word
from the list using random.choice(). (You will need to import random first.)

b. Select a particular genre, such as a section of the Brown Corpus or a Genesis
translation, one of the Gutenberg texts, or one of the Web texts. Train the
model on this corpus and get it to generate random text. You may have to
experiment with different start words. How intelligible is the text? Discuss the
strengths and weaknesses of this method of generating random text.

c. Now train your system using two distinct genres and experiment with gener-
ating text in the hybrid genre. Discuss your observations.

25. ● Define a function find_language() that takes a string as its argument and returns
a list of languages that have that string as a word. Use the udhr corpus and limit
your searches to files in the Latin-1 encoding.

26. ● What is the branching factor of the noun hypernym hierarchy? I.e., for every
noun synset that has hyponyms—or children in the hypernym hierarchy—how
many do they have on average? You can get all noun synsets using wn.all_syn
sets('n').

27. ● The polysemy of a word is the number of senses it has. Using WordNet, we can
determine that the noun dog has seven senses with len(wn.synsets('dog', 'n')).
Compute the average polysemy of nouns, verbs, adjectives, and adverbs according
to WordNet.

28. ● Use one of the predefined similarity measures to score the similarity of each of
the following pairs of words. Rank the pairs in order of decreasing similarity. How
close is your ranking to the order given here, an order that was established exper-
imentally by (Miller & Charles, 1998): car-automobile, gem-jewel, journey-voyage,
boy-lad, coast-shore, asylum-madhouse, magician-wizard, midday-noon, furnace-
stove, food-fruit, bird-cock, bird-crane, tool-implement, brother-monk, lad-
brother, crane-implement, journey-car, monk-oracle, cemetery-woodland, food-
rooster, coast-hill, forest-graveyard, shore-woodland, monk-slave, coast-forest,
lad-wizard, chord-smile, glass-magician, rooster-voyage, noon-string.
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CHAPTER 3

Processing Raw Text

The most important source of texts is undoubtedly the Web. It’s convenient to have
existing text collections to explore, such as the corpora we saw in the previous chapters.
However, you probably have your own text sources in mind, and need to learn how to
access them.

The goal of this chapter is to answer the following questions:

1. How can we write programs to access text from local files and from the Web, in
order to get hold of an unlimited range of language material?

2. How can we split documents up into individual words and punctuation symbols,
so we can carry out the same kinds of analysis we did with text corpora in earlier
chapters?

3. How can we write programs to produce formatted output and save it in a file?

In order to address these questions, we will be covering key concepts in NLP, including
tokenization and stemming. Along the way you will consolidate your Python knowl-
edge and learn about strings, files, and regular expressions. Since so much text on the
Web is in HTML format, we will also see how to dispense with markup.

Important: From this chapter onwards, our program samples will as-
sume you begin your interactive session or your program with the fol-
lowing import statements:

>>> from __future__ import division
>>> import nltk, re, pprint
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3.1  Accessing Text from the Web and from Disk
Electronic Books
A small sample of texts from Project Gutenberg appears in the NLTK corpus collection.
However, you may be interested in analyzing other texts from Project Gutenberg. You
can browse the catalog of 25,000 free online books at http://www.gutenberg.org/cata
log/, and obtain a URL to an ASCII text file. Although 90% of the texts in Project
Gutenberg are in English, it includes material in over 50 other languages, including
Catalan, Chinese, Dutch, Finnish, French, German, Italian, Portuguese, and Spanish
(with more than 100 texts each).

Text number 2554 is an English translation of Crime and Punishment, and we can access
it as follows.

>>> from urllib import urlopen
>>> url = "http://www.gutenberg.org/files/2554/2554.txt"
>>> raw = urlopen(url).read()
>>> type(raw)
<type 'str'>
>>> len(raw)
1176831
>>> raw[:75]
'The Project Gutenberg EBook of Crime and Punishment, by Fyodor Dostoevsky\r\n'

The read() process will take a few seconds as it downloads this large
book. If you’re using an Internet proxy that is not correctly detected by
Python, you may need to specify the proxy manually as follows:

>>> proxies = {'http': 'http://www.someproxy.com:3128'}
>>> raw = urlopen(url, proxies=proxies).read()

The variable raw contains a string with 1,176,831 characters. (We can see that it is a
string, using type(raw).) This is the raw content of the book, including many details
we are not interested in, such as whitespace, line breaks, and blank lines. Notice the
\r and \n in the opening line of the file, which is how Python displays the special carriage
return and line-feed characters (the file must have been created on a Windows ma-
chine). For our language processing, we want to break up the string into words and
punctuation, as we saw in Chapter 1. This step is called tokenization, and it produces
our familiar structure, a list of words and punctuation.

>>> tokens = nltk.word_tokenize(raw)
>>> type(tokens)
<type 'list'>
>>> len(tokens)
255809
>>> tokens[:10]
['The', 'Project', 'Gutenberg', 'EBook', 'of', 'Crime', 'and', 'Punishment', ',', 'by']
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Notice that NLTK was needed for tokenization, but not for any of the earlier tasks of
opening a URL and reading it into a string. If we now take the further step of creating
an NLTK text from this list, we can carry out all of the other linguistic processing we
saw in Chapter 1, along with the regular list operations, such as slicing:

>>> text = nltk.Text(tokens)
>>> type(text)
<type 'nltk.text.Text'>
>>> text[1020:1060]
['CHAPTER', 'I', 'On', 'an', 'exceptionally', 'hot', 'evening', 'early', 'in',
'July', 'a', 'young', 'man', 'came', 'out', 'of', 'the', 'garret', 'in',
'which', 'he', 'lodged', 'in', 'S', '.', 'Place', 'and', 'walked', 'slowly',
',', 'as', 'though', 'in', 'hesitation', ',', 'towards', 'K', '.', 'bridge', '.']
>>> text.collocations()
Katerina Ivanovna; Pulcheria Alexandrovna; Avdotya Romanovna; Pyotr
Petrovitch; Project Gutenberg; Marfa Petrovna; Rodion Romanovitch;
Sofya Semyonovna; Nikodim Fomitch; did not; Hay Market; Andrey
Semyonovitch; old woman; Literary Archive; Dmitri Prokofitch; great
deal; United States; Praskovya Pavlovna; Porfiry Petrovitch; ear rings

Notice that Project Gutenberg appears as a collocation. This is because each text down-
loaded from Project Gutenberg contains a header with the name of the text, the author,
the names of people who scanned and corrected the text, a license, and so on. Some-
times this information appears in a footer at the end of the file. We cannot reliably
detect where the content begins and ends, and so have to resort to manual inspection
of the file, to discover unique strings that mark the beginning and the end, before
trimming raw to be just the content and nothing else:

>>> raw.find("PART I")
5303
>>> raw.rfind("End of Project Gutenberg's Crime")
1157681
>>> raw = raw[5303:1157681] 
>>> raw.find("PART I")
0

The find() and rfind() (“reverse find”) methods help us get the right index values to
use for slicing the string . We overwrite raw with this slice, so now it begins with
“PART I” and goes up to (but not including) the phrase that marks the end of the
content.

This was our first brush with the reality of the Web: texts found on the Web may contain
unwanted material, and there may not be an automatic way to remove it. But with a
small amount of extra work we can extract the material we need.

Dealing with HTML
Much of the text on the Web is in the form of HTML documents. You can use a web
browser to save a page as text to a local file, then access this as described in the later
section on files. However, if you’re going to do this often, it’s easiest to get Python to
do the work directly. The first step is the same as before, using urlopen. For fun we’ll
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pick a BBC News story called “Blondes to die out in 200 years,” an urban legend passed
along by the BBC as established scientific fact:

>>> url = "http://news.bbc.co.uk/2/hi/health/2284783.stm"
>>> html = urlopen(url).read()
>>> html[:60]
'<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN'

You can type print html to see the HTML content in all its glory, including meta tags,
an image map, JavaScript, forms, and tables.

Getting text out of HTML is a sufficiently common task that NLTK provides a helper
function nltk.clean_html(), which takes an HTML string and returns raw text. We
can then tokenize this to get our familiar text structure:

>>> raw = nltk.clean_html(html)
>>> tokens = nltk.word_tokenize(raw)
>>> tokens
['BBC', 'NEWS', '|', 'Health', '|', 'Blondes', "'", 'to', 'die', 'out', ...]

This still contains unwanted material concerning site navigation and related stories.
With some trial and error you can find the start and end indexes of the content and
select the tokens of interest, and initialize a text as before.

>>> tokens = tokens[96:399]
>>> text = nltk.Text(tokens)
>>> text.concordance('gene')
 they say too few people now carry the gene for blondes to last beyond the next tw
t blonde hair is caused by a recessive gene . In order for a child to have blonde
to have blonde hair , it must have the gene on both sides of the family in the gra
there is a disadvantage of having that gene or by chance . They don ' t disappear
ondes would disappear is if having the gene was a disadvantage and I do not think

For more sophisticated processing of HTML, use the Beautiful Soup
package, available at http://www.crummy.com/software/BeautifulSoup/.

Processing Search Engine Results
The Web can be thought of as a huge corpus of unannotated text. Web search engines
provide an efficient means of searching this large quantity of text for relevant linguistic
examples. The main advantage of search engines is size: since you are searching such
a large set of documents, you are more likely to find any linguistic pattern you are
interested in. Furthermore, you can make use of very specific patterns, which would
match only one or two examples on a smaller example, but which might match tens of
thousands of examples when run on the Web. A second advantage of web search en-
gines is that they are very easy to use. Thus, they provide a very convenient tool for
quickly checking a theory, to see if it is reasonable. See Table 3-1 for an example.
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Table 3-1. Google hits for collocations: The number of hits for collocations involving the words
absolutely or definitely, followed by one of adore, love, like, or prefer. (Liberman, in LanguageLog,
2005)

Google hits adore love like prefer

absolutely 289,000 905,000 16,200 644

definitely 1,460 51,000 158,000 62,600

ratio 198:1 18:1 1:10 1:97

Unfortunately, search engines have some significant shortcomings. First, the allowable
range of search patterns is severely restricted. Unlike local corpora, where you write
programs to search for arbitrarily complex patterns, search engines generally only allow
you to search for individual words or strings of words, sometimes with wildcards. Sec-
ond, search engines give inconsistent results, and can give widely different figures when
used at different times or in different geographical regions. When content has been
duplicated across multiple sites, search results may be boosted. Finally, the markup in
the result returned by a search engine may change unpredictably, breaking any pattern-
based method of locating particular content (a problem which is ameliorated by the
use of search engine APIs).

Your Turn: Search the Web for "the of" (inside quotes). Based on the
large count, can we conclude that the of is a frequent collocation in
English?

Processing RSS Feeds
The blogosphere is an important source of text, in both formal and informal registers.
With the help of a third-party Python library called the Universal Feed Parser, freely
downloadable from http://feedparser.org/, we can access the content of a blog, as shown
here:

>>> import feedparser
>>> llog = feedparser.parse("http://languagelog.ldc.upenn.edu/nll/?feed=atom")
>>> llog['feed']['title']
u'Language Log'
>>> len(llog.entries)
15
>>> post = llog.entries[2]
>>> post.title
u"He's My BF"
>>> content = post.content[0].value
>>> content[:70]
u'<p>Today I was chatting with three of our visiting graduate students f'
>>> nltk.word_tokenize(nltk.html_clean(content))
>>> nltk.word_tokenize(nltk.clean_html(llog.entries[2].content[0].value))
[u'Today', u'I', u'was', u'chatting', u'with', u'three', u'of', u'our', u'visiting',
u'graduate', u'students', u'from', u'the', u'PRC', u'.', u'Thinking', u'that', u'I',
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u'was', u'being', u'au', u'courant', u',', u'I', u'mentioned', u'the', u'expression',
u'DUI4XIANG4', u'\u5c0d\u8c61', u'("', u'boy', u'/', u'girl', u'friend', u'"', ...]

Note that the resulting strings have a u prefix to indicate that they are Unicode strings
(see Section 3.3). With some further work, we can write programs to create a small
corpus of blog posts, and use this as the basis for our NLP work.

Reading Local Files
In order to read a local file, we need to use Python’s built-in open() function, followed
by the read() method. Supposing you have a file document.txt, you can load its contents
like this:

>>> f = open('document.txt')
>>> raw = f.read()

Your Turn: Create a file called document.txt using a text editor, and
type in a few lines of text, and save it as plain text. If you are using IDLE,
select the New Window command in the File menu, typing the required
text into this window, and then saving the file as document.txt inside
the directory that IDLE offers in the pop-up dialogue box. Next, in the
Python interpreter, open the file using f = open('document.txt'), then
inspect its contents using print f.read().

Various things might have gone wrong when you tried this. If the interpreter couldn’t
find your file, you would have seen an error like this:

>>> f = open('document.txt')
Traceback (most recent call last):
File "<pyshell#7>", line 1, in -toplevel-
f = open('document.txt')
IOError: [Errno 2] No such file or directory: 'document.txt'

To check that the file that you are trying to open is really in the right directory, use
IDLE’s Open command in the File menu; this will display a list of all the files in the
directory where IDLE is running. An alternative is to examine the current directory
from within Python:

>>> import os
>>> os.listdir('.')

Another possible problem you might have encountered when accessing a text file is the
newline conventions, which are different for different operating systems. The built-in
open() function has a second parameter for controlling how the file is opened: open('do
cument.txt', 'rU'). 'r' means to open the file for reading (the default), and 'U' stands
for “Universal”, which lets us ignore the different conventions used for marking new-
lines.

Assuming that you can open the file, there are several methods for reading it. The
read() method creates a string with the contents of the entire file:
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>>> f.read()
'Time flies like an arrow.\nFruit flies like a banana.\n'

Recall that the '\n' characters are newlines; this is equivalent to pressing Enter on a
keyboard and starting a new line.

We can also read a file one line at a time using a for loop:

>>> f = open('document.txt', 'rU')
>>> for line in f:
...     print line.strip()
Time flies like an arrow.
Fruit flies like a banana.

Here we use the strip() method to remove the newline character at the end of the input
line.

NLTK’s corpus files can also be accessed using these methods. We simply have to use
nltk.data.find() to get the filename for any corpus item. Then we can open and read
it in the way we just demonstrated:

>>> path = nltk.data.find('corpora/gutenberg/melville-moby_dick.txt')
>>> raw = open(path, 'rU').read()

Extracting Text from PDF, MSWord, and Other Binary Formats
ASCII text and HTML text are human-readable formats. Text often comes in binary
formats—such as PDF and MSWord—that can only be opened using specialized soft-
ware. Third-party libraries such as pypdf and pywin32 provide access to these formats.
Extracting text from multicolumn documents is particularly challenging. For one-off
conversion of a few documents, it is simpler to open the document with a suitable
application, then save it as text to your local drive, and access it as described below. If
the document is already on the Web, you can enter its URL in Google’s search box.
The search result often includes a link to an HTML version of the document, which
you can save as text.

Capturing User Input
Sometimes we want to capture the text that a user inputs when she is interacting with
our program. To prompt the user to type a line of input, call the Python function
raw_input(). After saving the input to a variable, we can manipulate it just as we have
done for other strings.

>>> s = raw_input("Enter some text: ")
Enter some text: On an exceptionally hot evening early in July
>>> print "You typed", len(nltk.word_tokenize(s)), "words."
You typed 8 words.
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The NLP Pipeline
Figure 3-1 summarizes what we have covered in this section, including the process of
building a vocabulary that we saw in Chapter 1. (One step, normalization, will be
discussed in Section 3.6.)

Figure 3-1. The processing pipeline: We open a URL and read its HTML content, remove the markup
and select a slice of characters; this is then tokenized and optionally converted into an nltk.Text
object; we can also lowercase all the words and extract the vocabulary.

There’s a lot going on in this pipeline. To understand it properly, it helps to be clear
about the type of each variable that it mentions. We find out the type of any Python
object x using type(x); e.g., type(1) is <int> since 1 is an integer.

When we load the contents of a URL or file, and when we strip out HTML markup,
we are dealing with strings, Python’s <str> data type (we will learn more about strings
in Section 3.2):

>>> raw = open('document.txt').read()
>>> type(raw)
<type 'str'>

When we tokenize a string we produce a list (of words), and this is Python’s <list>
type. Normalizing and sorting lists produces other lists:

>>> tokens = nltk.word_tokenize(raw)
>>> type(tokens)
<type 'list'>
>>> words = [w.lower() for w in tokens]
>>> type(words)
<type 'list'>
>>> vocab = sorted(set(words))
>>> type(vocab)
<type 'list'>

The type of an object determines what operations you can perform on it. So, for ex-
ample, we can append to a list but not to a string:
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>>> vocab.append('blog')
>>> raw.append('blog')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'str' object has no attribute 'append'

Similarly, we can concatenate strings with strings, and lists with lists, but we cannot
concatenate strings with lists:

>>> query = 'Who knows?'
>>> beatles = ['john', 'paul', 'george', 'ringo']
>>> query + beatles
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'list' objects

In the next section, we examine strings more closely and further explore the relationship
between strings and lists.

3.2  Strings: Text Processing at the Lowest Level
It’s time to study a fundamental data type that we’ve been studiously avoiding so far.
In earlier chapters we focused on a text as a list of words. We didn’t look too closely
at words and how they are handled in the programming language. By using NLTK’s
corpus interface we were able to ignore the files that these texts had come from. The
contents of a word, and of a file, are represented by programming languages as a fun-
damental data type known as a string. In this section, we explore strings in detail, and
show the connection between strings, words, texts, and files.

Basic Operations with Strings
Strings are specified using single quotes  or double quotes , as shown in the fol-
lowing code example. If a string contains a single quote, we must backslash-escape the
quote  so Python knows a literal quote character is intended, or else put the string in
double quotes . Otherwise, the quote inside the string  will be interpreted as a close
quote, and the Python interpreter will report a syntax error:

>>> monty = 'Monty Python' 
>>> monty
'Monty Python'
>>> circus = "Monty Python's Flying Circus" 
>>> circus
"Monty Python's Flying Circus"
>>> circus = 'Monty Python\'s Flying Circus' 
>>> circus
"Monty Python's Flying Circus"
>>> circus = 'Monty Python's Flying Circus' 
  File "<stdin>", line 1
    circus = 'Monty Python's Flying Circus'
                           ^
SyntaxError: invalid syntax
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Sometimes strings go over several lines. Python provides us with various ways of en-
tering them. In the next example, a sequence of two strings is joined into a single string.
We need to use backslash  or parentheses  so that the interpreter knows that the
statement is not complete after the first line.

>>> couplet = "Shall I compare thee to a Summer's day?"\
...           "Thou are more lovely and more temperate:" 
>>> print couplet
Shall I compare thee to a Summer's day?Thou are more lovely and more temperate:
>>> couplet = ("Rough winds do shake the darling buds of May,"
...           "And Summer's lease hath all too short a date:") 
>>> print couplet
Rough winds do shake the darling buds of May,And Summer's lease hath all too short a date:

Unfortunately these methods do not give us a newline between the two lines of the
sonnet. Instead, we can use a triple-quoted string as follows:

>>> couplet = """Shall I compare thee to a Summer's day?
... Thou are more lovely and more temperate:"""
>>> print couplet
Shall I compare thee to a Summer's day?
Thou are more lovely and more temperate:
>>> couplet = '''Rough winds do shake the darling buds of May,
... And Summer's lease hath all too short a date:'''
>>> print couplet
Rough winds do shake the darling buds of May,
And Summer's lease hath all too short a date:

Now that we can define strings, we can try some simple operations on them. First let’s
look at the + operation, known as concatenation . It produces a new string that is a
copy of the two original strings pasted together end-to-end. Notice that concatenation
doesn’t do anything clever like insert a space between the words. We can even multiply
strings :

>>> 'very' + 'very' + 'very' 
'veryveryvery'
>>> 'very' * 3 
'veryveryvery'

Your Turn: Try running the following code, then try to use your un-
derstanding of the string + and * operations to figure out how it works.
Be careful to distinguish between the string ' ', which is a single white-
space character, and '', which is the empty string.

>>> a = [1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1]
>>> b = [' ' * 2 * (7 - i) + 'very' * i for i in a]
>>> for line in b:
...     print b

We’ve seen that the addition and multiplication operations apply to strings, not just
numbers. However, note that we cannot use subtraction or division with strings:
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>>> 'very' - 'y'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'
>>> 'very' / 2
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for /: 'str' and 'int'

These error messages are another example of Python telling us that we have got our
data types in a muddle. In the first case, we are told that the operation of subtraction
(i.e., -) cannot apply to objects of type str (strings), while in the second, we are told
that division cannot take str and int as its two operands.

Printing Strings
So far, when we have wanted to look at the contents of a variable or see the result of a
calculation, we have just typed the variable name into the interpreter. We can also see
the contents of a variable using the print statement:

>>> print monty
Monty Python

Notice that there are no quotation marks this time. When we inspect a variable by
typing its name in the interpreter, the interpreter prints the Python representation of
its value. Since it’s a string, the result is quoted. However, when we tell the interpreter
to print the contents of the variable, we don’t see quotation characters, since there are
none inside the string.

The print statement allows us to display more than one item on a line in various ways,
as shown here:

>>> grail = 'Holy Grail'
>>> print monty + grail
Monty PythonHoly Grail
>>> print monty, grail
Monty Python Holy Grail
>>> print monty, "and the", grail
Monty Python and the Holy Grail

Accessing Individual Characters
As we saw in Section 1.2 for lists, strings are indexed, starting from zero. When we
index a string, we get one of its characters (or letters). A single character is nothing
special—it’s just a string of length 1.

>>> monty[0]
'M'
>>> monty[3]
't'
>>> monty[5]
' '

3.2  Strings: Text Processing at the Lowest Level | 89



As with lists, if we try to access an index that is outside of the string, we get an error:

>>> monty[20]
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
IndexError: string index out of range

Again as with lists, we can use negative indexes for strings, where -1 is the index of the
last character . Positive and negative indexes give us two ways to refer to any position
in a string. In this case, when the string had a length of 12, indexes 5 and -7 both refer
to the same character (a space). (Notice that 5 = len(monty) - 7.)

>>> monty[-1] 
'n'
>>> monty[5]
' '
>>> monty[-7]
' '

We can write for loops to iterate over the characters in strings. This print statement
ends with a trailing comma, which is how we tell Python not to print a newline at the
end.

>>> sent = 'colorless green ideas sleep furiously'
>>> for char in sent:
...     print char,
...
c o l o r l e s s   g r e e n   i d e a s   s l e e p   f u r i o u s l y

We can count individual characters as well. We should ignore the case distinction by
normalizing everything to lowercase, and filter out non-alphabetic characters:

>>> from nltk.corpus import gutenberg
>>> raw = gutenberg.raw('melville-moby_dick.txt')
>>> fdist = nltk.FreqDist(ch.lower() for ch in raw if ch.isalpha())
>>> fdist.keys()
['e', 't', 'a', 'o', 'n', 'i', 's', 'h', 'r', 'l', 'd', 'u', 'm', 'c', 'w',
'f', 'g', 'p', 'b', 'y', 'v', 'k', 'q', 'j', 'x', 'z']

This gives us the letters of the alphabet, with the most frequently occurring letters listed
first (this is quite complicated and we’ll explain it more carefully later). You might like
to visualize the distribution using fdist.plot(). The relative character frequencies of
a text can be used in automatically identifying the language of the text.

Accessing Substrings
A substring is any continuous section of a string that we want to pull out for further
processing. We can easily access substrings using the same slice notation we used for
lists (see Figure 3-2). For example, the following code accesses the substring starting
at index 6, up to (but not including) index 10:

>>> monty[6:10]
'Pyth'
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Here we see the characters are 'P', 'y', 't', and 'h', which correspond to monty[6] ...
monty[9] but not monty[10]. This is because a slice starts at the first index but finishes
one before the end index.

We can also slice with negative indexes—the same basic rule of starting from the start
index and stopping one before the end index applies; here we stop before the space
character.

>>> monty[-12:-7]
'Monty'

As with list slices, if we omit the first value, the substring begins at the start of the string.
If we omit the second value, the substring continues to the end of the string:

>>> monty[:5]
'Monty'
>>> monty[6:]
'Python'

We test if a string contains a particular substring using the in operator, as follows:

>>> phrase = 'And now for something completely different'
>>> if 'thing' in phrase:
...     print 'found "thing"'
found "thing"

We can also find the position of a substring within a string, using find():

>>> monty.find('Python')
6

Your Turn: Make up a sentence and assign it to a variable, e.g., sent =
'my sentence...'. Now write slice expressions to pull out individual
words. (This is obviously not a convenient way to process the words of
a text!)

Figure 3-2. String slicing: The string Monty Python is shown along with its positive and negative
indexes; two substrings are selected using “slice” notation. The slice [m,n] contains the characters
from position m through n-1.
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More Operations on Strings
Python has comprehensive support for processing strings. A summary, including some
operations we haven’t seen yet, is shown in Table 3-2. For more information on strings,
type help(str) at the Python prompt.

Table 3-2. Useful string methods: Operations on strings in addition to the string tests shown in
Table 1-4; all methods produce a new string or list

Method Functionality

s.find(t) Index of first instance of string t inside s (-1 if not found)

s.rfind(t) Index of last instance of string t inside s (-1 if not found)

s.index(t) Like s.find(t), except it raises ValueError if not found

s.rindex(t) Like s.rfind(t), except it raises ValueError if not found

s.join(text) Combine the words of the text into a string using s as the glue

s.split(t) Split s into a list wherever a t is found (whitespace by default)

s.splitlines() Split s into a list of strings, one per line

s.lower() A lowercased version of the string s

s.upper() An uppercased version of the string s

s.titlecase() A titlecased version of the string s

s.strip() A copy of s without leading or trailing whitespace

s.replace(t, u) Replace instances of t with u inside s

The Difference Between Lists and Strings
Strings and lists are both kinds of sequence. We can pull them apart by indexing and
slicing them, and we can join them together by concatenating them. However, we can-
not join strings and lists:

>>> query = 'Who knows?'
>>> beatles = ['John', 'Paul', 'George', 'Ringo']
>>> query[2]
'o'
>>> beatles[2]
'George'
>>> query[:2]
'Wh'
>>> beatles[:2]
['John', 'Paul']
>>> query + " I don't"
"Who knows? I don't"
>>> beatles + 'Brian'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "str") to list
>>> beatles + ['Brian']
['John', 'Paul', 'George', 'Ringo', 'Brian']
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When we open a file for reading into a Python program, we get a string corresponding
to the contents of the whole file. If we use a for loop to process the elements of this
string, all we can pick out are the individual characters—we don’t get to choose the
granularity. By contrast, the elements of a list can be as big or small as we like: for
example, they could be paragraphs, sentences, phrases, words, characters. So lists have
the advantage that we can be flexible about the elements they contain, and corre-
spondingly flexible about any downstream processing. Consequently, one of the first
things we are likely to do in a piece of NLP code is tokenize a string into a list of strings
(Section 3.7). Conversely, when we want to write our results to a file, or to a terminal,
we will usually format them as a string (Section 3.9).

Lists and strings do not have exactly the same functionality. Lists have the added power
that you can change their elements:

>>> beatles[0] = "John Lennon"
>>> del beatles[-1]
>>> beatles
['John Lennon', 'Paul', 'George']

On the other hand, if we try to do that with a string—changing the 0th character in
query to 'F'—we get:

>>> query[0] = 'F'
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
TypeError: object does not support item assignment

This is because strings are immutable: you can’t change a string once you have created
it. However, lists are mutable, and their contents can be modified at any time. As a
result, lists support operations that modify the original value rather than producing a
new value.

Your Turn: Consolidate your knowledge of strings by trying some of
the exercises on strings at the end of this chapter.

3.3  Text Processing with Unicode
Our programs will often need to deal with different languages, and different character
sets. The concept of “plain text” is a fiction. If you live in the English-speaking world
you probably use ASCII, possibly without realizing it. If you live in Europe you might
use one of the extended Latin character sets, containing such characters as “ø” for
Danish and Norwegian, “ő” for Hungarian, “ñ” for Spanish and Breton, and “ň” for
Czech and Slovak. In this section, we will give an overview of how to use Unicode for
processing texts that use non-ASCII character sets.
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What Is Unicode?
Unicode supports over a million characters. Each character is assigned a number, called
a code point. In Python, code points are written in the form \uXXXX, where XXXX
is the number in four-digit hexadecimal form.

Within a program, we can manipulate Unicode strings just like normal strings. How-
ever, when Unicode characters are stored in files or displayed on a terminal, they must
be encoded as a stream of bytes. Some encodings (such as ASCII and Latin-2) use a
single byte per code point, so they can support only a small subset of Unicode, enough
for a single language. Other encodings (such as UTF-8) use multiple bytes and can
represent the full range of Unicode characters.

Text in files will be in a particular encoding, so we need some mechanism for translating
it into Unicode—translation into Unicode is called decoding. Conversely, to write out
Unicode to a file or a terminal, we first need to translate it into a suitable encoding—
this translation out of Unicode is called encoding, and is illustrated in Figure 3-3.

Figure 3-3. Unicode decoding and encoding.

From a Unicode perspective, characters are abstract entities that can be realized as one
or more glyphs. Only glyphs can appear on a screen or be printed on paper. A font is
a mapping from characters to glyphs.

Extracting Encoded Text from Files
Let’s assume that we have a small text file, and that we know how it is encoded. For
example, polish-lat2.txt, as the name suggests, is a snippet of Polish text (from the Polish
Wikipedia; see http://pl.wikipedia.org/wiki/Biblioteka_Pruska). This file is encoded as
Latin-2, also known as ISO-8859-2. The function nltk.data.find() locates the file for
us.
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>>> path = nltk.data.find('corpora/unicode_samples/polish-lat2.txt')

The Python codecs module provides functions to read encoded data into Unicode
strings, and to write out Unicode strings in encoded form. The codecs.open() function
takes an encoding parameter to specify the encoding of the file being read or written.
So let’s import the codecs module, and call it with the encoding 'latin2' to open our
Polish file as Unicode:

>>> import codecs
>>> f = codecs.open(path, encoding='latin2')

For a list of encoding parameters allowed by codecs, see http://docs.python.org/lib/
standard-encodings.html. Note that we can write Unicode-encoded data to a file using
f = codecs.open(path, 'w', encoding='utf-8').

Text read from the file object f will be returned in Unicode. As we pointed out earlier,
in order to view this text on a terminal, we need to encode it, using a suitable encoding.
The Python-specific encoding unicode_escape is a dummy encoding that converts all
non-ASCII characters into their \uXXXX representations. Code points above the ASCII
0–127 range but below 256 are represented in the two-digit form \xXX.

>>> for line in f:
...     line = line.strip()
...     print line.encode('unicode_escape')
Pruska Biblioteka Pa\u0144stwowa. Jej dawne zbiory znane pod nazw\u0105
"Berlinka" to skarb kultury i sztuki niemieckiej. Przewiezione przez
Niemc\xf3w pod koniec II wojny \u015bwiatowej na Dolny \u015al\u0105sk, zosta\u0142y
odnalezione po 1945 r. na terytorium Polski. Trafi\u0142y do Biblioteki
Jagiello\u0144skiej w Krakowie, obejmuj\u0105 ponad 500 tys. zabytkowych
archiwali\xf3w, m.in. manuskrypty Goethego, Mozarta, Beethovena, Bacha.

The first line in this output illustrates a Unicode escape string preceded by the \u escape
string, namely \u0144. The relevant Unicode character will be displayed on the screen
as the glyph ń. In the third line of the preceding example, we see \xf3, which corre-
sponds to the glyph ó, and is within the 128–255 range.

In Python, a Unicode string literal can be specified by preceding an ordinary string
literal with a u, as in u'hello'. Arbitrary Unicode characters are defined using the
\uXXXX escape sequence inside a Unicode string literal. We find the integer ordinal
of a character using ord(). For example:

>>> ord('a')
97

The hexadecimal four-digit notation for 97 is 0061, so we can define a Unicode string
literal with the appropriate escape sequence:

>>> a = u'\u0061'
>>> a
u'a'
>>> print a
a
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Notice that the Python print statement is assuming a default encoding of the Unicode
character, namely ASCII. However, ń is outside the ASCII range, so cannot be printed
unless we specify an encoding. In the following example, we have specified that
print should use the repr() of the string, which outputs the UTF-8 escape sequences
(of the form \xXX) rather than trying to render the glyphs.

>>> nacute = u'\u0144'
>>> nacute
u'\u0144'
>>> nacute_utf = nacute.encode('utf8')
>>> print repr(nacute_utf)
'\xc5\x84'

If your operating system and locale are set up to render UTF-8 encoded characters, you
ought to be able to give the Python command print nacute_utf and see ń on your
screen.

There are many factors determining what glyphs are rendered on your
screen. If you are sure that you have the correct encoding, but your
Python code is still failing to produce the glyphs you expected, you
should also check that you have the necessary fonts installed on your
system.

The module unicodedata lets us inspect the properties of Unicode characters. In the
following example, we select all characters in the third line of our Polish text outside
the ASCII range and print their UTF-8 escaped value, followed by their code point
integer using the standard Unicode convention (i.e., prefixing the hex digits with U+),
followed by their Unicode name.

>>> import unicodedata
>>> lines = codecs.open(path, encoding='latin2').readlines()
>>> line = lines[2]
>>> print line.encode('unicode_escape')
Niemc\xf3w pod koniec II wojny \u015bwiatowej na Dolny \u015al\u0105sk, zosta\u0142y\n
>>> for c in line:
...     if ord(c) > 127:
...         print '%r U+%04x %s' % (c.encode('utf8'), ord(c), unicodedata.name(c))
'\xc3\xb3' U+00f3 LATIN SMALL LETTER O WITH ACUTE
'\xc5\x9b' U+015b LATIN SMALL LETTER S WITH ACUTE
'\xc5\x9a' U+015a LATIN CAPITAL LETTER S WITH ACUTE
'\xc4\x85' U+0105 LATIN SMALL LETTER A WITH OGONEK
'\xc5\x82' U+0142 LATIN SMALL LETTER L WITH STROKE

If you replace the %r (which yields the repr() value) by %s in the format string of the
preceding code sample, and if your system supports UTF-8, you should see an output
like the following:

ó U+00f3 LATIN SMALL LETTER O WITH ACUTE
ś U+015b LATIN SMALL LETTER S WITH ACUTE
Ś U+015a LATIN CAPITAL LETTER S WITH ACUTE
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ą U+0105 LATIN SMALL LETTER A WITH OGONEK
ł U+0142 LATIN SMALL LETTER L WITH STROKE

Alternatively, you may need to replace the encoding 'utf8' in the example by
'latin2', again depending on the details of your system.

The next examples illustrate how Python string methods and the re module accept
Unicode strings.

>>> line.find(u'zosta\u0142y')
54
>>> line = line.lower()
>>> print line.encode('unicode_escape')
niemc\xf3w pod koniec ii wojny \u015bwiatowej na dolny \u015bl\u0105sk, zosta\u0142y\n
>>> import re
>>> m = re.search(u'\u015b\w*', line)
>>> m.group()
u'\u015bwiatowej'

NLTK tokenizers allow Unicode strings as input, and correspondingly yield Unicode
strings as output.

>>> nltk.word_tokenize(line)  
[u'niemc\xf3w', u'pod', u'koniec', u'ii', u'wojny', u'\u015bwiatowej',
u'na', u'dolny', u'\u015bl\u0105sk', u'zosta\u0142y']

Using Your Local Encoding in Python
If you are used to working with characters in a particular local encoding, you probably
want to be able to use your standard methods for inputting and editing strings in a
Python file. In order to do this, you need to include the string '# -*- coding: <coding>
-*-' as the first or second line of your file. Note that <coding> has to be a string like
'latin-1', 'big5', or 'utf-8' (see Figure 3-4).

Figure 3-4 also illustrates how regular expressions can use encoded strings.

3.4  Regular Expressions for Detecting Word Patterns
Many linguistic processing tasks involve pattern matching. For example, we can find
words ending with ed using endswith('ed'). We saw a variety of such “word tests” in
Table 1-4. Regular expressions give us a more powerful and flexible method for de-
scribing the character patterns we are interested in.

There are many other published introductions to regular expressions,
organized around the syntax of regular expressions and applied to
searching text files. Instead of doing this again, we focus on the use of
regular expressions at different stages of linguistic processing. As usual,
we’ll adopt a problem-based approach and present new features only as
they are needed to solve practical problems. In our discussion we will
mark regular expressions using chevrons like this: «patt».
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To use regular expressions in Python, we need to import the re library using: import
re. We also need a list of words to search; we’ll use the Words Corpus again (Sec-
tion 2.4). We will preprocess it to remove any proper names.

>>> import re
>>> wordlist = [w for w in nltk.corpus.words.words('en') if w.islower()]

Using Basic Metacharacters
Let’s find words ending with ed using the regular expression «ed$». We will use the
re.search(p, s) function to check whether the pattern p can be found somewhere
inside the string s. We need to specify the characters of interest, and use the dollar sign,
which has a special behavior in the context of regular expressions in that it matches the
end of the word:

>>> [w for w in wordlist if re.search('ed$', w)]
['abaissed', 'abandoned', 'abased', 'abashed', 'abatised', 'abed', 'aborted', ...]

The . wildcard symbol matches any single character. Suppose we have room in a
crossword puzzle for an eight-letter word, with j as its third letter and t as its sixth letter.
In place of each blank cell we use a period:

>>> [w for w in wordlist if re.search('^..j..t..$', w)]
['abjectly', 'adjuster', 'dejected', 'dejectly', 'injector', 'majestic', ...]

Figure 3-4. Unicode and IDLE: UTF-8 encoded string literals in the IDLE editor; this requires that
an appropriate font is set in IDLE’s preferences; here we have chosen Courier CE.
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Your Turn: The caret symbol ^ matches the start of a string, just like
the $ matches the end. What results do we get with the example just
shown if we leave out both of these, and search for «..j..t..»?

Finally, the ? symbol specifies that the previous character is optional. Thus «^e-?mail
$» will match both email and e-mail. We could count the total number of occurrences
of this word (in either spelling) in a text using sum(1 for w in text if re.search('^e-?
mail$', w)).

Ranges and Closures
The T9 system is used for entering text on mobile phones (see Figure 3-5). Two or more
words that are entered with the same sequence of keystrokes are known as
textonyms. For example, both hole and golf are entered by pressing the sequence 4653.
What other words could be produced with the same sequence? Here we use the regular
expression «^[ghi][mno][jlk][def]$»:

>>> [w for w in wordlist if re.search('^[ghi][mno][jlk][def]$', w)]
['gold', 'golf', 'hold', 'hole']

The first part of the expression, «^[ghi]», matches the start of a word followed by g,
h, or i. The next part of the expression, «[mno]», constrains the second character to be m,
n, or o. The third and fourth characters are also constrained. Only four words satisfy
all these constraints. Note that the order of characters inside the square brackets is not
significant, so we could have written «^[hig][nom][ljk][fed]$» and matched the same
words.

Figure 3-5. T9: Text on 9 keys.

Your Turn: Look for some “finger-twisters,” by searching for words
that use only part of the number-pad. For example «^[ghijklmno]+$»,
or more concisely, «^[g-o]+$», will match words that only use keys 4,
5, 6 in the center row, and «^[a-fj-o]+$» will match words that use keys
2, 3, 5, 6 in the top-right corner. What do - and + mean?
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Let’s explore the + symbol a bit further. Notice that it can be applied to individual
letters, or to bracketed sets of letters:

>>> chat_words = sorted(set(w for w in nltk.corpus.nps_chat.words()))
>>> [w for w in chat_words if re.search('^m+i+n+e+$', w)]
['miiiiiiiiiiiiinnnnnnnnnnneeeeeeeeee', 'miiiiiinnnnnnnnnneeeeeeee', 'mine',
'mmmmmmmmiiiiiiiiinnnnnnnnneeeeeeee']
>>> [w for w in chat_words if re.search('^[ha]+$', w)]
['a', 'aaaaaaaaaaaaaaaaa', 'aaahhhh', 'ah', 'ahah', 'ahahah', 'ahh',
'ahhahahaha', 'ahhh', 'ahhhh', 'ahhhhhh', 'ahhhhhhhhhhhhhh', 'h', 'ha', 'haaa',
'hah', 'haha', 'hahaaa', 'hahah', 'hahaha', 'hahahaa', 'hahahah', 'hahahaha', ...]

It should be clear that + simply means “one or more instances of the preceding item,”
which could be an individual character like m, a set like [fed], or a range like [d-f].
Now let’s replace + with *, which means “zero or more instances of the preceding item.”
The regular expression «^m*i*n*e*$» will match everything that we found using «^m+i
+n+e+$», but also words where some of the letters don’t appear at all, e.g., me, min, and
mmmmm. Note that the + and * symbols are sometimes referred to as Kleene clo-
sures, or simply closures.

The ̂  operator has another function when it appears as the first character inside square
brackets. For example, «[^aeiouAEIOU]» matches any character other than a vowel. We
can search the NPS Chat Corpus for words that are made up entirely of non-vowel
characters using «^[^aeiouAEIOU]+$» to find items like these: :):):), grrr, cyb3r, and
zzzzzzzz. Notice this includes non-alphabetic characters.

Here are some more examples of regular expressions being used to find tokens that
match a particular pattern, illustrating the use of some new symbols: \, {}, (), and |.

>>> wsj = sorted(set(nltk.corpus.treebank.words()))
>>> [w for w in wsj if re.search('^[0-9]+\.[0-9]+$', w)]
['0.0085', '0.05', '0.1', '0.16', '0.2', '0.25', '0.28', '0.3', '0.4', '0.5',
'0.50', '0.54', '0.56', '0.60', '0.7', '0.82', '0.84', '0.9', '0.95', '0.99',
'1.01', '1.1', '1.125', '1.14', '1.1650', '1.17', '1.18', '1.19', '1.2', ...]
>>> [w for w in wsj if re.search('^[A-Z]+\$$', w)]
['C$', 'US$']
>>> [w for w in wsj if re.search('^[0-9]{4}$', w)]
['1614', '1637', '1787', '1901', '1903', '1917', '1925', '1929', '1933', ...]
>>> [w for w in wsj if re.search('^[0-9]+-[a-z]{3,5}$', w)]
['10-day', '10-lap', '10-year', '100-share', '12-point', '12-year', ...]
>>> [w for w in wsj if re.search('^[a-z]{5,}-[a-z]{2,3}-[a-z]{,6}$', w)]
['black-and-white', 'bread-and-butter', 'father-in-law', 'machine-gun-toting',
'savings-and-loan']
>>> [w for w in wsj if re.search('(ed|ing)$', w)]
['62%-owned', 'Absorbed', 'According', 'Adopting', 'Advanced', 'Advancing', ...]

Your Turn: Study the previous examples and try to work out what the \,
{}, (), and | notations mean before you read on.
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You probably worked out that a backslash means that the following character is de-
prived of its special powers and must literally match a specific character in the word.
Thus, while . is special, \. only matches a period. The braced expressions, like {3,5},
specify the number of repeats of the previous item. The pipe character indicates a choice
between the material on its left or its right. Parentheses indicate the scope of an oper-
ator, and they can be used together with the pipe (or disjunction) symbol like this:
«w(i|e|ai|oo)t», matching wit, wet, wait, and woot. It is instructive to see what happens
when you omit the parentheses from the last expression in the example, and search for
«ed|ing$».

The metacharacters we have seen are summarized in Table 3-3.

Table 3-3. Basic regular expression metacharacters, including wildcards, ranges, and closures

Operator Behavior

. Wildcard, matches any character

^abc Matches some pattern abc at the start of a string

abc$ Matches some pattern abc at the end of a string

[abc] Matches one of a set of characters

[A-Z0-9] Matches one of a range of characters

ed|ing|s Matches one of the specified strings (disjunction)

* Zero or more of previous item, e.g., a*, [a-z]* (also known as Kleene Closure)

+ One or more of previous item, e.g., a+, [a-z]+

? Zero or one of the previous item (i.e., optional), e.g., a?, [a-z]?

{n} Exactly n repeats where n is a non-negative integer

{n,} At least n repeats

{,n} No more than n repeats

{m,n} At least m and no more than n repeats

a(b|c)+ Parentheses that indicate the scope of the operators

To the Python interpreter, a regular expression is just like any other string. If the string
contains a backslash followed by particular characters, it will interpret these specially.
For example, \b would be interpreted as the backspace character. In general, when
using regular expressions containing backslash, we should instruct the interpreter not
to look inside the string at all, but simply to pass it directly to the re library for pro-
cessing. We do this by prefixing the string with the letter r, to indicate that it is a raw
string. For example, the raw string r'\band\b' contains two \b symbols that are
interpreted by the re library as matching word boundaries instead of backspace char-
acters. If you get into the habit of using r'...' for regular expressions—as we will do
from now on—you will avoid having to think about these complications.
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3.5  Useful Applications of Regular Expressions
The previous examples all involved searching for words w that match some regular
expression regexp using re.search(regexp, w). Apart from checking whether a regular
expression matches a word, we can use regular expressions to extract material from
words, or to modify words in specific ways.

Extracting Word Pieces
The re.findall() (“find all”) method finds all (non-overlapping) matches of the given
regular expression. Let’s find all the vowels in a word, then count them:

>>> word = 'supercalifragilisticexpialidocious'
>>> re.findall(r'[aeiou]', word)
['u', 'e', 'a', 'i', 'a', 'i', 'i', 'i', 'e', 'i', 'a', 'i', 'o', 'i', 'o', 'u']
>>> len(re.findall(r'[aeiou]', word))
16

Let’s look for all sequences of two or more vowels in some text, and determine their
relative frequency:

>>> wsj = sorted(set(nltk.corpus.treebank.words()))
>>> fd = nltk.FreqDist(vs for word in wsj
...                       for vs in re.findall(r'[aeiou]{2,}', word))
>>> fd.items()
[('io', 549), ('ea', 476), ('ie', 331), ('ou', 329), ('ai', 261), ('ia', 253),
('ee', 217), ('oo', 174), ('ua', 109), ('au', 106), ('ue', 105), ('ui', 95),
('ei', 86), ('oi', 65), ('oa', 59), ('eo', 39), ('iou', 27), ('eu', 18), ...]

Your Turn: In the W3C Date Time Format, dates are represented like
this: 2009-12-31. Replace the ? in the following Python code with a
regular expression, in order to convert the string '2009-12-31' to a list
of integers [2009, 12, 31]:

[int(n) for n in re.findall(?, '2009-12-31')]

Doing More with Word Pieces
Once we can use re.findall() to extract material from words, there are interesting
things to do with the pieces, such as glue them back together or plot them.

It is sometimes noted that English text is highly redundant, and it is still easy to read
when word-internal vowels are left out. For example, declaration becomes dclrtn, and
inalienable becomes inlnble, retaining any initial or final vowel sequences. The regular
expression in our next example matches initial vowel sequences, final vowel sequences,
and all consonants; everything else is ignored. This three-way disjunction is processed
left-to-right, and if one of the three parts matches the word, any later parts of the regular
expression are ignored. We use re.findall() to extract all the matching pieces, and
''.join() to join them together (see Section 3.9 for more about the join operation).
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>>> regexp = r'^[AEIOUaeiou]+|[AEIOUaeiou]+$|[^AEIOUaeiou]'
>>> def compress(word):
...     pieces = re.findall(regexp, word)
...     return ''.join(pieces)
...
>>> english_udhr = nltk.corpus.udhr.words('English-Latin1')
>>> print nltk.tokenwrap(compress(w) for w in english_udhr[:75])
Unvrsl Dclrtn of Hmn Rghts Prmble Whrs rcgntn of the inhrnt dgnty and
of the eql and inlnble rghts of all mmbrs of the hmn fmly is the fndtn
of frdm , jstce and pce in the wrld , Whrs dsrgrd and cntmpt fr hmn
rghts hve rsltd in brbrs acts whch hve outrgd the cnscnce of mnknd ,
and the advnt of a wrld in whch hmn bngs shll enjy frdm of spch and

Next, let’s combine regular expressions with conditional frequency distributions. Here
we will extract all consonant-vowel sequences from the words of Rotokas, such as ka
and si. Since each of these is a pair, it can be used to initialize a conditional frequency
distribution. We then tabulate the frequency of each pair:

>>> rotokas_words = nltk.corpus.toolbox.words('rotokas.dic')
>>> cvs = [cv for w in rotokas_words for cv in re.findall(r'[ptksvr][aeiou]', w)]
>>> cfd = nltk.ConditionalFreqDist(cvs)
>>> cfd.tabulate()
     a    e    i    o    u
k  418  148   94  420  173
p   83   31  105   34   51
r  187   63   84   89   79
s    0    0  100    2    1
t   47    8    0  148   37
v   93   27  105   48   49

Examining the rows for s and t, we see they are in partial “complementary distribution,”
which is evidence that they are not distinct phonemes in the language. Thus, we could
conceivably drop s from the Rotokas alphabet and simply have a pronunciation rule
that the letter t is pronounced s when followed by i. (Note that the single entry having
su, namely kasuari, ‘cassowary’ is borrowed from English).

If we want to be able to inspect the words behind the numbers in that table, it would
be helpful to have an index, allowing us to quickly find the list of words that contains
a given consonant-vowel pair. For example, cv_index['su'] should give us all words
containing su. Here’s how we can do this:

>>> cv_word_pairs = [(cv, w) for w in rotokas_words
...                          for cv in re.findall(r'[ptksvr][aeiou]', w)]
>>> cv_index = nltk.Index(cv_word_pairs)
>>> cv_index['su']
['kasuari']
>>> cv_index['po']
['kaapo', 'kaapopato', 'kaipori', 'kaiporipie', 'kaiporivira', 'kapo', 'kapoa',
'kapokao', 'kapokapo', 'kapokapo', 'kapokapoa', 'kapokapoa', 'kapokapora', ...]

This program processes each word w in turn, and for each one, finds every substring
that matches the regular expression «[ptksvr][aeiou]». In the case of the word ka-
suari, it finds ka, su, and ri. Therefore, the cv_word_pairs list will contain ('ka', 'ka
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suari'), ('su', 'kasuari'), and ('ri', 'kasuari'). One further step, using
nltk.Index(), converts this into a useful index.

Finding Word Stems
When we use a web search engine, we usually don’t mind (or even notice) if the words
in the document differ from our search terms in having different endings. A query for
laptops finds documents containing laptop and vice versa. Indeed, laptop and laptops
are just two forms of the same dictionary word (or lemma). For some language pro-
cessing tasks we want to ignore word endings, and just deal with word stems.

There are various ways we can pull out the stem of a word. Here’s a simple-minded
approach that just strips off anything that looks like a suffix:

>>> def stem(word):
...     for suffix in ['ing', 'ly', 'ed', 'ious', 'ies', 'ive', 'es', 's', 'ment']:
...         if word.endswith(suffix):
...             return word[:-len(suffix)]
...     return word

Although we will ultimately use NLTK’s built-in stemmers, it’s interesting to see how
we can use regular expressions for this task. Our first step is to build up a disjunction
of all the suffixes. We need to enclose it in parentheses in order to limit the scope of
the disjunction.

>>> re.findall(r'^.*(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processing')
['ing']

Here, re.findall() just gave us the suffix even though the regular expression matched
the entire word. This is because the parentheses have a second function, to select sub-
strings to be extracted. If we want to use the parentheses to specify the scope of the
disjunction, but not to select the material to be output, we have to add ?:, which is just
one of many arcane subtleties of regular expressions. Here’s the revised version.

>>> re.findall(r'^.*(?:ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processing')
['processing']

However, we’d actually like to split the word into stem and suffix. So we should just
parenthesize both parts of the regular expression:

>>> re.findall(r'^(.*)(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processing')
[('process', 'ing')]

This looks promising, but still has a problem. Let’s look at a different word, processes:

>>> re.findall(r'^(.*)(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processes')
[('processe', 's')]

The regular expression incorrectly found an -s suffix instead of an -es suffix. This dem-
onstrates another subtlety: the star operator is “greedy” and so the .* part of the ex-
pression tries to consume as much of the input as possible. If we use the “non-greedy”
version of the star operator, written *?, we get what we want:
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>>> re.findall(r'^(.*?)(ing|ly|ed|ious|ies|ive|es|s|ment)$', 'processes')
[('process', 'es')]

This works even when we allow an empty suffix, by making the content of the second
parentheses optional:

>>> re.findall(r'^(.*?)(ing|ly|ed|ious|ies|ive|es|s|ment)?$', 'language')
[('language', '')]

This approach still has many problems (can you spot them?), but we will move on to
define a function to perform stemming, and apply it to a whole text:

>>> def stem(word):
...     regexp = r'^(.*?)(ing|ly|ed|ious|ies|ive|es|s|ment)?$'
...     stem, suffix = re.findall(regexp, word)[0]
...     return stem
...
>>> raw = """DENNIS: Listen, strange women lying in ponds distributing swords
... is no basis for a system of government.  Supreme executive power derives from
... a mandate from the masses, not from some farcical aquatic ceremony."""
>>> tokens = nltk.word_tokenize(raw)
>>> [stem(t) for t in tokens]
['DENNIS', ':', 'Listen', ',', 'strange', 'women', 'ly', 'in', 'pond',
'distribut', 'sword', 'i', 'no', 'basi', 'for', 'a', 'system', 'of', 'govern',
'.', 'Supreme', 'execut', 'power', 'deriv', 'from', 'a', 'mandate', 'from',
'the', 'mass', ',', 'not', 'from', 'some', 'farcical', 'aquatic', 'ceremony', '.']

Notice that our regular expression removed the s from ponds but also from is and
basis. It produced some non-words, such as distribut and deriv, but these are acceptable
stems in some applications.

Searching Tokenized Text
You can use a special kind of regular expression for searching across multiple words in
a text (where a text is a list of tokens). For example, "<a> <man>" finds all instances of
a man in the text. The angle brackets are used to mark token boundaries, and any
whitespace between the angle brackets is ignored (behaviors that are unique to NLTK’s
findall() method for texts). In the following example, we include <.*> , which will
match any single token, and enclose it in parentheses so only the matched word (e.g.,
monied) and not the matched phrase (e.g., a monied man) is produced. The second
example finds three-word phrases ending with the word bro . The last example finds
sequences of three or more words starting with the letter l .

>>> from nltk.corpus import gutenberg, nps_chat
>>> moby = nltk.Text(gutenberg.words('melville-moby_dick.txt'))
>>> moby.findall(r"<a> (<.*>) <man>") 
monied; nervous; dangerous; white; white; white; pious; queer; good;
mature; white; Cape; great; wise; wise; butterless; white; fiendish;
pale; furious; better; certain; complete; dismasted; younger; brave;
brave; brave; brave
>>> chat = nltk.Text(nps_chat.words())
>>> chat.findall(r"<.*> <.*> <bro>") 
you rule bro; telling you bro; u twizted bro
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>>> chat.findall(r"<l.*>{3,}") 
lol lol lol; lmao lol lol; lol lol lol; la la la la la; la la la; la
la la; lovely lol lol love; lol lol lol.; la la la; la la la

Your Turn: Consolidate your understanding of regular expression pat-
terns and substitutions using nltk.re_show(p, s), which annotates the
string s to show every place where pattern p was matched, and
nltk.app.nemo(), which provides a graphical interface for exploring reg-
ular expressions. For more practice, try some of the exercises on regular
expressions at the end of this chapter.

It is easy to build search patterns when the linguistic phenomenon we’re studying is
tied to particular words. In some cases, a little creativity will go a long way. For instance,
searching a large text corpus for expressions of the form x and other ys allows us to
discover hypernyms (see Section 2.5):

>>> from nltk.corpus import brown
>>> hobbies_learned = nltk.Text(brown.words(categories=['hobbies', 'learned']))
>>> hobbies_learned.findall(r"<\w*> <and> <other> <\w*s>")
speed and other activities; water and other liquids; tomb and other
landmarks; Statues and other monuments; pearls and other jewels;
charts and other items; roads and other features; figures and other
objects; military and other areas; demands and other factors;
abstracts and other compilations; iron and other metals

With enough text, this approach would give us a useful store of information about the
taxonomy of objects, without the need for any manual labor. However, our search
results will usually contain false positives, i.e., cases that we would want to exclude.
For example, the result demands and other factors suggests that demand is an instance
of the type factor, but this sentence is actually about wage demands. Nevertheless, we
could construct our own ontology of English concepts by manually correcting the out-
put of such searches.

This combination of automatic and manual processing is the most com-
mon way for new corpora to be constructed. We will return to this in
Chapter 11.

Searching corpora also suffers from the problem of false negatives, i.e., omitting cases
that we would want to include. It is risky to conclude that some linguistic phenomenon
doesn’t exist in a corpus just because we couldn’t find any instances of a search pattern.
Perhaps we just didn’t think carefully enough about suitable patterns.

Your Turn: Look for instances of the pattern as x as y to discover in-
formation about entities and their properties.
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3.6  Normalizing Text
In earlier program examples we have often converted text to lowercase before doing
anything with its words, e.g., set(w.lower() for w in text). By using lower(), we have
normalized the text to lowercase so that the distinction between The and the is ignored.
Often we want to go further than this and strip off any affixes, a task known as stem-
ming. A further step is to make sure that the resulting form is a known word in a
dictionary, a task known as lemmatization. We discuss each of these in turn. First, we
need to define the data we will use in this section:

>>> raw = """DENNIS: Listen, strange women lying in ponds distributing swords
... is no basis for a system of government.  Supreme executive power derives from
... a mandate from the masses, not from some farcical aquatic ceremony."""
>>> tokens = nltk.word_tokenize(raw)

Stemmers
NLTK includes several off-the-shelf stemmers, and if you ever need a stemmer, you
should use one of these in preference to crafting your own using regular expressions,
since NLTK’s stemmers handle a wide range of irregular cases. The Porter and Lan-
caster stemmers follow their own rules for stripping affixes. Observe that the Porter
stemmer correctly handles the word lying (mapping it to lie), whereas the Lancaster
stemmer does not.

>>> porter = nltk.PorterStemmer()
>>> lancaster = nltk.LancasterStemmer()
>>> [porter.stem(t) for t in tokens]
['DENNI', ':', 'Listen', ',', 'strang', 'women', 'lie', 'in', 'pond',
'distribut', 'sword', 'is', 'no', 'basi', 'for', 'a', 'system', 'of', 'govern',
'.', 'Suprem', 'execut', 'power', 'deriv', 'from', 'a', 'mandat', 'from',
'the', 'mass', ',', 'not', 'from', 'some', 'farcic', 'aquat', 'ceremoni', '.']
>>> [lancaster.stem(t) for t in tokens]
['den', ':', 'list', ',', 'strange', 'wom', 'lying', 'in', 'pond', 'distribut',
'sword', 'is', 'no', 'bas', 'for', 'a', 'system', 'of', 'govern', '.', 'suprem',
'execut', 'pow', 'der', 'from', 'a', 'mand', 'from', 'the', 'mass', ',', 'not',
'from', 'som', 'farc', 'aqu', 'ceremony', '.']

Stemming is not a well-defined process, and we typically pick the stemmer that best
suits the application we have in mind. The Porter Stemmer is a good choice if you are
indexing some texts and want to support search using alternative forms of words (il-
lustrated in Example 3-1, which uses object-oriented programming techniques that are
outside the scope of this book, string formatting techniques to be covered in Sec-
tion 3.9, and the enumerate() function to be explained in Section 4.2).

Example 3-1. Indexing a text using a stemmer.

class IndexedText(object):

    def __init__(self, stemmer, text):
        self._text = text
        self._stemmer = stemmer
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        self._index = nltk.Index((self._stem(word), i)
                                 for (i, word) in enumerate(text))

    def concordance(self, word, width=40):
        key = self._stem(word)
        wc = width/4                # words of context
        for i in self._index[key]:
            lcontext = ' '.join(self._text[i-wc:i])
            rcontext = ' '.join(self._text[i:i+wc])
            ldisplay = '%*s'  % (width, lcontext[-width:])
            rdisplay = '%-*s' % (width, rcontext[:width])
            print ldisplay, rdisplay

    def _stem(self, word):
        return self._stemmer.stem(word).lower()

>>> porter = nltk.PorterStemmer()
>>> grail = nltk.corpus.webtext.words('grail.txt')
>>> text = IndexedText(porter, grail)
>>> text.concordance('lie')
r king ! DENNIS : Listen , strange women lying in ponds distributing swords is no
 beat a very brave retreat . ROBIN : All lies ! MINSTREL : [ singing ] Bravest of
       Nay . Nay . Come . Come . You may lie here . Oh , but you are wounded !
doctors immediately ! No , no , please ! Lie down . [ clap clap ] PIGLET : Well
ere is much danger , for beyond the cave lies the Gorge of Eternal Peril , which
   you . Oh ... TIM : To the north there lies a cave -- the cave of Caerbannog --
h it and lived ! Bones of full fifty men lie strewn about its lair . So , brave k
not stop our fight ' til each one of you lies dead , and the Holy Grail returns t

Lemmatization
The WordNet lemmatizer removes affixes only if the resulting word is in its dictionary.
This additional checking process makes the lemmatizer slower than the stemmers just
mentioned. Notice that it doesn’t handle lying, but it converts women to woman.

>>> wnl = nltk.WordNetLemmatizer()
>>> [wnl.lemmatize(t) for t in tokens]
['DENNIS', ':', 'Listen', ',', 'strange', 'woman', 'lying', 'in', 'pond',
'distributing', 'sword', 'is', 'no', 'basis', 'for', 'a', 'system', 'of',
'government', '.', 'Supreme', 'executive', 'power', 'derives', 'from', 'a',
'mandate', 'from', 'the', 'mass', ',', 'not', 'from', 'some', 'farcical',
'aquatic', 'ceremony', '.']

The WordNet lemmatizer is a good choice if you want to compile the vocabulary of
some texts and want a list of valid lemmas (or lexicon headwords).

Another normalization task involves identifying non-standard
words, including numbers, abbreviations, and dates, and mapping any
such tokens to a special vocabulary. For example, every decimal number
could be mapped to a single token 0.0, and every acronym could be
mapped to AAA. This keeps the vocabulary small and improves the ac-
curacy of many language modeling tasks.
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3.7  Regular Expressions for Tokenizing Text
Tokenization is the task of cutting a string into identifiable linguistic units that consti-
tute a piece of language data. Although it is a fundamental task, we have been able to
delay it until now because many corpora are already tokenized, and because NLTK
includes some tokenizers. Now that you are familiar with regular expressions, you can
learn how to use them to tokenize text, and to have much more control over the process.

Simple Approaches to Tokenization
The very simplest method for tokenizing text is to split on whitespace. Consider the
following text from Alice’s Adventures in Wonderland:

>>> raw = """'When I'M a Duchess,' she said to herself, (not in a very hopeful tone
... though), 'I won't have any pepper in my kitchen AT ALL. Soup does very
... well without--Maybe it's always pepper that makes people hot-tempered,'..."""

We could split this raw text on whitespace using raw.split(). To do the same using a
regular expression, it is not enough to match any space characters in the string , since
this results in tokens that contain a \n newline character; instead, we need to match
any number of spaces, tabs, or newlines :

>>> re.split(r' ', raw) 
["'When", "I'M", 'a', "Duchess,'", 'she', 'said', 'to', 'herself,', '(not', 'in',
'a', 'very', 'hopeful', 'tone\nthough),', "'I", "won't", 'have', 'any', 'pepper',
'in', 'my', 'kitchen', 'AT', 'ALL.', 'Soup', 'does', 'very\nwell', 'without--Maybe',
"it's", 'always', 'pepper', 'that', 'makes', 'people', "hot-tempered,'..."]
>>> re.split(r'[ \t\n]+', raw) 
["'When", "I'M", 'a', "Duchess,'", 'she', 'said', 'to', 'herself,', '(not', 'in',
'a', 'very', 'hopeful', 'tone', 'though),', "'I", "won't", 'have', 'any', 'pepper',
'in', 'my', 'kitchen', 'AT', 'ALL.', 'Soup', 'does', 'very', 'well', 'without--Maybe',
"it's", 'always', 'pepper', 'that', 'makes', 'people', "hot-tempered,'..."]

The regular expression «[ \t\n]+» matches one or more spaces, tabs (\t), or newlines
(\n). Other whitespace characters, such as carriage return and form feed, should really
be included too. Instead, we will use a built-in re abbreviation, \s, which means any
whitespace character. The second statement in the preceding example can be rewritten
as re.split(r'\s+', raw).

Important: Remember to prefix regular expressions with the letter r
(meaning “raw”), which instructs the Python interpreter to treat the
string literally, rather than processing any backslashed characters it
contains.

Splitting on whitespace gives us tokens like '(not' and 'herself,'. An alternative is to
use the fact that Python provides us with a character class \w for word characters,
equivalent to [a-zA-Z0-9_]. It also defines the complement of this class, \W, i.e., all
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characters other than letters, digits, or underscore. We can use \W in a simple regular
expression to split the input on anything other than a word character:

>>> re.split(r'\W+', raw)
['', 'When', 'I', 'M', 'a', 'Duchess', 'she', 'said', 'to', 'herself', 'not', 'in',
'a', 'very', 'hopeful', 'tone', 'though', 'I', 'won', 't', 'have', 'any', 'pepper',
'in', 'my', 'kitchen', 'AT', 'ALL', 'Soup', 'does', 'very', 'well', 'without',
'Maybe', 'it', 's', 'always', 'pepper', 'that', 'makes', 'people', 'hot', 'tempered',
'']

Observe that this gives us empty strings at the start and the end (to understand why,
try doing 'xx'.split('x')). With re.findall(r'\w+', raw), we get the same tokens,
but without the empty strings, using a pattern that matches the words instead of the
spaces. Now that we’re matching the words, we’re in a position to extend the regular
expression to cover a wider range of cases. The regular expression «\w+|\S\w*» will first
try to match any sequence of word characters. If no match is found, it will try to match
any non-whitespace character (\S is the complement of \s) followed by further word
characters. This means that punctuation is grouped with any following letters
(e.g., ’s) but that sequences of two or more punctuation characters are separated.

>>> re.findall(r'\w+|\S\w*', raw)
["'When", 'I', "'M", 'a', 'Duchess', ',', "'", 'she', 'said', 'to', 'herself', ',',
'(not', 'in', 'a', 'very', 'hopeful', 'tone', 'though', ')', ',', "'I", 'won', "'t",
'have', 'any', 'pepper', 'in', 'my', 'kitchen', 'AT', 'ALL', '.', 'Soup', 'does',
'very', 'well', 'without', '-', '-Maybe', 'it', "'s", 'always', 'pepper', 'that',
'makes', 'people', 'hot', '-tempered', ',', "'", '.', '.', '.']

Let’s generalize the \w+ in the preceding expression to permit word-internal hyphens
and apostrophes: «\w+([-']\w+)*». This expression means \w+ followed by zero or more
instances of [-']\w+; it would match hot-tempered and it’s. (We need to include ?: in
this expression for reasons discussed earlier.) We’ll also add a pattern to match quote
characters so these are kept separate from the text they enclose.

>>> print re.findall(r"\w+(?:[-']\w+)*|'|[-.(]+|\S\w*", raw)
["'", 'When', "I'M", 'a', 'Duchess', ',', "'", 'she', 'said', 'to', 'herself', ',',
'(', 'not', 'in', 'a', 'very', 'hopeful', 'tone', 'though', ')', ',', "'", 'I',
"won't", 'have', 'any', 'pepper', 'in', 'my', 'kitchen', 'AT', 'ALL', '.', 'Soup',
'does', 'very', 'well', 'without', '--', 'Maybe', "it's", 'always', 'pepper',
'that', 'makes', 'people', 'hot-tempered', ',', "'", '...']

The expression in this example also included «[-.(]+», which causes the double hy-
phen, ellipsis, and open parenthesis to be tokenized separately.

Table 3-4 lists the regular expression character class symbols we have seen in this sec-
tion, in addition to some other useful symbols.

Table 3-4. Regular expression symbols

Symbol Function

\b Word boundary (zero width)

\d Any decimal digit (equivalent to [0-9])

110 | Chapter 3: Processing Raw Text



Symbol Function

\D Any non-digit character (equivalent to [^0-9])

\s Any whitespace character (equivalent to [ \t\n\r\f\v]

\S Any non-whitespace character (equivalent to [^ \t\n\r\f\v])

\w Any alphanumeric character (equivalent to [a-zA-Z0-9_])

\W Any non-alphanumeric character (equivalent to [^a-zA-Z0-9_])

\t The tab character

\n The newline character

NLTK’s Regular Expression Tokenizer
The function nltk.regexp_tokenize() is similar to re.findall() (as we’ve been using
it for tokenization). However, nltk.regexp_tokenize() is more efficient for this task,
and avoids the need for special treatment of parentheses. For readability we break up
the regular expression over several lines and add a comment about each line. The special
(?x) “verbose flag” tells Python to strip out the embedded whitespace and comments.

>>> text = 'That U.S.A. poster-print costs $12.40...'
>>> pattern = r'''(?x)    # set flag to allow verbose regexps
...     ([A-Z]\.)+        # abbreviations, e.g. U.S.A.
...   | \w+(-\w+)*        # words with optional internal hyphens
...   | \$?\d+(\.\d+)?%?  # currency and percentages, e.g. $12.40, 82%
...   | \.\.\.            # ellipsis
...   | [][.,;"'?():-_`]  # these are separate tokens
... '''
>>> nltk.regexp_tokenize(text, pattern)
['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']

When using the verbose flag, you can no longer use ' ' to match a space character; use
\s instead. The regexp_tokenize() function has an optional gaps parameter. When set
to True, the regular expression specifies the gaps between tokens, as with re.split().

We can evaluate a tokenizer by comparing the resulting tokens with a
wordlist, and then report any tokens that don’t appear in the wordlist,
using set(tokens).difference(wordlist). You’ll probably want to
lowercase all the tokens first.

Further Issues with Tokenization
Tokenization turns out to be a far more difficult task than you might have expected.
No single solution works well across the board, and we must decide what counts as a
token depending on the application domain.

When developing a tokenizer it helps to have access to raw text which has been man-
ually tokenized, in order to compare the output of your tokenizer with high-quality (or
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“gold-standard”) tokens. The NLTK corpus collection includes a sample of Penn Tree-
bank data, including the raw Wall Street Journal text (nltk.corpus.tree
bank_raw.raw()) and the tokenized version (nltk.corpus.treebank.words()).

A final issue for tokenization is the presence of contractions, such as didn’t. If we are
analyzing the meaning of a sentence, it would probably be more useful to normalize
this form to two separate forms: did and n’t (or not). We can do this work with the help
of a lookup table.

3.8  Segmentation
This section discusses more advanced concepts, which you may prefer to skip on the
first time through this chapter.

Tokenization is an instance of a more general problem of segmentation. In this section,
we will look at two other instances of this problem, which use radically different tech-
niques to the ones we have seen so far in this chapter.

Sentence Segmentation
Manipulating texts at the level of individual words often presupposes the ability to
divide a text into individual sentences. As we have seen, some corpora already provide
access at the sentence level. In the following example, we compute the average number
of words per sentence in the Brown Corpus:

>>> len(nltk.corpus.brown.words()) / len(nltk.corpus.brown.sents())
20.250994070456922

In other cases, the text is available only as a stream of characters. Before tokenizing the
text into words, we need to segment it into sentences. NLTK facilitates this by including
the Punkt sentence segmenter (Kiss & Strunk, 2006). Here is an example of its use in
segmenting the text of a novel. (Note that if the segmenter’s internal data has been
updated by the time you read this, you will see different output.)

>>> sent_tokenizer=nltk.data.load('tokenizers/punkt/english.pickle')
>>> text = nltk.corpus.gutenberg.raw('chesterton-thursday.txt')
>>> sents = sent_tokenizer.tokenize(text)
>>> pprint.pprint(sents[171:181])
['"Nonsense!',
 '" said Gregory, who was very rational when anyone else\nattempted paradox.',
 '"Why do all the clerks and navvies in the\nrailway trains look so sad and tired,...',
 'I will\ntell you.',
 'It is because they know that the train is going right.',
 'It\nis because they know that whatever place they have taken a ticket\nfor that ...',
 'It is because after they have\npassed Sloane Square they know that the next stat...',
 'Oh, their wild rapture!',
 'oh,\ntheir eyes like stars and their souls again in Eden, if the next\nstation w...'
 '"\n\n"It is you who are unpoetical," replied the poet Syme.']
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Notice that this example is really a single sentence, reporting the speech of Mr. Lucian
Gregory. However, the quoted speech contains several sentences, and these have been
split into individual strings. This is reasonable behavior for most applications.

Sentence segmentation is difficult because a period is used to mark abbreviations, and
some periods simultaneously mark an abbreviation and terminate a sentence, as often
happens with acronyms like U.S.A.

For another approach to sentence segmentation, see Section 6.2.

Word Segmentation
For some writing systems, tokenizing text is made more difficult by the fact that there
is no visual representation of word boundaries. For example, in Chinese, the three-
character string: 爱国人 (ai4 “love” [verb], guo3 “country”, ren2 “person”) could be
tokenized as 爱国 / 人, “country-loving person,” or as 爱 / 国人, “love country-person.”

A similar problem arises in the processing of spoken language, where the hearer must
segment a continuous speech stream into individual words. A particularly challenging
version of this problem arises when we don’t know the words in advance. This is the
problem faced by a language learner, such as a child hearing utterances from a parent.
Consider the following artificial example, where word boundaries have been removed:

(1) a. doyouseethekitty

b. seethedoggy

c. doyoulikethekitty

d. likethedoggy

Our first challenge is simply to represent the problem: we need to find a way to separate
text content from the segmentation. We can do this by annotating each character with
a boolean value to indicate whether or not a word-break appears after the character (an
idea that will be used heavily for “chunking” in Chapter 7). Let’s assume that the learner
is given the utterance breaks, since these often correspond to extended pauses. Here is
a possible representation, including the initial and target segmentations:

>>> text = "doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"
>>> seg1 = "0000000000000001000000000010000000000000000100000000000"
>>> seg2 = "0100100100100001001001000010100100010010000100010010000"

Observe that the segmentation strings consist of zeros and ones. They are one character
shorter than the source text, since a text of length n can be broken up in only n–1 places.
The segment() function in Example 3-2 demonstrates that we can get back to the orig-
inal segmented text from its representation.
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Example 3-2. Reconstruct segmented text from string representation: seg1 and seg2 represent the
initial and final segmentations of some hypothetical child-directed speech; the segment() function can
use them to reproduce the segmented text.

def segment(text, segs):
    words = []
    last = 0
    for i in range(len(segs)):
        if segs[i] == '1':
            words.append(text[last:i+1])
            last = i+1
    words.append(text[last:])
    return words

>>> text = "doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"
>>> seg1 = "0000000000000001000000000010000000000000000100000000000"
>>> seg2 = "0100100100100001001001000010100100010010000100010010000"
>>> segment(text, seg1)
['doyouseethekitty', 'seethedoggy', 'doyoulikethekitty', 'likethedoggy']
>>> segment(text, seg2)
['do', 'you', 'see', 'the', 'kitty', 'see', 'the', 'doggy', 'do', 'you',
 'like', 'the', kitty', 'like', 'the', 'doggy']

Now the segmentation task becomes a search problem: find the bit string that causes
the text string to be correctly segmented into words. We assume the learner is acquiring
words and storing them in an internal lexicon. Given a suitable lexicon, it is possible
to reconstruct the source text as a sequence of lexical items. Following (Brent & Cart-
wright, 1995), we can define an objective function, a scoring function whose value
we will try to optimize, based on the size of the lexicon and the amount of information
needed to reconstruct the source text from the lexicon. We illustrate this in Figure 3-6.

Figure 3-6. Calculation of objective function: Given a hypothetical segmentation of the source text
(on the left), derive a lexicon and a derivation table that permit the source text to be reconstructed,
then total up the number of characters used by each lexical item (including a boundary marker) and
each derivation, to serve as a score of the quality of the segmentation; smaller values of the score
indicate a better segmentation.

It is a simple matter to implement this objective function, as shown in Example 3-3.
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Example 3-3. Computing the cost of storing the lexicon and reconstructing the source text.

def evaluate(text, segs):
    words = segment(text, segs)
    text_size = len(words)
    lexicon_size = len(' '.join(list(set(words))))
    return text_size + lexicon_size

>>> text = "doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"
>>> seg1 = "0000000000000001000000000010000000000000000100000000000"
>>> seg2 = "0100100100100001001001000010100100010010000100010010000"
>>> seg3 = "0000100100000011001000000110000100010000001100010000001"
>>> segment(text, seg3)
['doyou', 'see', 'thekitt', 'y', 'see', 'thedogg', 'y', 'doyou', 'like',
 'thekitt', 'y', 'like', 'thedogg', 'y']
>>> evaluate(text, seg3)
46
>>> evaluate(text, seg2)
47
>>> evaluate(text, seg1)
63

The final step is to search for the pattern of zeros and ones that maximizes this objective
function, shown in Example 3-4. Notice that the best segmentation includes “words”
like thekitty, since there’s not enough evidence in the data to split this any further.

Example 3-4. Non-deterministic search using simulated annealing: Begin searching with phrase
segmentations only; randomly perturb the zeros and ones proportional to the “temperature”; with
each iteration the temperature is lowered and the perturbation of boundaries is reduced.

from random import randint

def flip(segs, pos):
    return segs[:pos] + str(1-int(segs[pos])) + segs[pos+1:] 

def flip_n(segs, n):
    for i in range(n):
        segs = flip(segs, randint(0,len(segs)-1))
    return segs

def anneal(text, segs, iterations, cooling_rate):
    temperature = float(len(segs))
    while temperature > 0.5:
        best_segs, best = segs, evaluate(text, segs)
        for i in range(iterations):
            guess = flip_n(segs, int(round(temperature)))
            score = evaluate(text, guess)
            if score < best:
                best, best_segs = score, guess
        score, segs = best, best_segs
        temperature = temperature / cooling_rate
        print evaluate(text, segs), segment(text, segs)
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    print
    return segs

>>> text = "doyouseethekittyseethedoggydoyoulikethekittylikethedoggy"
>>> seg1 = "0000000000000001000000000010000000000000000100000000000"
>>> anneal(text, seg1, 5000, 1.2)
60 ['doyouseetheki', 'tty', 'see', 'thedoggy', 'doyouliketh', 'ekittylike', 'thedoggy']
58 ['doy', 'ouseetheki', 'ttysee', 'thedoggy', 'doy', 'o', 'ulikethekittylike', 'thedoggy']
56 ['doyou', 'seetheki', 'ttysee', 'thedoggy', 'doyou', 'liketh', 'ekittylike', 'thedoggy']
54 ['doyou', 'seethekit', 'tysee', 'thedoggy', 'doyou', 'likethekittylike', 'thedoggy']
53 ['doyou', 'seethekit', 'tysee', 'thedoggy', 'doyou', 'like', 'thekitty', 'like', 'thedoggy']
51 ['doyou', 'seethekittysee', 'thedoggy', 'doyou', 'like', 'thekitty', 'like', 'thedoggy']
42 ['doyou', 'see', 'thekitty', 'see', 'thedoggy', 'doyou', 'like', 'thekitty', 'like', 'thedoggy']
'0000100100000001001000000010000100010000000100010000000'

With enough data, it is possible to automatically segment text into words with a rea-
sonable degree of accuracy. Such methods can be applied to tokenization for writing
systems that don’t have any visual representation of word boundaries.

3.9  Formatting: From Lists to Strings
Often we write a program to report a single data item, such as a particular element in
a corpus that meets some complicated criterion, or a single summary statistic such as
a word-count or the performance of a tagger. More often, we write a program to produce
a structured result; for example, a tabulation of numbers or linguistic forms, or a re-
formatting of the original data. When the results to be presented are linguistic, textual
output is usually the most natural choice. However, when the results are numerical, it
may be preferable to produce graphical output. In this section, you will learn about a
variety of ways to present program output.

From Lists to Strings
The simplest kind of structured object we use for text processing is lists of words. When
we want to output these to a display or a file, we must convert these lists into strings.
To do this in Python we use the join() method, and specify the string to be used as the
“glue”:

>>> silly = ['We', 'called', 'him', 'Tortoise', 'because', 'he', 'taught', 'us', '.']
>>> ' '.join(silly)
'We called him Tortoise because he taught us .'
>>> ';'.join(silly)
'We;called;him;Tortoise;because;he;taught;us;.'
>>> ''.join(silly)
'WecalledhimTortoisebecausehetaughtus.'

So ' '.join(silly) means: take all the items in silly and concatenate them as one big
string, using ' ' as a spacer between the items. I.e., join() is a method of the string
that you want to use as the glue. (Many people find this notation for join() counter-
intuitive.) The join() method only works on a list of strings—what we have been calling
a text—a complex type that enjoys some privileges in Python.
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Strings and Formats
We have seen that there are two ways to display the contents of an object:

>>> word = 'cat'
>>> sentence = """hello
... world"""
>>> print word
cat
>>> print sentence
hello
world
>>> word
'cat'
>>> sentence
'hello\nworld'

The print command yields Python’s attempt to produce the most human-readable form
of an object. The second method—naming the variable at a prompt—shows us a string
that can be used to recreate this object. It is important to keep in mind that both of
these are just strings, displayed for the benefit of you, the user. They do not give us any
clue as to the actual internal representation of the object.

There are many other useful ways to display an object as a string of characters. This
may be for the benefit of a human reader, or because we want to export our data to a
particular file format for use in an external program.

Formatted output typically contains a combination of variables and pre-specified
strings. For example, given a frequency distribution fdist, we could do:

>>> fdist = nltk.FreqDist(['dog', 'cat', 'dog', 'cat', 'dog', 'snake', 'dog', 'cat'])
>>> for word in fdist:
...     print word, '->', fdist[word], ';',
dog -> 4 ; cat -> 3 ; snake -> 1 ;

Apart from the problem of unwanted whitespace, print statements that contain alter-
nating variables and constants can be difficult to read and maintain. A better solution
is to use string formatting expressions.

>>> for word in fdist:
...    print '%s->%d;' % (word, fdist[word]),
dog->4; cat->3; snake->1;

To understand what is going on here, let’s test out the string formatting expression on
its own. (By now this will be your usual method of exploring new syntax.)

>>> '%s->%d;' % ('cat', 3)
'cat->3;'
>>> '%s->%d;' % 'cat'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: not enough arguments for format string
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The special symbols %s and %d are placeholders for strings and (decimal) integers. We
can embed these inside a string, then use the % operator to combine them. Let’s unpack
this code further, in order to see this behavior up close:

>>> '%s->' % 'cat'
'cat->'
>>> '%d' % 3
'3'
>>> 'I want a %s right now' % 'coffee'
'I want a coffee right now'

We can have a number of placeholders, but following the % operator we need to specify
a tuple with exactly the same number of values:

>>> "%s wants a %s %s" % ("Lee", "sandwich", "for lunch")
'Lee wants a sandwich for lunch'

We can also provide the values for the placeholders indirectly. Here’s an example using
a for loop:

>>> template = 'Lee wants a %s right now'
>>> menu = ['sandwich', 'spam fritter', 'pancake']
>>> for snack in menu:
...     print template % snack
...
Lee wants a sandwich right now
Lee wants a spam fritter right now
Lee wants a pancake right now

The %s and %d symbols are called conversion specifiers. They start with the % character
and end with a conversion character such as s (for string) or d (for decimal integer) The
string containing conversion specifiers is called a format string. We combine a format
string with the % operator and a tuple of values to create a complete string formatting
expression.

Lining Things Up
So far our formatting strings generated output of arbitrary width on the page (or screen),
such as %s and %d. We can specify a width as well, such as %6s, producing a string that
is padded to width 6. It is right-justified by default , but we can include a minus sign
to make it left-justified . In case we don’t know in advance how wide a displayed
value should be, the width value can be replaced with a star in the formatting string,
then specified using a variable .

>>> '%6s' % 'dog' 
'   dog'
>>> '%-6s' % 'dog' 
'dog   '
>>> width = 6
>>> '%-*s' % (width, 'dog') 
'dog   '

118 | Chapter 3: Processing Raw Text



Other control characters are used for decimal integers and floating-point numbers.
Since the percent character % has a special interpretation in formatting strings, we have
to precede it with another % to get it in the output.

>>> count, total = 3205, 9375
>>> "accuracy for %d words: %2.4f%%" % (total, 100 * count / total)
'accuracy for 9375 words: 34.1867%'

An important use of formatting strings is for tabulating data. Recall that in Sec-
tion 2.1 we saw data being tabulated from a conditional frequency distribution. Let’s
perform the tabulation ourselves, exercising full control of headings and column
widths, as shown in Example 3-5. Note the clear separation between the language
processing work, and the tabulation of results.

Example 3-5. Frequency of modals in different sections of the Brown Corpus.

def tabulate(cfdist, words, categories):
    print '%-16s' % 'Category',
    for word in words:                                  # column headings
        print '%6s' % word,
    print
    for category in categories:
        print '%-16s' % category,                       # row heading
        for word in words:                              # for each word
            print '%6d' % cfdist[category][word],       # print table cell
        print                                           # end the row

>>> from nltk.corpus import brown
>>> cfd = nltk.ConditionalFreqDist(
...           (genre, word)
...           for genre in brown.categories()
...           for word in brown.words(categories=genre))
>>> genres = ['news', 'religion', 'hobbies', 'science_fiction', 'romance', 'humor']
>>> modals = ['can', 'could', 'may', 'might', 'must', 'will']
>>> tabulate(cfd, modals, genres)
Category            can  could    may  might   must   will
news                 93     86     66     38     50    389
religion             82     59     78     12     54     71
hobbies             268     58    131     22     83    264
science_fiction      16     49      4     12      8     16
romance              74    193     11     51     45     43
humor                16     30      8      8      9     13

Recall from the listing in Example 3-1 that we used a formatting string "%*s". This
allows us to specify the width of a field using a variable.

>>> '%*s' % (15, "Monty Python")
'   Monty Python'

We could use this to automatically customize the column to be just wide enough to
accommodate all the words, using width = max(len(w) for w in words). Remember
that the comma at the end of print statements adds an extra space, and this is sufficient
to prevent the column headings from running into each other.
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Writing Results to a File
We have seen how to read text from files (Section 3.1). It is often useful to write output
to files as well. The following code opens a file output.txt for writing, and saves the
program output to the file.

>>> output_file = open('output.txt', 'w')
>>> words = set(nltk.corpus.genesis.words('english-kjv.txt'))
>>> for word in sorted(words):
...     output_file.write(word + "\n")

Your Turn: What is the effect of appending \n to each string before we
write it to the file? If you’re using a Windows machine, you may want
to use word + "\r\n" instead. What happens if we do

output_file.write(word)

When we write non-text data to a file, we must convert it to a string first. We can do
this conversion using formatting strings, as we saw earlier. Let’s write the total number
of words to our file, before closing it.

>>> len(words)
2789
>>> str(len(words))
'2789'
>>> output_file.write(str(len(words)) + "\n")
>>> output_file.close()

Caution!
You should avoid filenames that contain space characters, such as
output file.txt, or that are identical except for case distinctions, e.g.,
Output.txt and output.TXT.

Text Wrapping
When the output of our program is text-like, instead of tabular, it will usually be nec-
essary to wrap it so that it can be displayed conveniently. Consider the following output,
which overflows its line, and which uses a complicated print statement:

>>> saying = ['After', 'all', 'is', 'said', 'and', 'done', ',',
...           'more', 'is', 'said', 'than', 'done', '.']
>>> for word in saying:
...     print word, '(' + str(len(word)) + '),',
After (5), all (3), is (2), said (4), and (3), done (4), , (1), more (4), is (2), said (4), 

We can take care of line wrapping with the help of Python’s textwrap module. For
maximum clarity we will separate each step onto its own line:

>>> from textwrap import fill
>>> format = '%s (%d),'
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>>> pieces = [format % (word, len(word)) for word in saying]
>>> output = ' '.join(pieces)
>>> wrapped = fill(output)
>>> print wrapped
After (5), all (3), is (2), said (4), and (3), done (4), , (1), more
(4), is (2), said (4), than (4), done (4), . (1),

Notice that there is a linebreak between more and its following number. If we wanted
to avoid this, we could redefine the formatting string so that it contained no spaces
(e.g., '%s_(%d),'), then instead of printing the value of wrapped, we could print wrap
ped.replace('_', ' ').

3.10  Summary
• In this book we view a text as a list of words. A “raw text” is a potentially long

string containing words and whitespace formatting, and is how we typically store
and visualize a text.

• A string is specified in Python using single or double quotes: 'Monty Python',
"Monty Python".

• The characters of a string are accessed using indexes, counting from zero: 'Monty
Python'[0] gives the value M. The length of a string is found using len().

• Substrings are accessed using slice notation: 'Monty Python'[1:5] gives the value
onty. If the start index is omitted, the substring begins at the start of the string; if
the end index is omitted, the slice continues to the end of the string.

• Strings can be split into lists: 'Monty Python'.split() gives ['Monty', 'Python'].
Lists can be joined into strings: '/'.join(['Monty', 'Python']) gives 'Monty/
Python'.

• We can read text from a file f using text = open(f).read(). We can read text from
a URL u using text = urlopen(u).read(). We can iterate over the lines of a text file
using for line in open(f).

• Texts found on the Web may contain unwanted material (such as headers, footers,
and markup), that need to be removed before we do any linguistic processing.

• Tokenization is the segmentation of a text into basic units—or tokens—such as
words and punctuation. Tokenization based on whitespace is inadequate for many
applications because it bundles punctuation together with words. NLTK provides
an off-the-shelf tokenizer nltk.word_tokenize().

• Lemmatization is a process that maps the various forms of a word (such as ap-
peared, appears) to the canonical or citation form of the word, also known as the
lexeme or lemma (e.g., appear).

• Regular expressions are a powerful and flexible method of specifying patterns.
Once we have imported the re module, we can use re.findall() to find all sub-
strings in a string that match a pattern.
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• If a regular expression string includes a backslash, you should tell Python not to
preprocess the string, by using a raw string with an r prefix: r'regexp'.

• When backslash is used before certain characters, e.g., \n, this takes on a special
meaning (newline character); however, when backslash is used before regular ex-
pression wildcards and operators, e.g., \., \|, \$, these characters lose their special
meaning and are matched literally.

• A string formatting expression template % arg_tuple consists of a format string
template that contains conversion specifiers like %-6s and %0.2d.

3.11  Further Reading
Extra materials for this chapter are posted at http://www.nltk.org/, including links to
freely available resources on the Web. Remember to consult the Python reference ma-
terials at http://docs.python.org/. (For example, this documentation covers “universal
newline support,” explaining how to work with the different newline conventions used
by various operating systems.)

For more examples of processing words with NLTK, see the tokenization, stemming,
and corpus HOWTOs at http://www.nltk.org/howto. Chapters 2 and 3 of (Jurafsky &
Martin, 2008) contain more advanced material on regular expressions and morphology.
For more extensive discussion of text processing with Python, see (Mertz, 2003). For
information about normalizing non-standard words, see (Sproat et al., 2001).

There are many references for regular expressions, both practical and theoretical. For
an introductory tutorial to using regular expressions in Python, see Kuchling’s Regular
Expression HOWTO, http://www.amk.ca/python/howto/regex/. For a comprehensive
and detailed manual in using regular expressions, covering their syntax in most major
programming languages, including Python, see (Friedl, 2002). Other presentations in-
clude Section 2.1 of (Jurafsky & Martin, 2008), and Chapter 3 of (Mertz, 2003).

There are many online resources for Unicode. Useful discussions of Python’s facilities
for handling Unicode are:

• PEP-100 http://www.python.org/dev/peps/pep-0100/

• Jason Orendorff, Unicode for Programmers, http://www.jorendorff.com/articles/uni
code/

• A. M. Kuchling, Unicode HOWTO, http://www.amk.ca/python/howto/unicode

• Frederik Lundh, Python Unicode Objects, http://effbot.org/zone/unicode-objects
.htm

• Joel Spolsky, The Absolute Minimum Every Software Developer Absolutely, Posi-
tively Must Know About Unicode and Character Sets (No Excuses!), http://www.joe
lonsoftware.com/articles/Unicode.html
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The problem of tokenizing Chinese text is a major focus of SIGHAN, the ACL Special
Interest Group on Chinese Language Processing (http://sighan.org/). Our method for
segmenting English text follows (Brent & Cartwright, 1995); this work falls in the area
of language acquisition (Niyogi, 2006).

Collocations are a special case of multiword expressions. A multiword expression is
a small phrase whose meaning and other properties cannot be predicted from its words
alone, e.g., part-of-speech (Baldwin & Kim, 2010).

Simulated annealing is a heuristic for finding a good approximation to the optimum
value of a function in a large, discrete search space, based on an analogy with annealing
in metallurgy. The technique is described in many Artificial Intelligence texts.

The approach to discovering hyponyms in text using search patterns like x and other
ys is described by (Hearst, 1992).

3.12  Exercises
1. ○ Define a string s = 'colorless'. Write a Python statement that changes this to

“colourless” using only the slice and concatenation operations.

2. ○ We can use the slice notation to remove morphological endings on words. For
example, 'dogs'[:-1] removes the last character of dogs, leaving dog. Use slice
notation to remove the affixes from these words (we’ve inserted a hyphen to indi-
cate the affix boundary, but omit this from your strings): dish-es, run-ning, nation-
ality, un-do, pre-heat.

3. ○ We saw how we can generate an IndexError by indexing beyond the end of a
string. Is it possible to construct an index that goes too far to the left, before the
start of the string?

4. ○ We can specify a “step” size for the slice. The following returns every second
character within the slice: monty[6:11:2]. It also works in the reverse direction:
monty[10:5:-2]. Try these for yourself, and then experiment with different step
values.

5. ○ What happens if you ask the interpreter to evaluate monty[::-1]? Explain why
this is a reasonable result.

6. ○ Describe the class of strings matched by the following regular expressions:

a. [a-zA-Z]+

b. [A-Z][a-z]*

c. p[aeiou]{,2}t

d. \d+(\.\d+)?

e. ([^aeiou][aeiou][^aeiou])*

f. \w+|[^\w\s]+

Test your answers using nltk.re_show().
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7. ○ Write regular expressions to match the following classes of strings:

a. A single determiner (assume that a, an, and the are the only determiners)

b. An arithmetic expression using integers, addition, and multiplication, such as
2*3+8

8. ○ Write a utility function that takes a URL as its argument, and returns the contents
of the URL, with all HTML markup removed. Use urllib.urlopen to access the
contents of the URL, e.g.:

raw_contents = urllib.urlopen('http://www.nltk.org/').read()

9. ○ Save some text into a file corpus.txt. Define a function load(f) that reads from
the file named in its sole argument, and returns a string containing the text of the
file.

a. Use nltk.regexp_tokenize() to create a tokenizer that tokenizes the various
kinds of punctuation in this text. Use one multiline regular expression inline
comments, using the verbose flag (?x).

b. Use nltk.regexp_tokenize() to create a tokenizer that tokenizes the following
kinds of expressions: monetary amounts; dates; names of people and
organizations.

10. ○ Rewrite the following loop as a list comprehension:

>>> sent = ['The', 'dog', 'gave', 'John', 'the', 'newspaper']
>>> result = []
>>> for word in sent:
...     word_len = (word, len(word))
...     result.append(word_len)
>>> result
[('The', 3), ('dog', 3), ('gave', 4), ('John', 4), ('the', 3), ('newspaper', 9)]

11. ○ Define a string raw containing a sentence of your own choosing. Now, split raw
on some character other than space, such as 's'.

12. ○ Write a for loop to print out the characters of a string, one per line.

13. ○ What is the difference between calling split on a string with no argument and
one with ' ' as the argument, e.g., sent.split() versus sent.split(' ')? What
happens when the string being split contains tab characters, consecutive space
characters, or a sequence of tabs and spaces? (In IDLE you will need to use '\t' to
enter a tab character.)

14. ○ Create a variable words containing a list of words. Experiment with
words.sort() and sorted(words). What is the difference?

15. ○ Explore the difference between strings and integers by typing the following at a
Python prompt: "3" * 7 and 3 * 7. Try converting between strings and integers
using int("3") and str(3).

16. ○ Earlier, we asked you to use a text editor to create a file called test.py, containing
the single line monty = 'Monty Python'. If you haven’t already done this (or can’t
find the file), go ahead and do it now. Next, start up a new session with the Python
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interpreter, and enter the expression monty at the prompt. You will get an error
from the interpreter. Now, try the following (note that you have to leave off
the .py part of the filename):

>>> from test import msg
>>> msg

This time, Python should return with a value. You can also try import test, in
which case Python should be able to evaluate the expression test.monty at the
prompt.

17. ○ What happens when the formatting strings %6s and %-6s are used to display
strings that are longer than six characters?

18. ◑ Read in some text from a corpus, tokenize it, and print the list of all wh-word
types that occur. (wh-words in English are used in questions, relative clauses, and
exclamations: who, which, what, and so on.) Print them in order. Are any words
duplicated in this list, because of the presence of case distinctions or punctuation?

19. ◑ Create a file consisting of words and (made up) frequencies, where each line
consists of a word, the space character, and a positive integer, e.g., fuzzy 53. Read
the file into a Python list using open(filename).readlines(). Next, break each line
into its two fields using split(), and convert the number into an integer using
int(). The result should be a list of the form: [['fuzzy', 53], ...].

20. ◑ Write code to access a favorite web page and extract some text from it. For
example, access a weather site and extract the forecast top temperature for your
town or city today.

21. ◑ Write a function unknown() that takes a URL as its argument, and returns a list
of unknown words that occur on that web page. In order to do this, extract all
substrings consisting of lowercase letters (using re.findall()) and remove any
items from this set that occur in the Words Corpus (nltk.corpus.words). Try to
categorize these words manually and discuss your findings.

22. ◑ Examine the results of processing the URL http://news.bbc.co.uk/ using the reg-
ular expressions suggested above. You will see that there is still a fair amount of
non-textual data there, particularly JavaScript commands. You may also find that
sentence breaks have not been properly preserved. Define further regular expres-
sions that improve the extraction of text from this web page.

23. ◑ Are you able to write a regular expression to tokenize text in such a way that the
word don’t is tokenized into do and n’t? Explain why this regular expression won’t
work: «n't|\w+».

24. ◑ Try to write code to convert text into hAck3r, using regular expressions and
substitution, where e → 3, i → 1, o → 0, l → |, s → 5, . → 5w33t!, ate → 8. Normalize
the text to lowercase before converting it. Add more substitutions of your own.
Now try to map s to two different values: $ for word-initial s, and 5 for word-
internal s.
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25. ◑ Pig Latin is a simple transformation of English text. Each word of the text is
converted as follows: move any consonant (or consonant cluster) that appears at
the start of the word to the end, then append ay, e.g., string → ingstray, idle →
idleay (see http://en.wikipedia.org/wiki/Pig_Latin).

a. Write a function to convert a word to Pig Latin.

b. Write code that converts text, instead of individual words.

c. Extend it further to preserve capitalization, to keep qu together (so that
quiet becomes ietquay, for example), and to detect when y is used as a con-
sonant (e.g., yellow) versus a vowel (e.g., style).

26. ◑ Download some text from a language that has vowel harmony (e.g., Hungarian),
extract the vowel sequences of words, and create a vowel bigram table.

27. ◑ Python’s random module includes a function choice() which randomly chooses
an item from a sequence; e.g., choice("aehh ") will produce one of four possible
characters, with the letter h being twice as frequent as the others. Write a generator
expression that produces a sequence of 500 randomly chosen letters drawn from
the string "aehh ", and put this expression inside a call to the ''.join() function,
to concatenate them into one long string. You should get a result that looks like
uncontrolled sneezing or maniacal laughter: he haha ee heheeh eha. Use split()
and join() again to normalize the whitespace in this string.

28. ◑ Consider the numeric expressions in the following sentence from the MedLine
Corpus: The corresponding free cortisol fractions in these sera were 4.53 +/- 0.15%
and 8.16 +/- 0.23%, respectively. Should we say that the numeric expression 4.53
+/- 0.15% is three words? Or should we say that it’s a single compound word? Or
should we say that it is actually nine words, since it’s read “four point five three,
plus or minus fifteen percent”? Or should we say that it’s not a “real” word at all,
since it wouldn’t appear in any dictionary? Discuss these different possibilities. Can
you think of application domains that motivate at least two of these answers?

29. ◑ Readability measures are used to score the reading difficulty of a text, for the
purposes of selecting texts of appropriate difficulty for language learners. Let us
define μw to be the average number of letters per word, and μs to be the average
number of words per sentence, in a given text. The Automated Readability Index
(ARI) of the text is defined to be: 4.71 μw + 0.5 μs - 21.43. Compute the ARI score
for various sections of the Brown Corpus, including section f (popular lore) and
j (learned). Make use of the fact that nltk.corpus.brown.words() produces a se-
quence of words, whereas nltk.corpus.brown.sents() produces a sequence of
sentences.

30. ◑ Use the Porter Stemmer to normalize some tokenized text, calling the stemmer
on each word. Do the same thing with the Lancaster Stemmer, and see if you ob-
serve any differences.

31. ◑ Define the variable saying to contain the list ['After', 'all', 'is', 'said',
'and', 'done', ',', 'more', 'is', 'said', 'than', 'done', '.']. Process the list
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using a for loop, and store the result in a new list lengths. Hint: begin by assigning
the empty list to lengths, using lengths = []. Then each time through the loop,
use append() to add another length value to the list.

32. ◑ Define a variable silly to contain the string: 'newly formed bland ideas are
inexpressible in an infuriating way'. (This happens to be the legitimate inter-
pretation that bilingual English-Spanish speakers can assign to Chomsky’s famous
nonsense phrase colorless green ideas sleep furiously, according to Wikipedia). Now
write code to perform the following tasks:

a. Split silly into a list of strings, one per word, using Python’s split() opera-
tion, and save this to a variable called bland.

b. Extract the second letter of each word in silly and join them into a string, to
get 'eoldrnnnna'.

c. Combine the words in bland back into a single string, using join(). Make sure
the words in the resulting string are separated with whitespace.

d. Print the words of silly in alphabetical order, one per line.

33. ◑ The index() function can be used to look up items in sequences. For example,
'inexpressible'.index('e') tells us the index of the first position of the letter e.

a. What happens when you look up a substring, e.g., 'inexpressi
ble'.index('re')?

b. Define a variable words containing a list of words. Now use words.index() to
look up the position of an individual word.

c. Define a variable silly as in Exercise 32. Use the index() function in combi-
nation with list slicing to build a list phrase consisting of all the words up to
(but not including) in in silly.

34. ◑ Write code to convert nationality adjectives such as Canadian and Australian to
their corresponding nouns Canada and Australia (see http://en.wikipedia.org/wiki/
List_of_adjectival_forms_of_place_names).

35. ◑ Read the LanguageLog post on phrases of the form as best as p can and as best p
can, where p is a pronoun. Investigate this phenomenon with the help of a corpus
and the findall() method for searching tokenized text described in Section 3.5.
The post is at http://itre.cis.upenn.edu/~myl/languagelog/archives/002733.html.

36. ◑ Study the lolcat version of the book of Genesis, accessible as nltk.corpus.gene
sis.words('lolcat.txt'), and the rules for converting text into lolspeak at http://
www.lolcatbible.com/index.php?title=How_to_speak_lolcat. Define regular expres-
sions to convert English words into corresponding lolspeak words.

37. ◑ Read about the re.sub() function for string substitution using regular expres-
sions, using help(re.sub) and by consulting the further readings for this chapter.
Use re.sub in writing code to remove HTML tags from an HTML file, and to
normalize whitespace.
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38. ● An interesting challenge for tokenization is words that have been split across a
linebreak. E.g., if long-term is split, then we have the string long-\nterm.

a. Write a regular expression that identifies words that are hyphenated at a line-
break. The expression will need to include the \n character.

b. Use re.sub() to remove the \n character from these words.

c. How might you identify words that should not remain hyphenated once the
newline is removed, e.g., 'encyclo-\npedia'?

39. ● Read the Wikipedia entry on Soundex. Implement this algorithm in Python.

40. ● Obtain raw texts from two or more genres and compute their respective reading
difficulty scores as in the earlier exercise on reading difficulty. E.g., compare ABC
Rural News and ABC Science News (nltk.corpus.abc). Use Punkt to perform sen-
tence segmentation.

41. ● Rewrite the following nested loop as a nested list comprehension:

>>> words = ['attribution', 'confabulation', 'elocution',
...          'sequoia', 'tenacious', 'unidirectional']
>>> vsequences = set()
>>> for word in words:
...     vowels = []
...     for char in word:
...         if char in 'aeiou':
...             vowels.append(char)
...     vsequences.add(''.join(vowels))
>>> sorted(vsequences)
['aiuio', 'eaiou', 'eouio', 'euoia', 'oauaio', 'uiieioa']

42. ● Use WordNet to create a semantic index for a text collection. Extend the con-
cordance search program in Example 3-1, indexing each word using the offset of
its first synset, e.g., wn.synsets('dog')[0].offset (and optionally the offset of some
of its ancestors in the hypernym hierarchy).

43. ● With the help of a multilingual corpus such as the Universal Declaration of
Human Rights Corpus (nltk.corpus.udhr), along with NLTK’s frequency distri-
bution and rank correlation functionality (nltk.FreqDist, nltk.spearman_correla
tion), develop a system that guesses the language of a previously unseen text. For
simplicity, work with a single character encoding and just a few languages.

44. ● Write a program that processes a text and discovers cases where a word has been
used with a novel sense. For each word, compute the WordNet similarity between
all synsets of the word and all synsets of the words in its context. (Note that this
is a crude approach; doing it well is a difficult, open research problem.)

45. ● Read the article on normalization of non-standard words (Sproat et al., 2001),
and implement a similar system for text normalization.
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CHAPTER 4

Writing Structured Programs

By now you will have a sense of the capabilities of the Python programming language
for processing natural language. However, if you’re new to Python or to programming,
you may still be wrestling with Python and not feel like you are in full control yet. In
this chapter we’ll address the following questions:

1. How can you write well-structured, readable programs that you and others will be
able to reuse easily?

2. How do the fundamental building blocks work, such as loops, functions, and
assignment?

3. What are some of the pitfalls with Python programming, and how can you avoid
them?

Along the way, you will consolidate your knowledge of fundamental programming
constructs, learn more about using features of the Python language in a natural and
concise way, and learn some useful techniques in visualizing natural language data. As
before, this chapter contains many examples and exercises (and as before, some exer-
cises introduce new material). Readers new to programming should work through them
carefully and consult other introductions to programming if necessary; experienced
programmers can quickly skim this chapter.

In the other chapters of this book, we have organized the programming concepts as
dictated by the needs of NLP. Here we revert to a more conventional approach, where
the material is more closely tied to the structure of the programming language. There’s
not room for a complete presentation of the language, so we’ll just focus on the language
constructs and idioms that are most important for NLP.
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4.1  Back to the Basics
Assignment
Assignment would seem to be the most elementary programming concept, not deserv-
ing a separate discussion. However, there are some surprising subtleties here. Consider
the following code fragment:

>>> foo = 'Monty'
>>> bar = foo 
>>> foo = 'Python' 
>>> bar
'Monty'

This behaves exactly as expected. When we write bar = foo in the code , the value
of foo (the string 'Monty') is assigned to bar. That is, bar is a copy of foo, so when we
overwrite foo with a new string 'Python' on line , the value of bar is not affected.

However, assignment statements do not always involve making copies in this way.
Assignment always copies the value of an expression, but a value is not always what
you might expect it to be. In particular, the “value” of a structured object such as a list
is actually just a reference to the object. In the following example,  assigns the refer-
ence of foo to the new variable bar. Now when we modify something inside foo on line

, we can see that the contents of bar have also been changed.

>>> foo = ['Monty', 'Python']
>>> bar = foo 
>>> foo[1] = 'Bodkin' 
>>> bar
['Monty', 'Bodkin']

The line bar = foo  does not copy the contents of the variable, only its “object refer-
ence.” To understand what is going on here, we need to know how lists are stored in
the computer’s memory. In Figure 4-1, we see that a list foo is a reference to an object
stored at location 3133 (which is itself a series of pointers to other locations holding
strings). When we assign bar = foo, it is just the object reference 3133 that gets copied.
This behavior extends to other aspects of the language, such as parameter passing
(Section 4.4).
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Let’s experiment some more, by creating a variable empty holding the empty list, then
using it three times on the next line.

>>> empty = []
>>> nested = [empty, empty, empty]
>>> nested
[[], [], []]
>>> nested[1].append('Python')
>>> nested
[['Python'], ['Python'], ['Python']]

Observe that changing one of the items inside our nested list of lists changed them all.
This is because each of the three elements is actually just a reference to one and the
same list in memory.

Your Turn: Use multiplication to create a list of lists: nested = [[]] *
3. Now modify one of the elements of the list, and observe that all the
elements are changed. Use Python’s id() function to find out the nu-
merical identifier for any object, and verify that id(nested[0]),
id(nested[1]), and id(nested[2]) are all the same.

Now, notice that when we assign a new value to one of the elements of the list, it does
not propagate to the others:

>>> nested = [[]] * 3
>>> nested[1].append('Python')
>>> nested[1] = ['Monty']
>>> nested
[['Python'], ['Monty'], ['Python']]

We began with a list containing three references to a single empty list object. Then we
modified that object by appending 'Python' to it, resulting in a list containing three
references to a single list object ['Python']. Next, we overwrote one of those references
with a reference to a new object ['Monty']. This last step modified one of the three
object references inside the nested list. However, the ['Python'] object wasn’t changed,

Figure 4-1. List assignment and computer memory: Two list objects foo and bar reference the same
location in the computer’s memory; updating foo will also modify bar, and vice versa.
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and is still referenced from two places in our nested list of lists. It is crucial to appreciate
this difference between modifying an object via an object reference and overwriting an
object reference.

Important: To copy the items from a list foo to a new list bar, you can
write bar = foo[:]. This copies the object references inside the list. To
copy a structure without copying any object references, use copy.deep
copy().

Equality
Python provides two ways to check that a pair of items are the same. The is operator
tests for object identity. We can use it to verify our earlier observations about objects.
First, we create a list containing several copies of the same object, and demonstrate that
they are not only identical according to ==, but also that they are one and the same
object:

>>> size = 5
>>> python = ['Python']
>>> snake_nest = [python] * size
>>> snake_nest[0] == snake_nest[1] == snake_nest[2] == snake_nest[3] == snake_nest[4]
True
>>> snake_nest[0] is snake_nest[1] is snake_nest[2] is snake_nest[3] is snake_nest[4]
True

Now let’s put a new python in this nest. We can easily show that the objects are not
all identical:

>>> import random
>>> position = random.choice(range(size))
>>> snake_nest[position] = ['Python']
>>> snake_nest
[['Python'], ['Python'], ['Python'], ['Python'], ['Python']]
>>> snake_nest[0] == snake_nest[1] == snake_nest[2] == snake_nest[3] == snake_nest[4]
True
>>> snake_nest[0] is snake_nest[1] is snake_nest[2] is snake_nest[3] is snake_nest[4]
False

You can do several pairwise tests to discover which position contains the interloper,
but the id() function makes detection is easier:

>>> [id(snake) for snake in snake_nest]
[513528, 533168, 513528, 513528, 513528]

This reveals that the second item of the list has a distinct identifier. If you try running
this code snippet yourself, expect to see different numbers in the resulting list, and
don’t be surprised if the interloper is in a different position.

Having two kinds of equality might seem strange. However, it’s really just the type-
token distinction, familiar from natural language, here showing up in a programming
language.
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Conditionals
In the condition part of an if statement, a non-empty string or list is evaluated as true,
while an empty string or list evaluates as false.

>>> mixed = ['cat', '', ['dog'], []]
>>> for element in mixed:
...     if element:
...         print element
...
cat
['dog']

That is, we don’t need to say if len(element) > 0: in the condition.

What’s the difference between using if...elif as opposed to using a couple of if
statements in a row? Well, consider the following situation:

>>> animals = ['cat', 'dog']
>>> if 'cat' in animals:
...     print 1
... elif 'dog' in animals:
...     print 2
...
1

Since the if clause of the statement is satisfied, Python never tries to evaluate the
elif clause, so we never get to print out 2. By contrast, if we replaced the elif by an
if, then we would print out both 1 and 2. So an elif clause potentially gives us more
information than a bare if clause; when it evaluates to true, it tells us not only that the
condition is satisfied, but also that the condition of the main if clause was not satisfied.

The functions all() and any() can be applied to a list (or other sequence) to check
whether all or any items meet some condition:

>>> sent = ['No', 'good', 'fish', 'goes', 'anywhere', 'without', 'a', 'porpoise', '.']
>>> all(len(w) > 4 for w in sent)
False
>>> any(len(w) > 4 for w in sent)
True

4.2  Sequences
So far, we have seen two kinds of sequence object: strings and lists. Another kind of
sequence is called a tuple. Tuples are formed with the comma operator , and typically
enclosed using parentheses. We’ve actually seen them in the previous chapters, and
sometimes referred to them as “pairs,” since there were always two members. However,
tuples can have any number of members. Like lists and strings, tuples can be indexed

 and sliced , and have a length .

>>> t = 'walk', 'fem', 3 
>>> t
('walk', 'fem', 3)
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>>> t[0] 
'walk'
>>> t[1:] 
('fem', 3)
>>> len(t) 

Caution!
Tuples are constructed using the comma operator. Parentheses are a
more general feature of Python syntax, designed for grouping. A tuple
containing the single element 'snark' is defined by adding a trailing
comma, like this: 'snark',. The empty tuple is a special case, and is
defined using empty parentheses ().

Let’s compare strings, lists, and tuples directly, and do the indexing, slice, and length
operation on each type:

>>> raw = 'I turned off the spectroroute'
>>> text = ['I', 'turned', 'off', 'the', 'spectroroute']
>>> pair = (6, 'turned')
>>> raw[2], text[3], pair[1]
('t', 'the', 'turned')
>>> raw[-3:], text[-3:], pair[-3:]
('ute', ['off', 'the', 'spectroroute'], (6, 'turned'))
>>> len(raw), len(text), len(pair)
(29, 5, 2)

Notice in this code sample that we computed multiple values on a single line, separated
by commas. These comma-separated expressions are actually just tuples—Python al-
lows us to omit the parentheses around tuples if there is no ambiguity. When we print
a tuple, the parentheses are always displayed. By using tuples in this way, we are im-
plicitly aggregating items together.

Your Turn: Define a set, e.g., using set(text), and see what happens
when you convert it to a list or iterate over its members.

Operating on Sequence Types
We can iterate over the items in a sequence s in a variety of useful ways, as shown in
Table 4-1.

Table 4-1. Various ways to iterate over sequences

Python expression Comment

for item in s Iterate over the items of s

for item in sorted(s) Iterate over the items of s in order

for item in set(s) Iterate over unique elements of s
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Python expression Comment

for item in reversed(s) Iterate over elements of s in reverse

for item in set(s).difference(t) Iterate over elements of s not in t

for item in random.shuffle(s) Iterate over elements of s in random order

The sequence functions illustrated in Table 4-1 can be combined in various ways; for
example, to get unique elements of s sorted in reverse, use reversed(sorted(set(s))).

We can convert between these sequence types. For example, tuple(s) converts any
kind of sequence into a tuple, and list(s) converts any kind of sequence into a list.
We can convert a list of strings to a single string using the join() function, e.g.,
':'.join(words).

Some other objects, such as a FreqDist, can be converted into a sequence (using
list()) and support iteration:

>>> raw = 'Red lorry, yellow lorry, red lorry, yellow lorry.'
>>> text = nltk.word_tokenize(raw)
>>> fdist = nltk.FreqDist(text)
>>> list(fdist)
['lorry', ',', 'yellow', '.', 'Red', 'red']
>>> for key in fdist:
...     print fdist[key],
...
4 3 2 1 1 1

In the next example, we use tuples to re-arrange the contents of our list. (We can omit
the parentheses because the comma has higher precedence than assignment.)

>>> words = ['I', 'turned', 'off', 'the', 'spectroroute']
>>> words[2], words[3], words[4] = words[3], words[4], words[2]
>>> words
['I', 'turned', 'the', 'spectroroute', 'off']

This is an idiomatic and readable way to move items inside a list. It is equivalent to the
following traditional way of doing such tasks that does not use tuples (notice that this
method needs a temporary variable tmp).

>>> tmp = words[2]
>>> words[2] = words[3]
>>> words[3] = words[4]
>>> words[4] = tmp

As we have seen, Python has sequence functions such as sorted() and reversed() that
rearrange the items of a sequence. There are also functions that modify the structure of
a sequence, which can be handy for language processing. Thus, zip() takes the items
of two or more sequences and “zips” them together into a single list of pairs. Given a
sequence s, enumerate(s) returns pairs consisting of an index and the item at that index.

>>> words = ['I', 'turned', 'off', 'the', 'spectroroute']
>>> tags = ['noun', 'verb', 'prep', 'det', 'noun']
>>> zip(words, tags)
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[('I', 'noun'), ('turned', 'verb'), ('off', 'prep'),
('the', 'det'), ('spectroroute', 'noun')]
>>> list(enumerate(words))
[(0, 'I'), (1, 'turned'), (2, 'off'), (3, 'the'), (4, 'spectroroute')]

For some NLP tasks it is necessary to cut up a sequence into two or more parts. For
instance, we might want to “train” a system on 90% of the data and test it on the
remaining 10%. To do this we decide the location where we want to cut the data ,
then cut the sequence at that location .

>>> text = nltk.corpus.nps_chat.words()
>>> cut = int(0.9 * len(text)) 
>>> training_data, test_data = text[:cut], text[cut:] 
>>> text == training_data + test_data 
True
>>> len(training_data) / len(test_data) 
9

We can verify that none of the original data is lost during this process, nor is it dupli-
cated . We can also verify that the ratio of the sizes of the two pieces is what we
intended .

Combining Different Sequence Types
Let’s combine our knowledge of these three sequence types, together with list com-
prehensions, to perform the task of sorting the words in a string by their length.

>>> words = 'I turned off the spectroroute'.split() 
>>> wordlens = [(len(word), word) for word in words] 
>>> wordlens.sort() 
>>> ' '.join(w for (_, w) in wordlens) 
'I off the turned spectroroute'

Each of the preceding lines of code contains a significant feature. A simple string is
actually an object with methods defined on it, such as split() . We use a list com-
prehension to build a list of tuples , where each tuple consists of a number (the word
length) and the word, e.g., (3, 'the'). We use the sort() method  to sort the list in
place. Finally, we discard the length information and join the words back into a single
string . (The underscore  is just a regular Python variable, but we can use underscore
by convention to indicate that we will not use its value.)

We began by talking about the commonalities in these sequence types, but the previous
code illustrates important differences in their roles. First, strings appear at the beginning
and the end: this is typical in the context where our program is reading in some text
and producing output for us to read. Lists and tuples are used in the middle, but for
different purposes. A list is typically a sequence of objects all having the same type, of
arbitrary length. We often use lists to hold sequences of words. In contrast, a tuple is
typically a collection of objects of different types, of fixed length. We often use a tuple
to hold a record, a collection of different fields relating to some entity. This distinction
between the use of lists and tuples takes some getting used to, so here is another
example:
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>>> lexicon = [
...     ('the', 'det', ['Di:', 'D@']),
...     ('off', 'prep', ['Qf', 'O:f'])
... ]

Here, a lexicon is represented as a list because it is a collection of objects of a single
type—lexical entries—of no predetermined length. An individual entry is represented
as a tuple because it is a collection of objects with different interpretations, such as the
orthographic form, the part-of-speech, and the pronunciations (represented in the
SAMPA computer-readable phonetic alphabet; see http://www.phon.ucl.ac.uk/home/
sampa/). Note that these pronunciations are stored using a list. (Why?)

A good way to decide when to use tuples versus lists is to ask whether
the interpretation of an item depends on its position. For example, a
tagged token combines two strings having different interpretations, and
we choose to interpret the first item as the token and the second item
as the tag. Thus we use tuples like this: ('grail', 'noun'). A tuple of
the form ('noun', 'grail') would be non-sensical since it would be a
word noun tagged grail. In contrast, the elements of a text are all tokens,
and position is not significant. Thus we use lists like this: ['venetian',
'blind']. A list of the form ['blind', 'venetian'] would be equally
valid. The linguistic meaning of the words might be different, but the
interpretation of list items as tokens is unchanged.

The distinction between lists and tuples has been described in terms of usage. However,
there is a more fundamental difference: in Python, lists are mutable, whereas tuples
are immutable. In other words, lists can be modified, whereas tuples cannot. Here are
some of the operations on lists that do in-place modification of the list:

>>> lexicon.sort()
>>> lexicon[1] = ('turned', 'VBD', ['t3:nd', 't3`nd'])
>>> del lexicon[0]

Your Turn: Convert lexicon to a tuple, using lexicon =
tuple(lexicon), then try each of the operations, to confirm that none of
them is permitted on tuples.

Generator Expressions
We’ve been making heavy use of list comprehensions, for compact and readable pro-
cessing of texts. Here’s an example where we tokenize and normalize a text:

>>> text = '''"When I use a word," Humpty Dumpty said in rather a scornful tone,
... "it means just what I choose it to mean - neither more nor less."'''
>>> [w.lower() for w in nltk.word_tokenize(text)]
['"', 'when', 'i', 'use', 'a', 'word', ',', '"', 'humpty', 'dumpty', 'said', ...]
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Suppose we now want to process these words further. We can do this by inserting the
preceding expression inside a call to some other function , but Python allows us to
omit the brackets .

>>> max([w.lower() for w in nltk.word_tokenize(text)]) 
'word'
>>> max(w.lower() for w in nltk.word_tokenize(text)) 
'word'

The second line uses a generator expression. This is more than a notational conven-
ience: in many language processing situations, generator expressions will be more ef-
ficient. In , storage for the list object must be allocated before the value of max() is
computed. If the text is very large, this could be slow. In , the data is streamed to the
calling function. Since the calling function simply has to find the maximum value—the
word that comes latest in lexicographic sort order—it can process the stream of data
without having to store anything more than the maximum value seen so far.

4.3  Questions of Style
Programming is as much an art as a science. The undisputed “bible” of programming,
a 2,500 page multivolume work by Donald Knuth, is called The Art of Computer Pro-
gramming. Many books have been written on Literate Programming, recognizing that
humans, not just computers, must read and understand programs. Here we pick up on
some issues of programming style that have important ramifications for the readability
of your code, including code layout, procedural versus declarative style, and the use of
loop variables.

Python Coding Style
When writing programs you make many subtle choices about names, spacing, com-
ments, and so on. When you look at code written by other people, needless differences
in style make it harder to interpret the code. Therefore, the designers of the Python
language have published a style guide for Python code, available at http://www.python
.org/dev/peps/pep-0008/. The underlying value presented in the style guide is consis-
tency, for the purpose of maximizing the readability of code. We briefly review some
of its key recommendations here, and refer readers to the full guide for detailed dis-
cussion with examples.

Code layout should use four spaces per indentation level. You should make sure that
when you write Python code in a file, you avoid tabs for indentation, since these can
be misinterpreted by different text editors and the indentation can be messed up. Lines
should be less than 80 characters long; if necessary, you can break a line inside paren-
theses, brackets, or braces, because Python is able to detect that the line continues over
to the next line, as in the following examples:

>>> cv_word_pairs = [(cv, w) for w in rotokas_words
...                          for cv in re.findall('[ptksvr][aeiou]', w)]
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>>> cfd = nltk.ConditionalFreqDist(
...           (genre, word)
...           for genre in brown.categories()
...           for word in brown.words(categories=genre))
 
>>> ha_words = ['aaahhhh', 'ah', 'ahah', 'ahahah', 'ahh', 'ahhahahaha',
...             'ahhh', 'ahhhh', 'ahhhhhh', 'ahhhhhhhhhhhhhh', 'ha',
...             'haaa', 'hah', 'haha', 'hahaaa', 'hahah', 'hahaha']

If you need to break a line outside parentheses, brackets, or braces, you can often add
extra parentheses, and you can always add a backslash at the end of the line that is
broken:

>>> if (len(syllables) > 4 and len(syllables[2]) == 3 and
...    syllables[2][2] in [aeiou] and syllables[2][3] == syllables[1][3]):
...     process(syllables)
>>> if len(syllables) > 4 and len(syllables[2]) == 3 and \
...    syllables[2][2] in [aeiou] and syllables[2][3] == syllables[1][3]:
...     process(syllables)

Typing spaces instead of tabs soon becomes a chore. Many program-
ming editors have built-in support for Python, and can automatically
indent code and highlight any syntax errors (including indentation er-
rors). For a list of Python-aware editors, please see http://wiki.python
.org/moin/PythonEditors.

Procedural Versus Declarative Style
We have just seen how the same task can be performed in different ways, with impli-
cations for efficiency. Another factor influencing program development is programming
style. Consider the following program to compute the average length of words in the
Brown Corpus:

>>> tokens = nltk.corpus.brown.words(categories='news')
>>> count = 0
>>> total = 0
>>> for token in tokens:
...     count += 1
...     total += len(token)
>>> print total / count
4.2765382469

In this program we use the variable count to keep track of the number of tokens seen,
and total to store the combined length of all words. This is a low-level style, not far
removed from machine code, the primitive operations performed by the computer’s
CPU. The two variables are just like a CPU’s registers, accumulating values at many
intermediate stages, values that are meaningless until the end. We say that this program
is written in a procedural style, dictating the machine operations step by step. Now
consider the following program that computes the same thing:
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>>> total = sum(len(t) for t in tokens)
>>> print total / len(tokens)
4.2765382469

The first line uses a generator expression to sum the token lengths, while the second
line computes the average as before. Each line of code performs a complete, meaningful
task, which can be understood in terms of high-level properties like: “total is the sum
of the lengths of the tokens.” Implementation details are left to the Python interpreter.
The second program uses a built-in function, and constitutes programming at a more
abstract level; the resulting code is more declarative. Let’s look at an extreme example:

>>> word_list = []
>>> len_word_list = len(word_list)
>>> i = 0
>>> while i < len(tokens):
...     j = 0
...     while j < len_word_list and word_list[j] < tokens[i]:
...         j += 1
...     if j == 0 or tokens[i] != word_list[j]:
...         word_list.insert(j, tokens[i])
...         len_word_list += 1
...     i += 1

The equivalent declarative version uses familiar built-in functions, and its purpose is
instantly recognizable:

>>> word_list = sorted(set(tokens))

Another case where a loop counter seems to be necessary is for printing a counter with
each line of output. Instead, we can use enumerate(), which processes a sequence s and
produces a tuple of the form (i, s[i]) for each item in s, starting with (0, s[0]). Here
we enumerate the keys of the frequency distribution, and capture the integer-string pair
in the variables rank and word. We print rank+1 so that the counting appears to start
from 1, as required when producing a list of ranked items.

>>> fd = nltk.FreqDist(nltk.corpus.brown.words())
>>> cumulative = 0.0
>>> for rank, word in enumerate(fd):
...     cumulative += fd[word] * 100 / fd.N()
...     print "%3d %6.2f%% %s" % (rank+1, cumulative, word)
...     if cumulative > 25:
...         break
...
  1   5.40% the
  2  10.42% ,
  3  14.67% .
  4  17.78% of
  5  20.19% and
  6  22.40% to
  7  24.29% a
  8  25.97% in

It’s sometimes tempting to use loop variables to store a maximum or minimum value
seen so far. Let’s use this method to find the longest word in a text.
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>>> text = nltk.corpus.gutenberg.words('milton-paradise.txt')
>>> longest = ''
>>> for word in text:
...     if len(word) > len(longest):
...         longest = word
>>> longest
'unextinguishable'

However, a more transparent solution uses two list comprehensions, both having forms
that should be familiar by now:

>>> maxlen = max(len(word) for word in text)
>>> [word for word in text if len(word) == maxlen]
['unextinguishable', 'transubstantiate', 'inextinguishable', 'incomprehensible']

Note that our first solution found the first word having the longest length, while the
second solution found all of the longest words (which is usually what we would want).
Although there’s a theoretical efficiency difference between the two solutions, the main
overhead is reading the data into main memory; once it’s there, a second pass through
the data is effectively instantaneous. We also need to balance our concerns about pro-
gram efficiency with programmer efficiency. A fast but cryptic solution will be harder
to understand and maintain.

Some Legitimate Uses for Counters
There are cases where we still want to use loop variables in a list comprehension. For
example, we need to use a loop variable to extract successive overlapping n-grams from
a list:

>>> sent = ['The', 'dog', 'gave', 'John', 'the', 'newspaper']
>>> n = 3
>>> [sent[i:i+n] for i in range(len(sent)-n+1)]
[['The', 'dog', 'gave'],
 ['dog', 'gave', 'John'],
 ['gave', 'John', 'the'],
 ['John', 'the', 'newspaper']]

It is quite tricky to get the range of the loop variable right. Since this is a common
operation in NLP, NLTK supports it with functions bigrams(text) and
trigrams(text), and a general-purpose ngrams(text, n).

Here’s an example of how we can use loop variables in building multidimensional
structures. For example, to build an array with m rows and n columns, where each cell
is a set, we could use a nested list comprehension:

>>> m, n = 3, 7
>>> array = [[set() for i in range(n)] for j in range(m)]
>>> array[2][5].add('Alice')
>>> pprint.pprint(array)
[[set([]), set([]), set([]), set([]), set([]), set([]), set([])],
 [set([]), set([]), set([]), set([]), set([]), set([]), set([])],
 [set([]), set([]), set([]), set([]), set([]), set(['Alice']), set([])]]
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Observe that the loop variables i and j are not used anywhere in the resulting object;
they are just needed for a syntactically correct for statement. As another example of
this usage, observe that the expression ['very' for i in range(3)] produces a list
containing three instances of 'very', with no integers in sight.

Note that it would be incorrect to do this work using multiplication, for reasons con-
cerning object copying that were discussed earlier in this section.

>>> array = [[set()] * n] * m
>>> array[2][5].add(7)
>>> pprint.pprint(array)
[[set([7]), set([7]), set([7]), set([7]), set([7]), set([7]), set([7])],
 [set([7]), set([7]), set([7]), set([7]), set([7]), set([7]), set([7])],
 [set([7]), set([7]), set([7]), set([7]), set([7]), set([7]), set([7])]]

Iteration is an important programming device. It is tempting to adopt idioms from other
languages. However, Python offers some elegant and highly readable alternatives, as
we have seen.

4.4  Functions: The Foundation of Structured Programming
Functions provide an effective way to package and reuse program code, as already
explained in Section 2.3. For example, suppose we find that we often want to read text
from an HTML file. This involves several steps: opening the file, reading it in, normal-
izing whitespace, and stripping HTML markup. We can collect these steps into a func-
tion, and give it a name such as get_text(), as shown in Example 4-1.

Example 4-1. Read text from a file.

import re
def get_text(file):
    """Read text from a file, normalizing whitespace and stripping HTML markup."""
    text = open(file).read()
    text = re.sub('\s+', ' ', text)
    text = re.sub(r'<.*?>', ' ', text)
    return text

Now, any time we want to get cleaned-up text from an HTML file, we can just call
get_text() with the name of the file as its only argument. It will return a string, and we
can assign this to a variable, e.g., contents = get_text("test.html"). Each time we
want to use this series of steps, we only have to call the function.

Using functions has the benefit of saving space in our program. More importantly, our
choice of name for the function helps make the program readable. In the case of the
preceding example, whenever our program needs to read cleaned-up text from a file
we don’t have to clutter the program with four lines of code; we simply need to call
get_text(). This naming helps to provide some “semantic interpretation”—it helps a
reader of our program to see what the program “means.”
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Notice that this example function definition contains a string. The first string inside a
function definition is called a docstring. Not only does it document the purpose of the
function to someone reading the code, it is accessible to a programmer who has loaded
the code from a file:

>>> help(get_text)
Help on function get_text:

get_text(file)
    Read text from a file, normalizing whitespace
    and stripping HTML markup.

We have seen that functions help to make our work reusable and readable. They also
help make it reliable. When we reuse code that has already been developed and tested,
we can be more confident that it handles a variety of cases correctly. We also remove
the risk of forgetting some important step or introducing a bug. The program that calls
our function also has increased reliability. The author of that program is dealing with
a shorter program, and its components behave transparently.

To summarize, as its name suggests, a function captures functionality. It is a segment
of code that can be given a meaningful name and which performs a well-defined task.
Functions allow us to abstract away from the details, to see a bigger picture, and to
program more effectively.

The rest of this section takes a closer look at functions, exploring the mechanics and
discussing ways to make your programs easier to read.

Function Inputs and Outputs
We pass information to functions using a function’s parameters, the parenthesized list
of variables and constants following the function’s name in the function definition.
Here’s a complete example:

>>> def repeat(msg, num):  
...     return ' '.join([msg] * num)
>>> monty = 'Monty Python'
>>> repeat(monty, 3) 
'Monty Python Monty Python Monty Python'

We first define the function to take two parameters, msg and num . Then, we call the
function and pass it two arguments, monty and 3 ; these arguments fill the “place-
holders” provided by the parameters and provide values for the occurrences of msg and
num in the function body.

It is not necessary to have any parameters, as we see in the following example:

>>> def monty():
...     return "Monty Python"
>>> monty()
'Monty Python'
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A function usually communicates its results back to the calling program via the
return statement, as we have just seen. To the calling program, it looks as if the function
call had been replaced with the function’s result:

>>> repeat(monty(), 3)
'Monty Python Monty Python Monty Python'
>>> repeat('Monty Python', 3)
'Monty Python Monty Python Monty Python'

A Python function is not required to have a return statement. Some functions do their
work as a side effect, printing a result, modifying a file, or updating the contents of a
parameter to the function (such functions are called “procedures” in some other
programming languages).

Consider the following three sort functions. The third one is dangerous because a pro-
grammer could use it without realizing that it had modified its input. In general, func-
tions should modify the contents of a parameter (my_sort1()), or return a value
(my_sort2()), but not both (my_sort3()).

>>> def my_sort1(mylist):      # good: modifies its argument, no return value
...     mylist.sort()
>>> def my_sort2(mylist):      # good: doesn't touch its argument, returns value
...     return sorted(mylist)
>>> def my_sort3(mylist):      # bad: modifies its argument and also returns it
...     mylist.sort()
...     return mylist

Parameter Passing
Back in Section 4.1, you saw that assignment works on values, but that the value of a
structured object is a reference to that object. The same is true for functions. Python
interprets function parameters as values (this is known as call-by-value). In the fol-
lowing code, set_up() has two parameters, both of which are modified inside the func-
tion. We begin by assigning an empty string to w and an empty dictionary to p. After
calling the function, w is unchanged, while p is changed:

>>> def set_up(word, properties):
...     word = 'lolcat'
...     properties.append('noun')
...     properties = 5
...
>>> w = ''
>>> p = []
>>> set_up(w, p)
>>> w
''
>>> p
['noun']

Notice that w was not changed by the function. When we called set_up(w, p), the value
of w (an empty string) was assigned to a new variable word. Inside the function, the value
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of word was modified. However, that change did not propagate to w. This parameter
passing is identical to the following sequence of assignments:

>>> w = ''
>>> word = w
>>> word = 'lolcat'
>>> w
''

Let’s look at what happened with the list p. When we called set_up(w, p), the value of
p (a reference to an empty list) was assigned to a new local variable properties, so both
variables now reference the same memory location. The function modifies
properties, and this change is also reflected in the value of p, as we saw. The function
also assigned a new value to properties (the number 5); this did not modify the contents
at that memory location, but created a new local variable. This behavior is just as if we
had done the following sequence of assignments:

>>> p = []
>>> properties = p
>>> properties.append['noun']
>>> properties = 5
>>> p
['noun']

Thus, to understand Python’s call-by-value parameter passing, it is enough to under-
stand how assignment works. Remember that you can use the id() function and is
operator to check your understanding of object identity after each statement.

Variable Scope
Function definitions create a new local scope for variables. When you assign to a new
variable inside the body of a function, the name is defined only within that function.
The name is not visible outside the function, or in other functions. This behavior means
you can choose variable names without being concerned about collisions with names
used in your other function definitions.

When you refer to an existing name from within the body of a function, the Python
interpreter first tries to resolve the name with respect to the names that are local to the
function. If nothing is found, the interpreter checks whether it is a global name within
the module. Finally, if that does not succeed, the interpreter checks whether the name
is a Python built-in. This is the so-called LGB rule of name resolution: local, then
global, then built-in.

Caution!
A function can create a new global variable, using the global declaration.
However, this practice should be avoided as much as possible. Defining
global variables inside a function introduces dependencies on context
and limits the portability (or reusability) of the function. In general you
should use parameters for function inputs and return values for function
outputs.
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Checking Parameter Types
Python does not force us to declare the type of a variable when we write a program,
and this permits us to define functions that are flexible about the type of their argu-
ments. For example, a tagger might expect a sequence of words, but it wouldn’t care
whether this sequence is expressed as a list, a tuple, or an iterator (a new sequence type
that we’ll discuss later).

However, often we want to write programs for later use by others, and want to program
in a defensive style, providing useful warnings when functions have not been invoked
correctly. The author of the following tag() function assumed that its argument would
always be a string.

>>> def tag(word):
...     if word in ['a', 'the', 'all']:
...         return 'det'
...     else:
...         return 'noun'
...
>>> tag('the')
'det'
>>> tag('knight')
'noun'
>>> tag(["'Tis", 'but', 'a', 'scratch']) 
'noun'

The function returns sensible values for the arguments 'the' and 'knight', but look
what happens when it is passed a list —it fails to complain, even though the result
which it returns is clearly incorrect. The author of this function could take some extra
steps to ensure that the word parameter of the tag() function is a string. A naive ap-
proach would be to check the type of the argument using if not type(word) is str,
and if word is not a string, to simply return Python’s special empty value, None. This is
a slight improvement, because the function is checking the type of the argument, and
trying to return a “special” diagnostic value for the wrong input. However, it is also
dangerous because the calling program may not detect that None is intended as a “spe-
cial” value, and this diagnostic return value may then be propagated to other parts of
the program with unpredictable consequences. This approach also fails if the word is
a Unicode string, which has type unicode, not str. Here’s a better solution, using an
assert statement together with Python’s basestring type that generalizes over both
unicode and str.

>>> def tag(word):
...     assert isinstance(word, basestring), "argument to tag() must be a string"
...     if word in ['a', 'the', 'all']:
...         return 'det'
...     else:
...         return 'noun'

If the assert statement fails, it will produce an error that cannot be ignored, since it
halts program execution. Additionally, the error message is easy to interpret. Adding
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assertions to a program helps you find logical errors, and is a kind of defensive pro-
gramming. A more fundamental approach is to document the parameters to each
function using docstrings, as described later in this section.

Functional Decomposition
Well-structured programs usually make extensive use of functions. When a block of
program code grows longer than 10–20 lines, it is a great help to readability if the code
is broken up into one or more functions, each one having a clear purpose. This is
analogous to the way a good essay is divided into paragraphs, each expressing one main
idea.

Functions provide an important kind of abstraction. They allow us to group multiple
actions into a single, complex action, and associate a name with it. (Compare this with
the way we combine the actions of go and bring back into a single more complex action
fetch.) When we use functions, the main program can be written at a higher level of
abstraction, making its structure transparent, as in the following:

>>> data = load_corpus()
>>> results = analyze(data)
>>> present(results)

Appropriate use of functions makes programs more readable and maintainable. Addi-
tionally, it becomes possible to reimplement a function—replacing the function’s body
with more efficient code—without having to be concerned with the rest of the program.

Consider the freq_words function in Example 4-2. It updates the contents of a frequency
distribution that is passed in as a parameter, and it also prints a list of the n most
frequent words.

Example 4-2. Poorly designed function to compute frequent words.

def freq_words(url, freqdist, n):
    text = nltk.clean_url(url)
    for word in nltk.word_tokenize(text):
        freqdist.inc(word.lower())
    print freqdist.keys()[:n]

>>> constitution = "http://www.archives.gov/national-archives-experience" \
...                "/charters/constitution_transcript.html"
>>> fd = nltk.FreqDist()
>>> freq_words(constitution, fd, 20)
['the', 'of', 'charters', 'bill', 'constitution', 'rights', ',',
'declaration', 'impact', 'freedom', '-', 'making', 'independence']

This function has a number of problems. The function has two side effects: it modifies
the contents of its second parameter, and it prints a selection of the results it has com-
puted. The function would be easier to understand and to reuse elsewhere if we initialize
the FreqDist() object inside the function (in the same place it is populated), and if we
moved the selection and display of results to the calling program. In Example 4-3 we
refactor this function, and simplify its interface by providing a single url parameter.
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Example 4-3. Well-designed function to compute frequent words.

def freq_words(url):
    freqdist = nltk.FreqDist()
    text = nltk.clean_url(url)
    for word in nltk.word_tokenize(text):
        freqdist.inc(word.lower())
    return freqdist

>>> fd = freq_words(constitution)
>>> print fd.keys()[:20]
['the', 'of', 'charters', 'bill', 'constitution', 'rights', ',',
'declaration', 'impact', 'freedom', '-', 'making', 'independence']

Note that we have now simplified the work of freq_words to the point that we can do
its work with three lines of code:

>>> words = nltk.word_tokenize(nltk.clean_url(constitution))
>>> fd = nltk.FreqDist(word.lower() for word in words)
>>> fd.keys()[:20]
['the', 'of', 'charters', 'bill', 'constitution', 'rights', ',',
'declaration', 'impact', 'freedom', '-', 'making', 'independence']

Documenting Functions
If we have done a good job at decomposing our program into functions, then it should
be easy to describe the purpose of each function in plain language, and provide this in
the docstring at the top of the function definition. This statement should not explain
how the functionality is implemented; in fact, it should be possible to reimplement the
function using a different method without changing this statement.

For the simplest functions, a one-line docstring is usually adequate (see Example 4-1).
You should provide a triple-quoted string containing a complete sentence on a single
line. For non-trivial functions, you should still provide a one-sentence summary on the
first line, since many docstring processing tools index this string. This should be fol-
lowed by a blank line, then a more detailed description of the functionality (see http://
www.python.org/dev/peps/pep-0257/ for more information on docstring conventions).

Docstrings can include a doctest block, illustrating the use of the function and the
expected output. These can be tested automatically using Python’s docutils module.
Docstrings should document the type of each parameter to the function, and the return
type. At a minimum, that can be done in plain text. However, note that NLTK uses the
“epytext” markup language to document parameters. This format can be automatically
converted into richly structured API documentation (see http://www.nltk.org/), and in-
cludes special handling of certain “fields,” such as @param, which allow the inputs and
outputs of functions to be clearly documented. Example 4-4 illustrates a complete
docstring.
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Example 4-4. Illustration of a complete docstring, consisting of a one-line summary, a more detailed
explanation, a doctest example, and epytext markup specifying the parameters, types, return type,
and exceptions.

def accuracy(reference, test):
    """
    Calculate the fraction of test items that equal the corresponding reference items.

    Given a list of reference values and a corresponding list of test values,
    return the fraction of corresponding values that are equal.
    In particular, return the fraction of indexes
    {0<i<=len(test)} such that C{test[i] == reference[i]}.

    >>> accuracy(['ADJ', 'N', 'V', 'N'], ['N', 'N', 'V', 'ADJ'])
    0.5

@param reference: An ordered list of reference values.
@type reference: C{list}
@param test: A list of values to compare against the corresponding
    reference values.
@type test: C{list}
@rtype: C{float}
@raise ValueError: If C{reference} and C{length} do not have the
    same length.
"""

if len(reference) != len(test):
    raise ValueError("Lists must have the same length.")
num_correct = 0
for x, y in izip(reference, test):
    if x == y:
        num_correct += 1
return float(num_correct) / len(reference)

4.5  Doing More with Functions
This section discusses more advanced features, which you may prefer to skip on the
first time through this chapter.

Functions As Arguments
So far the arguments we have passed into functions have been simple objects, such as
strings, or structured objects, such as lists. Python also lets us pass a function as an
argument to another function. Now we can abstract out the operation, and apply a
different operation on the same data. As the following examples show, we can pass the
built-in function len() or a user-defined function last_letter() as arguments to an-
other function:

>>> sent = ['Take', 'care', 'of', 'the', 'sense', ',', 'and', 'the',
...         'sounds', 'will', 'take', 'care', 'of', 'themselves', '.']
>>> def extract_property(prop):
...     return [prop(word) for word in sent]
...
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>>> extract_property(len)
[4, 4, 2, 3, 5, 1, 3, 3, 6, 4, 4, 4, 2, 10, 1]
>>> def last_letter(word):
...     return word[-1]
>>> extract_property(last_letter)
['e', 'e', 'f', 'e', 'e', ',', 'd', 'e', 's', 'l', 'e', 'e', 'f', 's', '.']

The objects len and last_letter can be passed around like lists and dictionaries. Notice
that parentheses are used after a function name only if we are invoking the function;
when we are simply treating the function as an object, these are omitted.

Python provides us with one more way to define functions as arguments to other func-
tions, so-called lambda expressions. Supposing there was no need to use the last_let
ter() function in multiple places, and thus no need to give it a name. Let’s suppose we
can equivalently write the following:

>>> extract_property(lambda w: w[-1])
['e', 'e', 'f', 'e', 'e', ',', 'd', 'e', 's', 'l', 'e', 'e', 'f', 's', '.']

Our next example illustrates passing a function to the sorted() function. When we call
the latter with a single argument (the list to be sorted), it uses the built-in comparison
function cmp(). However, we can supply our own sort function, e.g., to sort by de-
creasing length.

>>> sorted(sent)
[',', '.', 'Take', 'and', 'care', 'care', 'of', 'of', 'sense', 'sounds',
'take', 'the', 'the', 'themselves', 'will']
>>> sorted(sent, cmp)
[',', '.', 'Take', 'and', 'care', 'care', 'of', 'of', 'sense', 'sounds',
'take', 'the', 'the', 'themselves', 'will']
>>> sorted(sent, lambda x, y: cmp(len(y), len(x)))
['themselves', 'sounds', 'sense', 'Take', 'care', 'will', 'take', 'care',
'the', 'and', 'the', 'of', 'of', ',', '.']

Accumulative Functions
These functions start by initializing some storage, and iterate over input to build it up,
before returning some final object (a large structure or aggregated result). A standard
way to do this is to initialize an empty list, accumulate the material, then return the
list, as shown in function search1() in Example 4-5.

Example 4-5. Accumulating output into a list.

def search1(substring, words):
    result = []
    for word in words:
        if substring in word:
            result.append(word)
    return result

def search2(substring, words):
    for word in words:
        if substring in word:
            yield word
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print "search1:"
for item in search1('zz', nltk.corpus.brown.words()):
    print item
print "search2:"
for item in search2('zz', nltk.corpus.brown.words()):
    print item

The function search2() is a generator. The first time this function is called, it gets as
far as the yield statement and pauses. The calling program gets the first word and does
any necessary processing. Once the calling program is ready for another word, execu-
tion of the function is continued from where it stopped, until the next time it encounters
a yield statement. This approach is typically more efficient, as the function only gen-
erates the data as it is required by the calling program, and does not need to allocate
additional memory to store the output (see the earlier discussion of generator expres-
sions).

Here’s a more sophisticated example of a generator which produces all permutations
of a list of words. In order to force the permutations() function to generate all its output,
we wrap it with a call to list() .

>>> def permutations(seq):
...     if len(seq) <= 1:
...         yield seq
...     else:
...         for perm in permutations(seq[1:]):
...             for i in range(len(perm)+1):
...                 yield perm[:i] + seq[0:1] + perm[i:]
...
>>> list(permutations(['police', 'fish', 'buffalo'])) 
[['police', 'fish', 'buffalo'], ['fish', 'police', 'buffalo'],
 ['fish', 'buffalo', 'police'], ['police', 'buffalo', 'fish'],
 ['buffalo', 'police', 'fish'], ['buffalo', 'fish', 'police']]

The permutations function uses a technique called recursion, discussed
later in Section 4.7. The ability to generate permutations of a set of words
is useful for creating data to test a grammar (Chapter 8).

Higher-Order Functions
Python provides some higher-order functions that are standard features of functional
programming languages such as Haskell. We illustrate them here, alongside the equiv-
alent expression using list comprehensions.

Let’s start by defining a function is_content_word() which checks whether a word is
from the open class of content words. We use this function as the first parameter of
filter(), which applies the function to each item in the sequence contained in its
second parameter, and retains only the items for which the function returns True.
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>>> def is_content_word(word):
...     return word.lower() not in ['a', 'of', 'the', 'and', 'will', ',', '.']
>>> sent = ['Take', 'care', 'of', 'the', 'sense', ',', 'and', 'the',
...         'sounds', 'will', 'take', 'care', 'of', 'themselves', '.']
>>> filter(is_content_word, sent)
['Take', 'care', 'sense', 'sounds', 'take', 'care', 'themselves']
>>> [w for w in sent if is_content_word(w)]
['Take', 'care', 'sense', 'sounds', 'take', 'care', 'themselves']

Another higher-order function is map(), which applies a function to every item in a
sequence. It is a general version of the extract_property() function we saw earlier in
this section. Here is a simple way to find the average length of a sentence in the news
section of the Brown Corpus, followed by an equivalent version with list comprehen-
sion calculation:

>>> lengths = map(len, nltk.corpus.brown.sents(categories='news'))
>>> sum(lengths) / len(lengths)
21.7508111616
>>> lengths = [len(w) for w in nltk.corpus.brown.sents(categories='news'))]
>>> sum(lengths) / len(lengths)
21.7508111616

In the previous examples, we specified a user-defined function is_content_word() and
a built-in function len(). We can also provide a lambda expression. Here’s a pair of
equivalent examples that count the number of vowels in each word.

>>> map(lambda w: len(filter(lambda c: c.lower() in "aeiou", w)), sent)
[2, 2, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 1, 3, 0]
>>> [len([c for c in w if c.lower() in "aeiou"]) for w in sent]
[2, 2, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 1, 3, 0]

The solutions based on list comprehensions are usually more readable than the solu-
tions based on higher-order functions, and we have favored the former approach
throughout this book.

Named Arguments
When there are a lot of parameters it is easy to get confused about the correct order.
Instead we can refer to parameters by name, and even assign them a default value just
in case one was not provided by the calling program. Now the parameters can be speci-
fied in any order, and can be omitted.

>>> def repeat(msg='<empty>', num=1):
...     return msg * num
>>> repeat(num=3)
'<empty><empty><empty>'
>>> repeat(msg='Alice')
'Alice'
>>> repeat(num=5, msg='Alice')
'AliceAliceAliceAliceAlice'

These are called keyword arguments. If we mix these two kinds of parameters, then
we must ensure that the unnamed parameters precede the named ones. It has to be this
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way, since unnamed parameters are defined by position. We can define a function that
takes an arbitrary number of unnamed and named parameters, and access them via an
in-place list of arguments *args and an in-place dictionary of keyword arguments
**kwargs.

>>> def generic(*args, **kwargs):
...     print args
...     print kwargs
...
>>> generic(1, "African swallow", monty="python")
(1, 'African swallow')
{'monty': 'python'}

When *args appears as a function parameter, it actually corresponds to all the unnamed
parameters of the function. As another illustration of this aspect of Python syntax,
consider the zip() function, which operates on a variable number of arguments. We’ll
use the variable name *song to demonstrate that there’s nothing special about the name
*args.

>>> song = [['four', 'calling', 'birds'],
...         ['three', 'French', 'hens'],
...         ['two', 'turtle', 'doves']]
>>> zip(song[0], song[1], song[2])
[('four', 'three', 'two'), ('calling', 'French', 'turtle'), ('birds', 'hens', 'doves')]
>>> zip(*song)
[('four', 'three', 'two'), ('calling', 'French', 'turtle'), ('birds', 'hens', 'doves')]

It should be clear from this example that typing *song is just a convenient shorthand,
and equivalent to typing out song[0], song[1], song[2].

Here’s another example of the use of keyword arguments in a function definition, along
with three equivalent ways to call the function:

>>> def freq_words(file, min=1, num=10):
...     text = open(file).read()
...     tokens = nltk.word_tokenize(text)
...     freqdist = nltk.FreqDist(t for t in tokens if len(t) >= min)
...     return freqdist.keys()[:num]
>>> fw = freq_words('ch01.rst', 4, 10)
>>> fw = freq_words('ch01.rst', min=4, num=10)
>>> fw = freq_words('ch01.rst', num=10, min=4)

A side effect of having named arguments is that they permit optionality. Thus we can
leave out any arguments where we are happy with the default value:
freq_words('ch01.rst', min=4), freq_words('ch01.rst', 4). Another common use of
optional arguments is to permit a flag. Here’s a revised version of the same function
that reports its progress if a verbose flag is set:

>>> def freq_words(file, min=1, num=10, verbose=False):
...     freqdist = FreqDist()
...     if trace: print "Opening", file
...     text = open(file).read()
...     if trace: print "Read in %d characters" % len(file)
...     for word in nltk.word_tokenize(text):
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...         if len(word) >= min:

...             freqdist.inc(word)

...             if trace and freqdist.N() % 100 == 0: print "."

...     if trace: print

...     return freqdist.keys()[:num]

Caution!
Take care not to use a mutable object as the default value of a parameter.
A series of calls to the function will use the same object, sometimes with
bizarre results, as we will see in the discussion of debugging later.

4.6  Program Development
Programming is a skill that is acquired over several years of experience with a variety
of programming languages and tasks. Key high-level abilities are algorithm design and
its manifestation in structured programming. Key low-level abilities include familiarity
with the syntactic constructs of the language, and knowledge of a variety of diagnostic
methods for trouble-shooting a program which does not exhibit the expected behavior.

This section describes the internal structure of a program module and how to organize
a multi-module program. Then it describes various kinds of error that arise during
program development, what you can do to fix them and, better still, to avoid them in
the first place.

Structure of a Python Module
The purpose of a program module is to bring logically related definitions and functions
together in order to facilitate reuse and abstraction. Python modules are nothing more
than individual .py files. For example, if you were working with a particular corpus
format, the functions to read and write the format could be kept together. Constants
used by both formats, such as field separators, or a EXTN = ".inf" filename extension,
could be shared. If the format was updated, you would know that only one file needed
to be changed. Similarly, a module could contain code for creating and manipulating
a particular data structure such as syntax trees, or code for performing a particular
processing task such as plotting corpus statistics.

When you start writing Python modules, it helps to have some examples to emulate.
You can locate the code for any NLTK module on your system using the __file__
variable:

>>> nltk.metrics.distance.__file__
'/usr/lib/python2.5/site-packages/nltk/metrics/distance.pyc'

This returns the location of the compiled .pyc file for the module, and you’ll probably
see a different location on your machine. The file that you will need to open is the
corresponding .py source file, and this will be in the same directory as the .pyc file.
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Alternatively, you can view the latest version of this module on the Web at http://code
.google.com/p/nltk/source/browse/trunk/nltk/nltk/metrics/distance.py.

Like every other NLTK module, distance.py begins with a group of comment lines giving
a one-line title of the module and identifying the authors. (Since the code is distributed,
it also includes the URL where the code is available, a copyright statement, and license
information.) Next is the module-level docstring, a triple-quoted multiline string con-
taining information about the module that will be printed when someone types
help(nltk.metrics.distance).

# Natural Language Toolkit: Distance Metrics
#
# Copyright (C) 2001-2009 NLTK Project
# Author: Edward Loper <edloper@gradient.cis.upenn.edu>
#         Steven Bird <sb@csse.unimelb.edu.au>
#         Tom Lippincott <tom@cs.columbia.edu>
# URL: <http://www.nltk.org/>
# For license information, see LICENSE.TXT
#

"""
Distance Metrics.

Compute the distance between two items (usually strings).
As metrics, they must satisfy the following three requirements:

1. d(a, a) = 0
2. d(a, b) >= 0
3. d(a, c) <= d(a, b) + d(b, c)
"""

After this comes all the import statements required for the module, then any global
variables, followed by a series of function definitions that make up most of the module.
Other modules define “classes,” the main building blocks of object-oriented program-
ming, which falls outside the scope of this book. (Most NLTK modules also include a
demo() function, which can be used to see examples of the module in use.)

Some module variables and functions are only used within the module.
These should have names beginning with an underscore, e.g.,
_helper(), since this will hide the name. If another module imports this
one, using the idiom: from module import *, these names will not be
imported. You can optionally list the externally accessible names of a
module using a special built-in variable like this: __all__ = ['edit_dis
tance', 'jaccard_distance'].

Multimodule Programs
Some programs bring together a diverse range of tasks, such as loading data from a
corpus, performing some analysis tasks on the data, then visualizing it. We may already
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have stable modules that take care of loading data and producing visualizations. Our
work might involve coding up the analysis task, and just invoking functions from the
existing modules. This scenario is depicted in Figure 4-2.

Figure 4-2. Structure of a multimodule program: The main program my_program.py imports
functions from two other modules; unique analysis tasks are localized to the main program, while
common loading and visualization tasks are kept apart to facilitate reuse and abstraction.

By dividing our work into several modules and using import statements to access func-
tions defined elsewhere, we can keep the individual modules simple and easy to main-
tain. This approach will also result in a growing collection of modules, and make it
possible for us to build sophisticated systems involving a hierarchy of modules. De-
signing such systems well is a complex software engineering task, and beyond the scope
of this book.

Sources of Error
Mastery of programming depends on having a variety of problem-solving skills to draw
upon when the program doesn’t work as expected. Something as trivial as a misplaced
symbol might cause the program to behave very differently. We call these “bugs” be-
cause they are tiny in comparison to the damage they can cause. They creep into our
code unnoticed, and it’s only much later when we’re running the program on some
new data that their presence is detected. Sometimes, fixing one bug only reveals an-
other, and we get the distinct impression that the bug is on the move. The only reas-
surance we have is that bugs are spontaneous and not the fault of the programmer.
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Flippancy aside, debugging code is hard because there are so many ways for it to be
faulty. Our understanding of the input data, the algorithm, or even the programming
language, may be at fault. Let’s look at examples of each of these.

First, the input data may contain some unexpected characters. For example, WordNet
synset names have the form tree.n.01, with three components separated using periods.
The NLTK WordNet module initially decomposed these names using split('.').
However, this method broke when someone tried to look up the word PhD, which has
the synset name ph.d..n.01, containing four periods instead of the expected two. The
solution was to use rsplit('.', 2) to do at most two splits, using the rightmost in-
stances of the period, and leaving the ph.d. string intact. Although several people had
tested the module before it was released, it was some weeks before someone detected
the problem (see http://code.google.com/p/nltk/issues/detail?id=297).

Second, a supplied function might not behave as expected. For example, while testing
NLTK’s interface to WordNet, one of the authors noticed that no synsets had any
antonyms defined, even though the underlying database provided a large quantity of
antonym information. What looked like a bug in the WordNet interface turned out to
be a misunderstanding about WordNet itself: antonyms are defined for lemmas, not
for synsets. The only “bug” was a misunderstanding of the interface (see http://code
.google.com/p/nltk/issues/detail?id=98).

Third, our understanding of Python’s semantics may be at fault. It is easy to make the
wrong assumption about the relative scope of two operators. For example, "%s.%s.
%02d" % "ph.d.", "n", 1 produces a runtime error TypeError: not enough arguments
for format string. This is because the percent operator has higher precedence than
the comma operator. The fix is to add parentheses in order to force the required scope.
As another example, suppose we are defining a function to collect all tokens of a text
having a given length. The function has parameters for the text and the word length,
and an extra parameter that allows the initial value of the result to be given as a
parameter:

>>> def find_words(text, wordlength, result=[]):
...     for word in text:
...         if len(word) == wordlength:
...             result.append(word)
...     return result
>>> find_words(['omg', 'teh', 'lolcat', 'sitted', 'on', 'teh', 'mat'], 3) 
['omg', 'teh', 'teh', 'mat']
>>> find_words(['omg', 'teh', 'lolcat', 'sitted', 'on', 'teh', 'mat'], 2, ['ur']) 
['ur', 'on']
>>> find_words(['omg', 'teh', 'lolcat', 'sitted', 'on', 'teh', 'mat'], 3) 
['omg', 'teh', 'teh', 'mat', 'omg', 'teh', 'teh', 'mat']

The first time we call find_words() , we get all three-letter words as expected. The
second time we specify an initial value for the result, a one-element list ['ur'], and as
expected, the result has this word along with the other two-letter word in our text.
Now, the next time we call find_words()  we use the same parameters as in , but
we get a different result! Each time we call find_words() with no third parameter, the
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result will simply extend the result of the previous call, rather than start with the empty
result list as specified in the function definition. The program’s behavior is not as ex-
pected because we incorrectly assumed that the default value was created at the time
the function was invoked. However, it is created just once, at the time the Python
interpreter loads the function. This one list object is used whenever no explicit value
is provided to the function.

Debugging Techniques
Since most code errors result from the programmer making incorrect assumptions, the
first thing to do when you detect a bug is to check your assumptions. Localize the prob-
lem by adding print statements to the program, showing the value of important vari-
ables, and showing how far the program has progressed.

If the program produced an “exception”—a runtime error—the interpreter will print
a stack trace, pinpointing the location of program execution at the time of the error.
If the program depends on input data, try to reduce this to the smallest size while still
producing the error.

Once you have localized the problem to a particular function or to a line of code, you
need to work out what is going wrong. It is often helpful to recreate the situation using
the interactive command line. Define some variables, and then copy-paste the offending
line of code into the session and see what happens. Check your understanding of the
code by reading some documentation and examining other code samples that purport
to do the same thing that you are trying to do. Try explaining your code to someone
else, in case she can see where things are going wrong.

Python provides a debugger which allows you to monitor the execution of your pro-
gram, specify line numbers where execution will stop (i.e., breakpoints), and step
through sections of code and inspect the value of variables. You can invoke the debug-
ger on your code as follows:

>>> import pdb
>>> import mymodule
>>> pdb.run('mymodule.myfunction()')

It will present you with a prompt (Pdb) where you can type instructions to the debugger.
Type help to see the full list of commands. Typing step (or just s) will execute the
current line and stop. If the current line calls a function, it will enter the function and
stop at the first line. Typing next (or just n) is similar, but it stops execution at the next
line in the current function. The break (or b) command can be used to create or list
breakpoints. Type continue (or c) to continue execution as far as the next breakpoint.
Type the name of any variable to inspect its value.

We can use the Python debugger to locate the problem in our find_words() function.
Remember that the problem arose the second time the function was called. We’ll start
by calling the function without using the debugger , using the smallest possible input.
The second time, we’ll call it with the debugger .
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>>> import pdb
>>> find_words(['cat'], 3) 
['cat']
>>> pdb.run("find_words(['dog'], 3)") 
> <string>(1)<module>()
(Pdb) step
--Call--
> <stdin>(1)find_words()
(Pdb) args
text = ['dog']
wordlength = 3
result = ['cat']

Here we typed just two commands into the debugger: step took us inside the function,
and args showed the values of its arguments (or parameters). We see immediately that
result has an initial value of ['cat'], and not the empty list as expected. The debugger
has helped us to localize the problem, prompting us to check our understanding of
Python functions.

Defensive Programming
In order to avoid some of the pain of debugging, it helps to adopt some defensive
programming habits. Instead of writing a 20-line program and then testing it, build the
program bottom-up out of small pieces that are known to work. Each time you combine
these pieces to make a larger unit, test it carefully to see that it works as expected.
Consider adding assert statements to your code, specifying properties of a variable,
e.g., assert(isinstance(text, list)). If the value of the text variable later becomes a
string when your code is used in some larger context, this will raise an
AssertionError and you will get immediate notification of the problem.

Once you think you’ve found the bug, view your solution as a hypothesis. Try to predict
the effect of your bugfix before re-running the program. If the bug isn’t fixed, don’t fall
into the trap of blindly changing the code in the hope that it will magically start working
again. Instead, for each change, try to articulate a hypothesis about what is wrong and
why the change will fix the problem. Then undo the change if the problem was not
resolved.

As you develop your program, extend its functionality, and fix any bugs, it helps to
maintain a suite of test cases. This is called regression testing, since it is meant to
detect situations where the code “regresses”—where a change to the code has an un-
intended side effect of breaking something that used to work. Python provides a simple
regression-testing framework in the form of the doctest module. This module searches
a file of code or documentation for blocks of text that look like an interactive Python
session, of the form you have already seen many times in this book. It executes the
Python commands it finds, and tests that their output matches the output supplied in
the original file. Whenever there is a mismatch, it reports the expected and actual val-
ues. For details, please consult the doctest documentation at
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http://docs.python.org/library/doctest.html. Apart from its value for regression testing,
the doctest module is useful for ensuring that your software documentation stays in
sync with your code.

Perhaps the most important defensive programming strategy is to set out your code
clearly, choose meaningful variable and function names, and simplify the code wher-
ever possible by decomposing it into functions and modules with well-documented
interfaces.

4.7  Algorithm Design
This section discusses more advanced concepts, which you may prefer to skip on the
first time through this chapter.

A major part of algorithmic problem solving is selecting or adapting an appropriate
algorithm for the problem at hand. Sometimes there are several alternatives, and choos-
ing the best one depends on knowledge about how each alternative performs as the size
of the data grows. Whole books are written on this topic, and we only have space to
introduce some key concepts and elaborate on the approaches that are most prevalent
in natural language processing.

The best-known strategy is known as divide-and-conquer. We attack a problem of
size n by dividing it into two problems of size n/2, solve these problems, and combine
their results into a solution of the original problem. For example, suppose that we had
a pile of cards with a single word written on each card. We could sort this pile by
splitting it in half and giving it to two other people to sort (they could do the same in
turn). Then, when two sorted piles come back, it is an easy task to merge them into a
single sorted pile. See Figure 4-3 for an illustration of this process.

Another example is the process of looking up a word in a dictionary. We open the book
somewhere around the middle and compare our word with the current page. If it’s
earlier in the dictionary, we repeat the process on the first half; if it’s later, we use the
second half. This search method is called binary search since it splits the problem in
half at every step.

In another approach to algorithm design, we attack a problem by transforming it into
an instance of a problem we already know how to solve. For example, in order to detect
duplicate entries in a list, we can pre-sort the list, then scan through it once to check
whether any adjacent pairs of elements are identical.

Recursion
The earlier examples of sorting and searching have a striking property: to solve a prob-
lem of size n, we have to break it in half and then work on one or more problems of
size n/2. A common way to implement such methods uses recursion. We define a
function f, which simplifies the problem, and calls itself to solve one or more easier
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instances of the same problem. It then combines the results into a solution for the
original problem.

For example, suppose we have a set of n words, and want to calculate how many dif-
ferent ways they can be combined to make a sequence of words. If we have only one
word (n=1), there is just one way to make it into a sequence. If we have a set of two
words, there are two ways to put them into a sequence. For three words there are six
possibilities. In general, for n words, there are n × n-1 × … × 2 × 1 ways (i.e., the factorial
of n). We can code this up as follows:

>>> def factorial1(n):
...     result = 1
...     for i in range(n):
...         result *= (i+1)
...     return result

However, there is also a recursive algorithm for solving this problem, based on the
following observation. Suppose we have a way to construct all orderings for n-1 distinct
words. Then for each such ordering, there are n places where we can insert a new word:
at the start, the end, or any of the n-2 boundaries between the words. Thus we simply
multiply the number of solutions found for n-1 by the value of n. We also need the
base case, to say that if we have a single word, there’s just one ordering. We can code
this up as follows:

>>> def factorial2(n):
...     if n == 1:
...         return 1
...     else:
...         return n * factorial2(n-1)

Figure 4-3. Sorting by divide-and-conquer: To sort an array, we split it in half and sort each half
(recursively); we merge each sorted half back into a whole list (again recursively); this algorithm is
known as “Merge Sort.”
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These two algorithms solve the same problem. One uses iteration while the other uses
recursion. We can use recursion to navigate a deeply nested object, such as the Word-
Net hypernym hierarchy. Let’s count the size of the hypernym hierarchy rooted at a
given synset s. We’ll do this by finding the size of each hyponym of s, then adding these
together (we will also add 1 for the synset itself). The following function size1() does
this work; notice that the body of the function includes a recursive call to size1():

>>> def size1(s):
...     return 1 + sum(size1(child) for child in s.hyponyms())

We can also design an iterative solution to this problem which processes the hierarchy
in layers. The first layer is the synset itself , then all the hyponyms of the synset, then
all the hyponyms of the hyponyms. Each time through the loop it computes the next
layer by finding the hyponyms of everything in the last layer . It also maintains a total
of the number of synsets encountered so far .

>>> def size2(s):
...     layer = [s] 
...     total = 0
...     while layer:
...         total += len(layer) 
...         layer = [h for c in layer for h in c.hyponyms()] 
...     return total

Not only is the iterative solution much longer, it is harder to interpret. It forces us to
think procedurally, and keep track of what is happening with the layer and total
variables through time. Let’s satisfy ourselves that both solutions give the same result.
We’ll use a new form of the import statement, allowing us to abbreviate the name
wordnet to wn:

>>> from nltk.corpus import wordnet as wn
>>> dog = wn.synset('dog.n.01')
>>> size1(dog)
190
>>> size2(dog)
190

As a final example of recursion, let’s use it to construct a deeply nested object. A letter
trie is a data structure that can be used for indexing a lexicon, one letter at a time. (The
name is based on the word retrieval.) For example, if trie contained a letter trie, then
trie['c'] would be a smaller trie which held all words starting with c. Example 4-6
demonstrates the recursive process of building a trie, using Python dictionaries (Sec-
tion 5.3). To insert the word chien (French for dog), we split off the c and recursively
insert hien into the sub-trie trie['c']. The recursion continues until there are no letters
remaining in the word, when we store the intended value (in this case, the word dog).
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Example 4-6. Building a letter trie: A recursive function that builds a nested dictionary structure; each
level of nesting contains all words with a given prefix, and a sub-trie containing all possible
continuations.

def insert(trie, key, value):
    if key:
        first, rest = key[0], key[1:]
        if first not in trie:
            trie[first] = {}
        insert(trie[first], rest, value)
    else:
        trie['value'] = value

>>> trie = nltk.defaultdict(dict)
>>> insert(trie, 'chat', 'cat')
>>> insert(trie, 'chien', 'dog')
>>> insert(trie, 'chair', 'flesh')
>>> insert(trie, 'chic', 'stylish')
>>> trie = dict(trie)               # for nicer printing
>>> trie['c']['h']['a']['t']['value']
'cat'
>>> pprint.pprint(trie)
{'c': {'h': {'a': {'t': {'value': 'cat'}},
                  {'i': {'r': {'value': 'flesh'}}},
             'i': {'e': {'n': {'value': 'dog'}}}
                  {'c': {'value': 'stylish'}}}}}

Caution!
Despite the simplicity of recursive programming, it comes with a cost.
Each time a function is called, some state information needs to be push-
ed on a stack, so that once the function has completed, execution can
continue from where it left off. For this reason, iterative solutions are
often more efficient than recursive solutions.

Space-Time Trade-offs
We can sometimes significantly speed up the execution of a program by building an
auxiliary data structure, such as an index. The listing in Example 4-7 implements a
simple text retrieval system for the Movie Reviews Corpus. By indexing the document
collection, it provides much faster lookup.

Example 4-7. A simple text retrieval system.

def raw(file):
    contents = open(file).read()
    contents = re.sub(r'<.*?>', ' ', contents)
    contents = re.sub('\s+', ' ', contents)
    return contents

def snippet(doc, term): # buggy
    text = ' '*30 + raw(doc) + ' '*30
    pos = text.index(term)
    return text[pos-30:pos+30]
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print "Building Index..."
files = nltk.corpus.movie_reviews.abspaths()
idx = nltk.Index((w, f) for f in files for w in raw(f).split())

query = ''
while query != "quit":
    query = raw_input("query> ")
    if query in idx:
        for doc in idx[query]:
            print snippet(doc, query)
    else:
        print "Not found"

A more subtle example of a space-time trade-off involves replacing the tokens of a
corpus with integer identifiers. We create a vocabulary for the corpus, a list in which
each word is stored once, then invert this list so that we can look up any word to find
its identifier. Each document is preprocessed, so that a list of words becomes a list of
integers. Any language models can now work with integers. See the listing in Exam-
ple 4-8 for an example of how to do this for a tagged corpus.

Example 4-8. Preprocess tagged corpus data, converting all words and tags to integers.

def preprocess(tagged_corpus):
    words = set()
    tags = set()
    for sent in tagged_corpus:
        for word, tag in sent:
            words.add(word)
            tags.add(tag)
    wm = dict((w,i) for (i,w) in enumerate(words))
    tm = dict((t,i) for (i,t) in enumerate(tags))
    return [[(wm[w], tm[t]) for (w,t) in sent] for sent in tagged_corpus]

Another example of a space-time trade-off is maintaining a vocabulary list. If you need
to process an input text to check that all words are in an existing vocabulary, the vo-
cabulary should be stored as a set, not a list. The elements of a set are automatically
indexed, so testing membership of a large set will be much faster than testing mem-
bership of the corresponding list.

We can test this claim using the timeit module. The Timer class has two parameters: a
statement that is executed multiple times, and setup code that is executed once at the
beginning. We will simulate a vocabulary of 100,000 items using a list  or set  of
integers. The test statement will generate a random item that has a 50% chance of being
in the vocabulary .
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>>> from timeit import Timer
>>> vocab_size = 100000
>>> setup_list = "import random; vocab = range(%d)" % vocab_size 
>>> setup_set = "import random; vocab = set(range(%d))" % vocab_size 
>>> statement = "random.randint(0, %d) in vocab" % vocab_size * 2 
>>> print Timer(statement, setup_list).timeit(1000)
2.78092288971
>>> print Timer(statement, setup_set).timeit(1000)
0.0037260055542

Performing 1,000 list membership tests takes a total of 2.8 seconds, whereas the equiv-
alent tests on a set take a mere 0.0037 seconds, or three orders of magnitude faster!

Dynamic Programming
Dynamic programming is a general technique for designing algorithms which is widely
used in natural language processing. The term “programming” is used in a different
sense to what you might expect, to mean planning or scheduling. Dynamic program-
ming is used when a problem contains overlapping subproblems. Instead of computing
solutions to these subproblems repeatedly, we simply store them in a lookup table. In
the remainder of this section, we will introduce dynamic programming, but in a rather
different context to syntactic parsing.

Pingala was an Indian author who lived around the 5th century B.C., and wrote a
treatise on Sanskrit prosody called the Chandas Shastra. Virahanka extended this work
around the 6th century A.D., studying the number of ways of combining short and long
syllables to create a meter of length n. Short syllables, marked S, take up one unit of
length, while long syllables, marked L, take two. Pingala found, for example, that there
are five ways to construct a meter of length 4: V4 = {LL, SSL, SLS, LSS, SSSS}. Observe
that we can split V4 into two subsets, those starting with L and those starting with S,
as shown in (1).

(1) V4 =
  LL, LSS
    i.e. L prefixed to each item of V2 = {L, SS}
  SSL, SLS, SSSS
    i.e. S prefixed to each item of V3 = {SL, LS, SSS}

With this observation, we can write a little recursive function called virahanka1() to
compute these meters, shown in Example 4-9. Notice that, in order to compute V4 we
first compute V3 and V2. But to compute V3, we need to first compute V2 and V1. This
call structure is depicted in (2).
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Example 4-9. Four ways to compute Sanskrit meter: (i) iterative, (ii) bottom-up dynamic
programming, (iii) top-down dynamic programming, and (iv) built-in memoization.

def virahanka1(n):
    if n == 0:
        return [""]
    elif n == 1:
        return ["S"]
    else:
        s = ["S" + prosody for prosody in virahanka1(n-1)]
        l = ["L" + prosody for prosody in virahanka1(n-2)]
        return s + l

def virahanka2(n):
    lookup = [[""], ["S"]]
    for i in range(n-1):
        s = ["S" + prosody for prosody in lookup[i+1]]
        l = ["L" + prosody for prosody in lookup[i]]
        lookup.append(s + l)
    return lookup[n]

def virahanka3(n, lookup={0:[""], 1:["S"]}):
    if n not in lookup:
        s = ["S" + prosody for prosody in virahanka3(n-1)]
        l = ["L" + prosody for prosody in virahanka3(n-2)]
        lookup[n] = s + l
    return lookup[n]

from nltk import memoize
@memoize
def virahanka4(n):
    if n == 0:
        return [""]
    elif n == 1:
        return ["S"]
    else:
        s = ["S" + prosody for prosody in virahanka4(n-1)]
        l = ["L" + prosody for prosody in virahanka4(n-2)]
        return s + l

>>> virahanka1(4)
['SSSS', 'SSL', 'SLS', 'LSS', 'LL']
>>> virahanka2(4)
['SSSS', 'SSL', 'SLS', 'LSS', 'LL']
>>> virahanka3(4)
['SSSS', 'SSL', 'SLS', 'LSS', 'LL']
>>> virahanka4(4)
['SSSS', 'SSL', 'SLS', 'LSS', 'LL']
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(2)

As you can see, V2 is computed twice. This might not seem like a significant problem,
but it turns out to be rather wasteful as n gets large: to compute V20 using this recursive
technique, we would compute V2 4,181 times; and for V40 we would compute V2
63,245,986 times! A much better alternative is to store the value of V2 in a table and
look it up whenever we need it. The same goes for other values, such as V3 and so on.
Function virahanka2() implements a dynamic programming approach to the problem.
It works by filling up a table (called lookup) with solutions to all smaller instances of
the problem, stopping as soon as we reach the value we’re interested in. At this point
we read off the value and return it. Crucially, each subproblem is only ever solved once.

Notice that the approach taken in virahanka2() is to solve smaller problems on the way
to solving larger problems. Accordingly, this is known as the bottom-up approach to
dynamic programming. Unfortunately it turns out to be quite wasteful for some ap-
plications, since it may compute solutions to sub-problems that are never required for
solving the main problem. This wasted computation can be avoided using the top-
down approach to dynamic programming, which is illustrated in the function vira
hanka3() in Example 4-9. Unlike the bottom-up approach, this approach is recursive.
It avoids the huge wastage of virahanka1() by checking whether it has previously stored
the result. If not, it computes the result recursively and stores it in the table. The last
step is to return the stored result. The final method, in virahanka4(), is to use a Python
“decorator” called memoize, which takes care of the housekeeping work done by
virahanka3() without cluttering up the program. This “memoization” process stores
the result of each previous call to the function along with the parameters that were
used. If the function is subsequently called with the same parameters, it returns the
stored result instead of recalculating it. (This aspect of Python syntax is beyond the
scope of this book.)

This concludes our brief introduction to dynamic programming. We will encounter it
again in Section 8.4.

4.8  A Sample of Python Libraries
Python has hundreds of third-party libraries, specialized software packages that extend
the functionality of Python. NLTK is one such library. To realize the full power of
Python programming, you should become familiar with several other libraries. Most
of these will need to be manually installed on your computer.
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Matplotlib
Python has some libraries that are useful for visualizing language data. The Matplotlib
package supports sophisticated plotting functions with a MATLAB-style interface, and
is available from http://matplotlib.sourceforge.net/.

So far we have focused on textual presentation and the use of formatted print statements
to get output lined up in columns. It is often very useful to display numerical data in
graphical form, since this often makes it easier to detect patterns. For example, in
Example 3-5, we saw a table of numbers showing the frequency of particular modal
verbs in the Brown Corpus, classified by genre. The program in Example 4-10 presents
the same information in graphical format. The output is shown in Figure 4-4 (a color
figure in the graphical display).

Example 4-10. Frequency of modals in different sections of the Brown Corpus.

colors = 'rgbcmyk' # red, green, blue, cyan, magenta, yellow, black
def bar_chart(categories, words, counts):
    "Plot a bar chart showing counts for each word by category"
    import pylab
    ind = pylab.arange(len(words))
    width = 1 / (len(categories) + 1)
    bar_groups = []
    for c in range(len(categories)):
        bars = pylab.bar(ind+c*width, counts[categories[c]], width,
                         color=colors[c % len(colors)])
        bar_groups.append(bars)
    pylab.xticks(ind+width, words)
    pylab.legend([b[0] for b in bar_groups], categories, loc='upper left')
    pylab.ylabel('Frequency')
    pylab.title('Frequency of Six Modal Verbs by Genre')
    pylab.show()

>>> genres = ['news', 'religion', 'hobbies', 'government', 'adventure']
>>> modals = ['can', 'could', 'may', 'might', 'must', 'will']
>>> cfdist = nltk.ConditionalFreqDist(
...              (genre, word)
...              for genre in genres
...              for word in nltk.corpus.brown.words(categories=genre)
...              if word in modals)
...
>>> counts = {}
>>> for genre in genres:
...     counts[genre] = [cfdist[genre][word] for word in modals]
>>> bar_chart(genres, modals, counts)

From the bar chart it is immediately obvious that may and must have almost identical
relative frequencies. The same goes for could and might.

It is also possible to generate such data visualizations on the fly. For example, a web
page with form input could permit visitors to specify search parameters, submit the
form, and see a dynamically generated visualization. To do this we have to specify the
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Agg backend for matplotlib, which is a library for producing raster (pixel) images .
Next, we use all the same PyLab methods as before, but instead of displaying the result
on a graphical terminal using pylab.show(), we save it to a file using pylab.savefig()

. We specify the filename and dpi, then print HTML markup that directs the web
browser to load the file.

>>> import matplotlib
>>> matplotlib.use('Agg') 
>>> pylab.savefig('modals.png') 
>>> print 'Content-Type: text/html'
>>> print
>>> print '<html><body>'
>>> print '<img src="modals.png"/>'
>>> print '</body></html>'

Figure 4-4. Bar chart showing frequency of modals in different sections of Brown Corpus: This
visualization was produced by the program in Example 4-10.

NetworkX
The NetworkX package is for defining and manipulating structures consisting of nodes
and edges, known as graphs. It is available from https://networkx.lanl.gov/. NetworkX
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can be used in conjunction with Matplotlib to visualize networks, such as WordNet
(the semantic network we introduced in Section 2.5). The program in Example 4-11
initializes an empty graph  and then traverses the WordNet hypernym hierarchy
adding edges to the graph . Notice that the traversal is recursive , applying the
programming technique discussed in Section 4.7. The resulting display is shown in
Figure 4-5.

Example 4-11. Using the NetworkX and Matplotlib libraries.

import networkx as nx
import matplotlib
from nltk.corpus import wordnet as wn

def traverse(graph, start, node):
    graph.depth[node.name] = node.shortest_path_distance(start)
    for child in node.hyponyms():
        graph.add_edge(node.name, child.name) 
        traverse(graph, start, child) 

def hyponym_graph(start):
    G = nx.Graph() 
    G.depth = {}
    traverse(G, start, start)
    return G

def graph_draw(graph):
    nx.draw_graphviz(graph,
         node_size = [16 * graph.degree(n) for n in graph],
         node_color = [graph.depth[n] for n in graph],
         with_labels = False)
    matplotlib.pyplot.show()

>>> dog = wn.synset('dog.n.01')
>>> graph = hyponym_graph(dog)
>>> graph_draw(graph)

csv
Language analysis work often involves data tabulations, containing information about
lexical items, the participants in an empirical study, or the linguistic features extracted
from a corpus. Here’s a fragment of a simple lexicon, in CSV format:

sleep, sli:p, v.i, a condition of body and mind ...
walk, wo:k, v.intr, progress by lifting and setting down each foot ...
wake, weik, intrans, cease to sleep

We can use Python’s CSV library to read and write files stored in this format. For
example, we can open a CSV file called lexicon.csv  and iterate over its rows :

>>> import csv
>>> input_file = open("lexicon.csv", "rb") 
>>> for row in csv.reader(input_file): 
...     print row
['sleep', 'sli:p', 'v.i', 'a condition of body and mind ...']
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['walk', 'wo:k', 'v.intr', 'progress by lifting and setting down each foot ...']
['wake', 'weik', 'intrans', 'cease to sleep']

Each row is just a list of strings. If any fields contain numerical data, they will appear
as strings, and will have to be converted using int() or float().

Figure 4-5. Visualization with NetworkX and Matplotlib: Part of the WordNet hypernym hierarchy
is displayed, starting with dog.n.01 (the darkest node in the middle); node size is based on the number
of children of the node, and color is based on the distance of the node from dog.n.01; this visualization
was produced by the program in Example 4-11.

NumPy
The NumPy package provides substantial support for numerical processing in Python.
NumPy has a multidimensional array object, which is easy to initialize and access:

>>> from numpy import array
>>> cube = array([ [[0,0,0], [1,1,1], [2,2,2]],
...                [[3,3,3], [4,4,4], [5,5,5]],
...                [[6,6,6], [7,7,7], [8,8,8]] ])
>>> cube[1,1,1]
4
>>> cube[2].transpose()
array([[6, 7, 8],
       [6, 7, 8],
       [6, 7, 8]])
>>> cube[2,1:]
array([[7, 7, 7],
       [8, 8, 8]])

NumPy includes linear algebra functions. Here we perform singular value decomposi-
tion on a matrix, an operation used in latent semantic analysis to help identify implicit
concepts in a document collection:
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>>> from numpy import linalg
>>> a=array([[4,0], [3,-5]])
>>> u,s,vt = linalg.svd(a)
>>> u
array([[-0.4472136 , -0.89442719],
       [-0.89442719,  0.4472136 ]])
>>> s
array([ 6.32455532,  3.16227766])
>>> vt
array([[-0.70710678,  0.70710678],
       [-0.70710678, -0.70710678]])

NLTK’s clustering package nltk.cluster makes extensive use of NumPy arrays, and
includes support for k-means clustering, Gaussian EM clustering, group average
agglomerative clustering, and dendogram plots. For details, type help(nltk.cluster).

Other Python Libraries
There are many other Python libraries, and you can search for them with the help of
the Python Package Index at http://pypi.python.org/. Many libraries provide an interface
to external software, such as relational databases (e.g., mysql-python) and large docu-
ment collections (e.g., PyLucene). Many other libraries give access to file formats such
as PDF, MSWord, and XML (pypdf, pywin32, xml.etree), RSS feeds (e.g., feedparser),
and electronic mail (e.g., imaplib, email).

4.9  Summary
• Python’s assignment and parameter passing use object references; e.g., if a is a list

and we assign b = a, then any operation on a will modify b, and vice versa.

• The is operation tests whether two objects are identical internal objects, whereas
== tests whether two objects are equivalent. This distinction parallels the type-
token distinction.

• Strings, lists, and tuples are different kinds of sequence object, supporting common
operations such as indexing, slicing, len(), sorted(), and membership testing using
in.

• We can write text to a file by opening the file for writing

ofile = open('output.txt', 'w'

then adding content to the file ofile.write("Monty Python"), and finally closing
the file ofile.close().

• A declarative programming style usually produces more compact, readable code;
manually incremented loop variables are usually unnecessary. When a sequence
must be enumerated, use enumerate().

• Functions are an essential programming abstraction: key concepts to understand
are parameter passing, variable scope, and docstrings.
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• A function serves as a namespace: names defined inside a function are not visible
outside that function, unless those names are declared to be global.

• Modules permit logically related material to be localized in a file. A module serves
as a namespace: names defined in a module—such as variables and functions—
are not visible to other modules, unless those names are imported.

• Dynamic programming is an algorithm design technique used widely in NLP that
stores the results of previous computations in order to avoid unnecessary
recomputation.

4.10  Further Reading
This chapter has touched on many topics in programming, some specific to Python,
and some quite general. We’ve just scratched the surface, and you may want to read
more about these topics, starting with the further materials for this chapter available
at http://www.nltk.org/.

The Python website provides extensive documentation. It is important to understand
the built-in functions and standard types, described at http://docs.python.org/library/
functions.html and http://docs.python.org/library/stdtypes.html. We have learned about
generators and their importance for efficiency; for information about iterators, a closely
related topic, see http://docs.python.org/library/itertools.html. Consult your favorite Py-
thon book for more information on such topics. An excellent resource for using Python
for multimedia processing, including working with sound files, is (Guzdial, 2005).

When using the online Python documentation, be aware that your installed version
might be different from the version of the documentation you are reading. You can
easily check what version you have, with import sys; sys.version. Version-specific
documentation is available at http://www.python.org/doc/versions/.

Algorithm design is a rich field within computer science. Some good starting points are
(Harel, 2004), (Levitin, 2004), and (Knuth, 2006). Useful guidance on the practice of
software development is provided in (Hunt & Thomas, 2000) and (McConnell, 2004).

4.11  Exercises
1. ○ Find out more about sequence objects using Python’s help facility. In the inter-

preter, type help(str), help(list), and help(tuple). This will give you a full list of
the functions supported by each type. Some functions have special names flanked
with underscores; as the help documentation shows, each such function corre-
sponds to something more familiar. For example x.__getitem__(y) is just a long-
winded way of saying x[y].

2. ○ Identify three operations that can be performed on both tuples and lists. Identify
three list operations that cannot be performed on tuples. Name a context where
using a list instead of a tuple generates a Python error.
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3. ○ Find out how to create a tuple consisting of a single item. There are at least two
ways to do this.

4. ○ Create a list words = ['is', 'NLP', 'fun', '?']. Use a series of assignment
statements (e.g., words[1] = words[2]) and a temporary variable tmp to transform
this list into the list ['NLP', 'is', 'fun', '!']. Now do the same transformation
using tuple assignment.

5. ○ Read about the built-in comparison function cmp, by typing help(cmp). How does
it differ in behavior from the comparison operators?

6. ○ Does the method for creating a sliding window of n-grams behave correctly for
the two limiting cases: n = 1 and n = len(sent)?

7. ○ We pointed out that when empty strings and empty lists occur in the condition
part of an if clause, they evaluate to False. In this case, they are said to be occurring
in a Boolean context. Experiment with different kinds of non-Boolean expressions
in Boolean contexts, and see whether they evaluate as True or False.

8. ○ Use the inequality operators to compare strings, e.g., 'Monty' < 'Python'. What
happens when you do 'Z' < 'a'? Try pairs of strings that have a common prefix,
e.g., 'Monty' < 'Montague'. Read up on “lexicographical sort” in order to under-
stand what is going on here. Try comparing structured objects, e.g., ('Monty', 1)
< ('Monty', 2). Does this behave as expected?

9. ○ Write code that removes whitespace at the beginning and end of a string, and
normalizes whitespace between words to be a single-space character.

a. Do this task using split() and join().

b. Do this task using regular expression substitutions.

10. ○ Write a program to sort words by length. Define a helper function cmp_len which
uses the cmp comparison function on word lengths.

11. ◑ Create a list of words and store it in a variable sent1. Now assign sent2 =
sent1. Modify one of the items in sent1 and verify that sent2 has changed.

a. Now try the same exercise, but instead assign sent2 = sent1[:]. Modify
sent1 again and see what happens to sent2. Explain.

b. Now define text1 to be a list of lists of strings (e.g., to represent a text consisting
of multiple sentences). Now assign text2 = text1[:], assign a new value to
one of the words, e.g., text1[1][1] = 'Monty'. Check what this did to text2.
Explain.

c. Load Python’s deepcopy() function (i.e., from copy import deepcopy), consult
its documentation, and test that it makes a fresh copy of any object.

12. ◑ Initialize an n-by-m list of lists of empty strings using list multiplication, e.g.,
word_table = [[''] * n] * m. What happens when you set one of its values, e.g.,
word_table[1][2] = "hello"? Explain why this happens. Now write an expression
using range() to construct a list of lists, and show that it does not have this problem.
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13. ◑ Write code to initialize a two-dimensional array of sets called word_vowels and
process a list of words, adding each word to word_vowels[l][v] where l is the length
of the word and v is the number of vowels it contains.

14. ◑ Write a function novel10(text) that prints any word that appeared in the last
10% of a text that had not been encountered earlier.

15. ◑ Write a program that takes a sentence expressed as a single string, splits it, and
counts up the words. Get it to print out each word and the word’s frequency, one
per line, in alphabetical order.

16. ◑ Read up on Gematria, a method for assigning numbers to words, and for mapping
between words having the same number to discover the hidden meaning of texts
(http://en.wikipedia.org/wiki/Gematria, http://essenes.net/gemcal.htm).

a. Write a function gematria() that sums the numerical values of the letters of a
word, according to the letter values in letter_vals:

>>> letter_vals = {'a':1, 'b':2, 'c':3, 'd':4, 'e':5, 'f':80, 'g':3, 'h':8,
... 'i':10, 'j':10, 'k':20, 'l':30, 'm':40, 'n':50, 'o':70, 'p':80, 'q':100,
... 'r':200, 's':300, 't':400, 'u':6, 'v':6, 'w':800, 'x':60, 'y':10, 'z':7}

b. Process a corpus (e.g., nltk.corpus.state_union) and for each document,
count how many of its words have the number 666.

c. Write a function decode() to process a text, randomly replacing words with
their Gematria equivalents, in order to discover the “hidden meaning” of the
text.

17. ◑ Write a function shorten(text, n) to process a text, omitting the n most fre-
quently occurring words of the text. How readable is it?

18. ◑ Write code to print out an index for a lexicon, allowing someone to look up
words according to their meanings (or their pronunciations; whatever properties
are contained in the lexical entries).

19. ◑ Write a list comprehension that sorts a list of WordNet synsets for proximity to
a given synset. For example, given the synsets minke_whale.n.01, orca.n.01,
novel.n.01, and tortoise.n.01, sort them according to their path_distance() from
right_whale.n.01.

20. ◑ Write a function that takes a list of words (containing duplicates) and returns a
list of words (with no duplicates) sorted by decreasing frequency. E.g., if the input
list contained 10 instances of the word table and 9 instances of the word chair,
then table would appear before chair in the output list.

21. ◑ Write a function that takes a text and a vocabulary as its arguments and returns
the set of words that appear in the text but not in the vocabulary. Both arguments
can be represented as lists of strings. Can you do this in a single line, using set.dif
ference()?

22. ◑ Import the itemgetter() function from the operator module in Python’s standard
library (i.e., from operator import itemgetter). Create a list words containing sev-
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eral words. Now try calling: sorted(words, key=itemgetter(1)), and sor
ted(words, key=itemgetter(-1)). Explain what itemgetter() is doing.

23. ◑ Write a recursive function lookup(trie, key) that looks up a key in a trie, and
returns the value it finds. Extend the function to return a word when it is uniquely
determined by its prefix (e.g., vanguard is the only word that starts with vang-, so
lookup(trie, 'vang') should return the same thing as lookup(trie, 'vanguard')).

24. ◑ Read up on “keyword linkage” (Chapter 5 of (Scott & Tribble, 2006)). Extract
keywords from NLTK’s Shakespeare Corpus and using the NetworkX package,
plot keyword linkage networks.

25. ◑ Read about string edit distance and the Levenshtein Algorithm. Try the imple-
mentation provided in nltk.edit_dist(). In what way is this using dynamic pro-
gramming? Does it use the bottom-up or top-down approach? (See also http://
norvig.com/spell-correct.html.)

26. ◑ The Catalan numbers arise in many applications of combinatorial mathematics,
including the counting of parse trees (Section 8.6). The series can be defined as
follows: C0 = 1, and Cn+1 = Σ0..n (CiCn-i).

a. Write a recursive function to compute nth Catalan number Cn.

b. Now write another function that does this computation using dynamic pro-
gramming.

c. Use the timeit module to compare the performance of these functions as n
increases.

27. ● Reproduce some of the results of (Zhao & Zobel, 2007) concerning authorship
identification.

28. ● Study gender-specific lexical choice, and see if you can reproduce some of the
results of http://www.clintoneast.com/articles/words.php.

29. ● Write a recursive function that pretty prints a trie in alphabetically sorted order,
for example:

chair: 'flesh'
---t: 'cat'
--ic: 'stylish'
---en: 'dog'

30. ● With the help of the trie data structure, write a recursive function that processes
text, locating the uniqueness point in each word, and discarding the remainder of
each word. How much compression does this give? How readable is the resulting
text?

31. ● Obtain some raw text, in the form of a single, long string. Use Python’s text
wrap module to break it up into multiple lines. Now write code to add extra spaces
between words, in order to justify the output. Each line must have the same width,
and spaces must be approximately evenly distributed across each line. No line can
begin or end with a space.
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32. ● Develop a simple extractive summarization tool, that prints the sentences of a
document which contain the highest total word frequency. Use FreqDist() to count
word frequencies, and use sum to sum the frequencies of the words in each sentence.
Rank the sentences according to their score. Finally, print the n highest-scoring
sentences in document order. Carefully review the design of your program,
especially your approach to this double sorting. Make sure the program is written
as clearly as possible.

33. ● Develop your own NgramTagger class that inherits from NLTK’s class, and which
encapsulates the method of collapsing the vocabulary of the tagged training and
testing data that was described in Chapter 5. Make sure that the unigram and
default backoff taggers have access to the full vocabulary.

34. ● Read the following article on semantic orientation of adjectives. Use the Net-
workX package to visualize a network of adjectives with edges to indicate same
versus different semantic orientation (see http://www.aclweb.org/anthology/P97
-1023).

35. ● Design an algorithm to find the “statistically improbable phrases” of a document
collection (see http://www.amazon.com/gp/search-inside/sipshelp.html).

36. ● Write a program to implement a brute-force algorithm for discovering word
squares, a kind of n × n: crossword in which the entry in the nth row is the same
as the entry in the nth column. For discussion, see http://itre.cis.upenn.edu/~myl/
languagelog/archives/002679.html.
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CHAPTER 5

Categorizing and Tagging Words

Back in elementary school you learned the difference between nouns, verbs, adjectives,
and adverbs. These “word classes” are not just the idle invention of grammarians, but
are useful categories for many language processing tasks. As we will see, they arise from
simple analysis of the distribution of words in text. The goal of this chapter is to answer
the following questions:

1. What are lexical categories, and how are they used in natural language processing?

2. What is a good Python data structure for storing words and their categories?

3. How can we automatically tag each word of a text with its word class?

Along the way, we’ll cover some fundamental techniques in NLP, including sequence
labeling, n-gram models, backoff, and evaluation. These techniques are useful in many
areas, and tagging gives us a simple context in which to present them. We will also see
how tagging is the second step in the typical NLP pipeline, following tokenization.

The process of classifying words into their parts-of-speech and labeling them accord-
ingly is known as part-of-speech tagging, POS tagging, or simply tagging. Parts-
of-speech are also known as word classes or lexical categories. The collection of tags
used for a particular task is known as a tagset. Our emphasis in this chapter is on
exploiting tags, and tagging text automatically.

5.1  Using a Tagger
A part-of-speech tagger, or POS tagger, processes a sequence of words, and attaches
a part of speech tag to each word (don’t forget to import nltk):

>>> text = nltk.word_tokenize("And now for something completely different")
>>> nltk.pos_tag(text)
[('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'),
('completely', 'RB'), ('different', 'JJ')]

Here we see that and is CC, a coordinating conjunction; now and completely are RB, or
adverbs; for is IN, a preposition; something is NN, a noun; and different is JJ, an adjective.
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NLTK provides documentation for each tag, which can be queried using
the tag, e.g., nltk.help.upenn_tagset('RB'), or a regular expression,
e.g., nltk.help.upenn_brown_tagset('NN.*'). Some corpora have RE-
ADME files with tagset documentation; see nltk.name.readme(), sub-
stituting in the name of the corpus.

Let’s look at another example, this time including some homonyms:

>>> text = nltk.word_tokenize("They refuse to permit us to obtain the refuse permit")
>>> nltk.pos_tag(text)
[('They', 'PRP'), ('refuse', 'VBP'), ('to', 'TO'), ('permit', 'VB'), ('us', 'PRP'),
('to', 'TO'), ('obtain', 'VB'), ('the', 'DT'), ('refuse', 'NN'), ('permit', 'NN')]

Notice that refuse and permit both appear as a present tense verb (VBP) and a noun
(NN). E.g., refUSE is a verb meaning “deny,” while REFuse is a noun meaning “trash”
(i.e., they are not homophones). Thus, we need to know which word is being used in
order to pronounce the text correctly. (For this reason, text-to-speech systems usually
perform POS tagging.)

Your Turn: Many words, like ski and race, can be used as nouns or
verbs with no difference in pronunciation. Can you think of others?
Hint: think of a commonplace object and try to put the word to before
it to see if it can also be a verb, or think of an action and try to put the
before it to see if it can also be a noun. Now make up a sentence with
both uses of this word, and run the POS tagger on this sentence.

Lexical categories like “noun” and part-of-speech tags like NN seem to have their uses,
but the details will be obscure to many readers. You might wonder what justification
there is for introducing this extra level of information. Many of these categories arise
from superficial analysis of the distribution of words in text. Consider the following
analysis involving woman (a noun), bought (a verb), over (a preposition), and the (a
determiner). The text.similar() method takes a word w, finds all contexts w1w w2,
then finds all words w' that appear in the same context, i.e. w1w'w2.

>>> text = nltk.Text(word.lower() for word in nltk.corpus.brown.words())
>>> text.similar('woman')
Building word-context index...
man time day year car moment world family house country child boy
state job way war girl place room word
>>> text.similar('bought')
made said put done seen had found left given heard brought got been
was set told took in felt that
>>> text.similar('over')
in on to of and for with from at by that into as up out down through
is all about
>>> text.similar('the')
a his this their its her an that our any all one these my in your no
some other and
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Observe that searching for woman finds nouns; searching for bought mostly finds verbs;
searching for over generally finds prepositions; searching for the finds several deter-
miners. A tagger can correctly identify the tags on these words in the context of a
sentence, e.g., The woman bought over $150,000 worth of clothes.

A tagger can also model our knowledge of unknown words; for example, we can guess
that scrobbling is probably a verb, with the root scrobble, and likely to occur in contexts
like he was scrobbling.

5.2  Tagged Corpora
Representing Tagged Tokens
By convention in NLTK, a tagged token is represented using a tuple consisting of the
token and the tag. We can create one of these special tuples from the standard string
representation of a tagged token, using the function str2tuple():

>>> tagged_token = nltk.tag.str2tuple('fly/NN')
>>> tagged_token
('fly', 'NN')
>>> tagged_token[0]
'fly'
>>> tagged_token[1]
'NN'

We can construct a list of tagged tokens directly from a string. The first step is to
tokenize the string to access the individual word/tag strings, and then to convert each
of these into a tuple (using str2tuple()).

>>> sent = '''
... The/AT grand/JJ jury/NN commented/VBD on/IN a/AT number/NN of/IN
... other/AP topics/NNS ,/, AMONG/IN them/PPO the/AT Atlanta/NP and/CC
... Fulton/NP-tl County/NN-tl purchasing/VBG departments/NNS which/WDT it/PPS
... said/VBD ``/`` ARE/BER well/QL operated/VBN and/CC follow/VB generally/RB
... accepted/VBN practices/NNS which/WDT inure/VB to/IN the/AT best/JJT
... interest/NN of/IN both/ABX governments/NNS ''/'' ./.
... '''
>>> [nltk.tag.str2tuple(t) for t in sent.split()]
[('The', 'AT'), ('grand', 'JJ'), ('jury', 'NN'), ('commented', 'VBD'),
('on', 'IN'), ('a', 'AT'), ('number', 'NN'), ... ('.', '.')]

Reading Tagged Corpora
Several of the corpora included with NLTK have been tagged for their part-of-speech.
Here’s an example of what you might see if you opened a file from the Brown Corpus
with a text editor:

The/at Fulton/np-tl County/nn-tl Grand/jj-tl Jury/nn-tl said/vbd Friday/nr an/at inves-
tigation/nn of/in Atlanta’s/np$ recent/jj primary/nn election/nn produced/vbd / no/at
evidence/nn ''/'' that/cs any/dti irregularities/nns took/vbd place/nn ./.
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Other corpora use a variety of formats for storing part-of-speech tags. NLTK’s corpus
readers provide a uniform interface so that you don’t have to be concerned with the
different file formats. In contrast with the file extract just shown, the corpus reader for
the Brown Corpus represents the data as shown next. Note that part-of-speech tags
have been converted to uppercase; this has become standard practice since the Brown
Corpus was published.

>>> nltk.corpus.brown.tagged_words()
[('The', 'AT'), ('Fulton', 'NP-TL'), ('County', 'NN-TL'), ...]
>>> nltk.corpus.brown.tagged_words(simplify_tags=True)
[('The', 'DET'), ('Fulton', 'N'), ('County', 'N'), ...]

Whenever a corpus contains tagged text, the NLTK corpus interface will have a
tagged_words() method. Here are some more examples, again using the output format
illustrated for the Brown Corpus:

>>> print nltk.corpus.nps_chat.tagged_words()
[('now', 'RB'), ('im', 'PRP'), ('left', 'VBD'), ...]
>>> nltk.corpus.conll2000.tagged_words()
[('Confidence', 'NN'), ('in', 'IN'), ('the', 'DT'), ...]
>>> nltk.corpus.treebank.tagged_words()
[('Pierre', 'NNP'), ('Vinken', 'NNP'), (',', ','), ...]

Not all corpora employ the same set of tags; see the tagset help functionality and the
readme() methods mentioned earlier for documentation. Initially we want to avoid the
complications of these tagsets, so we use a built-in mapping to a simplified tagset:

>>> nltk.corpus.brown.tagged_words(simplify_tags=True)
[('The', 'DET'), ('Fulton', 'NP'), ('County', 'N'), ...]
>>> nltk.corpus.treebank.tagged_words(simplify_tags=True)
[('Pierre', 'NP'), ('Vinken', 'NP'), (',', ','), ...]

Tagged corpora for several other languages are distributed with NLTK, including Chi-
nese, Hindi, Portuguese, Spanish, Dutch, and Catalan. These usually contain non-
ASCII text, and Python always displays this in hexadecimal when printing a larger
structure such as a list.

>>> nltk.corpus.sinica_treebank.tagged_words()
[('\xe4\xb8\x80', 'Neu'), ('\xe5\x8f\x8b\xe6\x83\x85', 'Nad'), ...]
>>> nltk.corpus.indian.tagged_words()
[('\xe0\xa6\xae\xe0\xa6\xb9\xe0\xa6\xbf\xe0\xa6\xb7\xe0\xa7\x87\xe0\xa6\xb0', 'NN'),
('\xe0\xa6\xb8\xe0\xa6\xa8\xe0\xa7\x8d\xe0\xa6\xa4\xe0\xa6\xbe\xe0\xa6\xa8', 'NN'),
...]
>>> nltk.corpus.mac_morpho.tagged_words()
[('Jersei', 'N'), ('atinge', 'V'), ('m\xe9dia', 'N'), ...]
>>> nltk.corpus.conll2002.tagged_words()
[('Sao', 'NC'), ('Paulo', 'VMI'), ('(', 'Fpa'), ...]
>>> nltk.corpus.cess_cat.tagged_words()
[('El', 'da0ms0'), ('Tribunal_Suprem', 'np0000o'), ...]

If your environment is set up correctly, with appropriate editors and fonts, you should
be able to display individual strings in a human-readable way. For example, Fig-
ure 5-1 shows data accessed using nltk.corpus.indian.
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If the corpus is also segmented into sentences, it will have a tagged_sents() method
that divides up the tagged words into sentences rather than presenting them as one big
list. This will be useful when we come to developing automatic taggers, as they are
trained and tested on lists of sentences, not words.

A Simplified Part-of-Speech Tagset
Tagged corpora use many different conventions for tagging words. To help us get star-
ted, we will be looking at a simplified tagset (shown in Table 5-1).

Table 5-1. Simplified part-of-speech tagset

Tag Meaning Examples

ADJ adjective new, good, high, special, big, local

ADV adverb really, already, still, early, now

CNJ conjunction and, or, but, if, while, although

DET determiner the, a, some, most, every, no

EX existential there, there’s

FW foreign word dolce, ersatz, esprit, quo, maitre

MOD modal verb will, can, would, may, must, should

N noun year, home, costs, time, education

NP proper noun Alison, Africa, April, Washington

NUM number twenty-four, fourth, 1991, 14:24

PRO pronoun he, their, her, its, my, I, us

P preposition on, of, at, with, by, into, under

TO the word to to

UH interjection ah, bang, ha, whee, hmpf, oops

V verb is, has, get, do, make, see, run

VD past tense said, took, told, made, asked

VG present participle making, going, playing, working

VN past participle given, taken, begun, sung

WH wh determiner who, which, when, what, where, how
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Figure 5-1. POS tagged data from four Indian languages: Bangla, Hindi, Marathi, and Telugu.

Let’s see which of these tags are the most common in the news category of the Brown
Corpus:

>>> from nltk.corpus import brown
>>> brown_news_tagged = brown.tagged_words(categories='news', simplify_tags=True)
>>> tag_fd = nltk.FreqDist(tag for (word, tag) in brown_news_tagged)
>>> tag_fd.keys()
['N', 'P', 'DET', 'NP', 'V', 'ADJ', ',', '.', 'CNJ', 'PRO', 'ADV', 'VD', ...]

Your Turn: Plot the frequency distribution just shown using
tag_fd.plot(cumulative=True). What percentage of words are tagged
using the first five tags of the above list?

We can use these tags to do powerful searches using a graphical POS-concordance tool
nltk.app.concordance(). Use it to search for any combination of words and POS tags,
e.g., N N N N, hit/VD, hit/VN, or the ADJ man.

Nouns
Nouns generally refer to people, places, things, or concepts, e.g., woman, Scotland,
book, intelligence. Nouns can appear after determiners and adjectives, and can be the
subject or object of the verb, as shown in Table 5-2.

Table 5-2. Syntactic patterns involving some nouns

Word After a determiner Subject of the verb

woman the woman who I saw yesterday ... the woman sat down

Scotland the Scotland I remember as a child ... Scotland has five million people

book the book I bought yesterday ... this book recounts the colonization of Australia

intelligence the intelligence displayed by the child ... Mary’s intelligence impressed her teachers

The simplified noun tags are N for common nouns like book, and NP for proper nouns
like Scotland.
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Let’s inspect some tagged text to see what parts-of-speech occur before a noun, with
the most frequent ones first. To begin with, we construct a list of bigrams whose mem-
bers are themselves word-tag pairs, such as (('The', 'DET'), ('Fulton', 'NP')) and
(('Fulton', 'NP'), ('County', 'N')). Then we construct a FreqDist from the tag parts
of the bigrams.

>>> word_tag_pairs = nltk.bigrams(brown_news_tagged)
>>> list(nltk.FreqDist(a[1] for (a, b) in word_tag_pairs if b[1] == 'N'))
['DET', 'ADJ', 'N', 'P', 'NP', 'NUM', 'V', 'PRO', 'CNJ', '.', ',', 'VG', 'VN', ...]

This confirms our assertion that nouns occur after determiners and adjectives, includ-
ing numeral adjectives (tagged as NUM).

Verbs
Verbs are words that describe events and actions, e.g., fall and eat, as shown in Ta-
ble 5-3. In the context of a sentence, verbs typically express a relation involving the
referents of one or more noun phrases.

Table 5-3. Syntactic patterns involving some verbs

Word Simple With modifiers and adjuncts (italicized)

fall Rome fell Dot com stocks suddenly fell like a stone

eat Mice eat cheese John ate the pizza with gusto

What are the most common verbs in news text? Let’s sort all the verbs by frequency:

>>> wsj = nltk.corpus.treebank.tagged_words(simplify_tags=True)
>>> word_tag_fd = nltk.FreqDist(wsj)
>>> [word + "/" + tag for (word, tag) in word_tag_fd if tag.startswith('V')]
['is/V', 'said/VD', 'was/VD', 'are/V', 'be/V', 'has/V', 'have/V', 'says/V',
'were/VD', 'had/VD', 'been/VN', "'s/V", 'do/V', 'say/V', 'make/V', 'did/VD',
'rose/VD', 'does/V', 'expected/VN', 'buy/V', 'take/V', 'get/V', 'sell/V',
'help/V', 'added/VD', 'including/VG', 'according/VG', 'made/VN', 'pay/V', ...]

Note that the items being counted in the frequency distribution are word-tag pairs.
Since words and tags are paired, we can treat the word as a condition and the tag as an
event, and initialize a conditional frequency distribution with a list of condition-event
pairs. This lets us see a frequency-ordered list of tags given a word:

>>> cfd1 = nltk.ConditionalFreqDist(wsj)
>>> cfd1['yield'].keys()
['V', 'N']
>>> cfd1['cut'].keys()
['V', 'VD', 'N', 'VN']

We can reverse the order of the pairs, so that the tags are the conditions, and the words
are the events. Now we can see likely words for a given tag:
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>>> cfd2 = nltk.ConditionalFreqDist((tag, word) for (word, tag) in wsj)
>>> cfd2['VN'].keys()
['been', 'expected', 'made', 'compared', 'based', 'priced', 'used', 'sold',
'named', 'designed', 'held', 'fined', 'taken', 'paid', 'traded', 'said', ...]

To clarify the distinction between VD (past tense) and VN (past participle), let’s find
words that can be both VD and VN, and see some surrounding text:

>>> [w for w in cfd1.conditions() if 'VD' in cfd1[w] and 'VN' in cfd1[w]]
['Asked', 'accelerated', 'accepted', 'accused', 'acquired', 'added', 'adopted', ...]
>>> idx1 = wsj.index(('kicked', 'VD'))
>>> wsj[idx1-4:idx1+1]
[('While', 'P'), ('program', 'N'), ('trades', 'N'), ('swiftly', 'ADV'),
('kicked', 'VD')]
>>> idx2 = wsj.index(('kicked', 'VN'))
>>> wsj[idx2-4:idx2+1]
[('head', 'N'), ('of', 'P'), ('state', 'N'), ('has', 'V'), ('kicked', 'VN')]

In this case, we see that the past participle of kicked is preceded by a form of the auxiliary
verb have. Is this generally true?

Your Turn: Given the list of past participles specified by
cfd2['VN'].keys(), try to collect a list of all the word-tag pairs that im-
mediately precede items in that list.

Adjectives and Adverbs
Two other important word classes are adjectives and adverbs. Adjectives describe
nouns, and can be used as modifiers (e.g., large in the large pizza), or as predicates (e.g.,
the pizza is large). English adjectives can have internal structure (e.g., fall+ing in the
falling stocks). Adverbs modify verbs to specify the time, manner, place, or direction of
the event described by the verb (e.g., quickly in the stocks fell quickly). Adverbs may
also modify adjectives (e.g., really in Mary’s teacher was really nice).

English has several categories of closed class words in addition to prepositions, such
as articles (also often called determiners) (e.g., the, a), modals (e.g., should, may),
and personal pronouns (e.g., she, they). Each dictionary and grammar classifies these
words differently.

Your Turn: If you are uncertain about some of these parts-of-speech,
study them using nltk.app.concordance(), or watch some of the School-
house Rock! grammar videos available at YouTube, or consult Sec-
tion 5.9.
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Unsimplified Tags
Let’s find the most frequent nouns of each noun part-of-speech type. The program in
Example 5-1 finds all tags starting with NN, and provides a few example words for each
one. You will see that there are many variants of NN; the most important contain $ for
possessive nouns, S for plural nouns (since plural nouns typically end in s), and P for
proper nouns. In addition, most of the tags have suffix modifiers: -NC for citations,
-HL for words in headlines, and -TL for titles (a feature of Brown tags).

Example 5-1. Program to find the most frequent noun tags.

def findtags(tag_prefix, tagged_text):
    cfd = nltk.ConditionalFreqDist((tag, word) for (word, tag) in tagged_text
                                  if tag.startswith(tag_prefix))
    return dict((tag, cfd[tag].keys()[:5]) for tag in cfd.conditions())

>>> tagdict = findtags('NN', nltk.corpus.brown.tagged_words(categories='news'))
>>> for tag in sorted(tagdict):
...     print tag, tagdict[tag]
...
NN ['year', 'time', 'state', 'week', 'man']
NN$ ["year's", "world's", "state's", "nation's", "company's"]
NN$-HL ["Golf's", "Navy's"]
NN$-TL ["President's", "University's", "League's", "Gallery's", "Army's"]
NN-HL ['cut', 'Salary', 'condition', 'Question', 'business']
NN-NC ['eva', 'ova', 'aya']
NN-TL ['President', 'House', 'State', 'University', 'City']
NN-TL-HL ['Fort', 'City', 'Commissioner', 'Grove', 'House']
NNS ['years', 'members', 'people', 'sales', 'men']
NNS$ ["children's", "women's", "men's", "janitors'", "taxpayers'"]
NNS$-HL ["Dealers'", "Idols'"]
NNS$-TL ["Women's", "States'", "Giants'", "Officers'", "Bombers'"]
NNS-HL ['years', 'idols', 'Creations', 'thanks', 'centers']
NNS-TL ['States', 'Nations', 'Masters', 'Rules', 'Communists']
NNS-TL-HL ['Nations']

When we come to constructing part-of-speech taggers later in this chapter, we will use
the unsimplified tags.

Exploring Tagged Corpora
Let’s briefly return to the kinds of exploration of corpora we saw in previous chapters,
this time exploiting POS tags.

Suppose we’re studying the word often and want to see how it is used in text. We could
ask to see the words that follow often:

>>> brown_learned_text = brown.words(categories='learned')
>>> sorted(set(b for (a, b) in nltk.ibigrams(brown_learned_text) if a == 'often'))
[',', '.', 'accomplished', 'analytically', 'appear', 'apt', 'associated', 'assuming',
'became', 'become', 'been', 'began', 'call', 'called', 'carefully', 'chose', ...]

However, it’s probably more instructive use the tagged_words() method to look at the
part-of-speech tag of the following words:
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>>> brown_lrnd_tagged = brown.tagged_words(categories='learned', simplify_tags=True)
>>> tags = [b[1] for (a, b) in nltk.ibigrams(brown_lrnd_tagged) if a[0] == 'often']
>>> fd = nltk.FreqDist(tags)
>>> fd.tabulate()
  VN    V   VD  DET  ADJ  ADV    P  CNJ    ,   TO   VG   WH  VBZ    .
  15   12    8    5    5    4    4    3    3    1    1    1    1    1

Notice that the most high-frequency parts-of-speech following often are verbs. Nouns
never appear in this position (in this particular corpus).

Next, let’s look at some larger context, and find words involving particular sequences
of tags and words (in this case "<Verb> to <Verb>"). In Example 5-2, we consider each
three-word window in the sentence , and check whether they meet our criterion .
If the tags match, we print the corresponding words .

Example 5-2. Searching for three-word phrases using POS tags.

from nltk.corpus import brown
def process(sentence):
    for (w1,t1), (w2,t2), (w3,t3) in nltk.trigrams(sentence): 
        if (t1.startswith('V') and t2 == 'TO' and t3.startswith('V')): 
            print w1, w2, w3 

>>> for tagged_sent in brown.tagged_sents():
...     process(tagged_sent)
...
combined to achieve
continue to place
serve to protect
wanted to wait
allowed to place
expected to become
...

Finally, let’s look for words that are highly ambiguous as to their part-of-speech tag.
Understanding why such words are tagged as they are in each context can help us clarify
the distinctions between the tags.

>>> brown_news_tagged = brown.tagged_words(categories='news', simplify_tags=True)
>>> data = nltk.ConditionalFreqDist((word.lower(), tag)
...                                 for (word, tag) in brown_news_tagged)
>>> for word in data.conditions():
...     if len(data[word]) > 3:
...         tags = data[word].keys()
...         print word, ' '.join(tags)
...
best ADJ ADV NP V
better ADJ ADV V DET
close ADV ADJ V N
cut V N VN VD
even ADV DET ADJ V
grant NP N V -
hit V VD VN N
lay ADJ V NP VD
left VD ADJ N VN

188 | Chapter 5: Categorizing and Tagging Words



like CNJ V ADJ P -
near P ADV ADJ DET
open ADJ V N ADV
past N ADJ DET P
present ADJ ADV V N
read V VN VD NP
right ADJ N DET ADV
second NUM ADV DET N
set VN V VD N -
that CNJ V WH DET

Your Turn: Open the POS concordance tool nltk.app.concordance()
and load the complete Brown Corpus (simplified tagset). Now pick
some of the words listed at the end of the previous code example and
see how the tag of the word correlates with the context of the word. E.g.,
search for near to see all forms mixed together, near/ADJ to see it used
as an adjective, near N to see just those cases where a noun follows, and
so forth.

5.3  Mapping Words to Properties Using Python Dictionaries
As we have seen, a tagged word of the form (word, tag) is an association between a
word and a part-of-speech tag. Once we start doing part-of-speech tagging, we will be
creating programs that assign a tag to a word, the tag which is most likely in a given
context. We can think of this process as mapping from words to tags. The most natural
way to store mappings in Python uses the so-called dictionary data type (also known
as an associative array or hash array in other programming languages). In this sec-
tion, we look at dictionaries and see how they can represent a variety of language in-
formation, including parts-of-speech.

Indexing Lists Versus Dictionaries
A text, as we have seen, is treated in Python as a list of words. An important property
of lists is that we can “look up” a particular item by giving its index, e.g., text1[100].
Notice how we specify a number and get back a word. We can think of a list as a simple
kind of table, as shown in Figure 5-2.

Figure 5-2. List lookup: We access the contents of a Python list with the help of an integer index.
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Contrast this situation with frequency distributions (Section 1.3), where we specify a
word and get back a number, e.g., fdist['monstrous'], which tells us the number of
times a given word has occurred in a text. Lookup using words is familiar to anyone
who has used a dictionary. Some more examples are shown in Figure 5-3.

Figure 5-3. Dictionary lookup: we access the entry of a dictionary using a key such as someone’s name,
a web domain, or an English word; other names for dictionary are map, hashmap, hash, and
associative array.

In the case of a phonebook, we look up an entry using a name and get back a number.
When we type a domain name in a web browser, the computer looks this up to get
back an IP address. A word frequency table allows us to look up a word and find its
frequency in a text collection. In all these cases, we are mapping from names to num-
bers, rather than the other way around as with a list. In general, we would like to be
able to map between arbitrary types of information. Table 5-4 lists a variety of linguistic
objects, along with what they map.

Table 5-4. Linguistic objects as mappings from keys to values

Linguistic object Maps from Maps to

Document Index Word List of pages (where word is found)

Thesaurus Word sense List of synonyms

Dictionary Headword Entry (part-of-speech, sense definitions, etymology)

Comparative Wordlist Gloss term Cognates (list of words, one per language)

Morph Analyzer Surface form Morphological analysis (list of component morphemes)

Most often, we are mapping from a “word” to some structured object. For example, a
document index maps from a word (which we can represent as a string) to a list of pages
(represented as a list of integers). In this section, we will see how to represent such
mappings in Python.

Dictionaries in Python
Python provides a dictionary data type that can be used for mapping between arbitrary
types. It is like a conventional dictionary, in that it gives you an efficient way to look
things up. However, as we see from Table 5-4, it has a much wider range of uses.

190 | Chapter 5: Categorizing and Tagging Words



To illustrate, we define pos to be an empty dictionary and then add four entries to it,
specifying the part-of-speech of some words. We add entries to a dictionary using the
familiar square bracket notation:

>>> pos = {}
>>> pos
{}
>>> pos['colorless'] = 'ADJ' 
>>> pos
{'colorless': 'ADJ'}
>>> pos['ideas'] = 'N'
>>> pos['sleep'] = 'V'
>>> pos['furiously'] = 'ADV'
>>> pos 
{'furiously': 'ADV', 'ideas': 'N', 'colorless': 'ADJ', 'sleep': 'V'}

So, for example,  says that the part-of-speech of colorless is adjective, or more spe-
cifically, that the key 'colorless' is assigned the value 'ADJ' in dictionary pos. When
we inspect the value of pos  we see a set of key-value pairs. Once we have populated
the dictionary in this way, we can employ the keys to retrieve values:

>>> pos['ideas']
'N'
>>> pos['colorless']
'ADJ'

Of course, we might accidentally use a key that hasn’t been assigned a value.

>>> pos['green']
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
KeyError: 'green'

This raises an important question. Unlike lists and strings, where we can use len() to
work out which integers will be legal indexes, how do we work out the legal keys for a
dictionary? If the dictionary is not too big, we can simply inspect its contents by eval-
uating the variable pos. As we saw earlier in line , this gives us the key-value pairs.
Notice that they are not in the same order they were originally entered; this is because
dictionaries are not sequences but mappings (see Figure 5-3), and the keys are not
inherently ordered.

Alternatively, to just find the keys, we can either convert the dictionary to a list  or
use the dictionary in a context where a list is expected, as the parameter of sorted()

 or in a for loop .

>>> list(pos) 
['ideas', 'furiously', 'colorless', 'sleep']
>>> sorted(pos) 
['colorless', 'furiously', 'ideas', 'sleep']
>>> [w for w in pos if w.endswith('s')] 
['colorless', 'ideas']
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When you type list(pos), you might see a different order to the one
shown here. If you want to see the keys in order, just sort them.

As well as iterating over all keys in the dictionary with a for loop, we can use the for
loop as we did for printing lists:

>>> for word in sorted(pos):
...     print word + ":", pos[word]
...
colorless: ADJ
furiously: ADV
sleep: V
ideas: N

Finally, the dictionary methods keys(), values(), and items() allow us to access the
keys, values, and key-value pairs as separate lists. We can even sort tuples , which
orders them according to their first element (and if the first elements are the same, it
uses their second elements).

>>> pos.keys()
['colorless', 'furiously', 'sleep', 'ideas']
>>> pos.values()
['ADJ', 'ADV', 'V', 'N']
>>> pos.items()
[('colorless', 'ADJ'), ('furiously', 'ADV'), ('sleep', 'V'), ('ideas', 'N')]
>>> for key, val in sorted(pos.items()): 
...     print key + ":", val
...
colorless: ADJ
furiously: ADV
ideas: N
sleep: V

We want to be sure that when we look something up in a dictionary, we get only one
value for each key. Now suppose we try to use a dictionary to store the fact that the
word sleep can be used as both a verb and a noun:

>>> pos['sleep'] = 'V'
>>> pos['sleep']
'V'
>>> pos['sleep'] = 'N'
>>> pos['sleep']
'N'

Initially, pos['sleep'] is given the value 'V'. But this is immediately overwritten with
the new value, 'N'. In other words, there can be only one entry in the dictionary for
'sleep'. However, there is a way of storing multiple values in that entry: we use a list
value, e.g., pos['sleep'] = ['N', 'V']. In fact, this is what we saw in Section 2.4 for
the CMU Pronouncing Dictionary, which stores multiple pronunciations for a single
word.
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Defining Dictionaries
We can use the same key-value pair format to create a dictionary. There are a couple
of ways to do this, and we will normally use the first:

>>> pos = {'colorless': 'ADJ', 'ideas': 'N', 'sleep': 'V', 'furiously': 'ADV'}
>>> pos = dict(colorless='ADJ', ideas='N', sleep='V', furiously='ADV')

Note that dictionary keys must be immutable types, such as strings and tuples. If we
try to define a dictionary using a mutable key, we get a TypeError:

>>> pos = {['ideas', 'blogs', 'adventures']: 'N'}
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: list objects are unhashable

Default Dictionaries
If we try to access a key that is not in a dictionary, we get an error. However, it’s often
useful if a dictionary can automatically create an entry for this new key and give it a
default value, such as zero or the empty list. Since Python 2.5, a special kind of dic-
tionary called a defaultdict has been available. (It is provided as nltk.defaultdict for
the benefit of readers who are using Python 2.4.) In order to use it, we have to supply
a parameter which can be used to create the default value, e.g., int, float, str, list,
dict, tuple.

>>> frequency = nltk.defaultdict(int)
>>> frequency['colorless'] = 4
>>> frequency['ideas']
0
>>> pos = nltk.defaultdict(list)
>>> pos['sleep'] = ['N', 'V']
>>> pos['ideas']
[]

These default values are actually functions that convert other objects to
the specified type (e.g., int("2"), list("2")). When they are called with
no parameter—say, int(), list()—they return 0 and [] respectively.

The preceding examples specified the default value of a dictionary entry to be the default
value of a particular data type. However, we can specify any default value we like, simply
by providing the name of a function that can be called with no arguments to create the
required value. Let’s return to our part-of-speech example, and create a dictionary
whose default value for any entry is 'N' . When we access a non-existent entry , it
is automatically added to the dictionary .

>>> pos = nltk.defaultdict(lambda: 'N') 
>>> pos['colorless'] = 'ADJ'
>>> pos['blog'] 
'N'
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>>> pos.items()
[('blog', 'N'), ('colorless', 'ADJ')] 

This example used a lambda expression, introduced in Section 4.4. This
lambda expression specifies no parameters, so we call it using paren-
theses with no arguments. Thus, the following definitions of f and g are
equivalent:

>>> f = lambda: 'N'
>>> f()
'N'
>>> def g():
...     return 'N'
>>> g()
'N'

Let’s see how default dictionaries could be used in a more substantial language pro-
cessing task. Many language processing tasks—including tagging—struggle to cor-
rectly process the hapaxes of a text. They can perform better with a fixed vocabulary
and a guarantee that no new words will appear. We can preprocess a text to replace
low-frequency words with a special “out of vocabulary” token, UNK, with the help of a
default dictionary. (Can you work out how to do this without reading on?)

We need to create a default dictionary that maps each word to its replacement. The
most frequent n words will be mapped to themselves. Everything else will be mapped
to UNK.

>>> alice = nltk.corpus.gutenberg.words('carroll-alice.txt')
>>> vocab = nltk.FreqDist(alice)
>>> v1000 = list(vocab)[:1000]
>>> mapping = nltk.defaultdict(lambda: 'UNK')
>>> for v in v1000:
...     mapping[v] = v
...
>>> alice2 = [mapping[v] for v in alice]
>>> alice2[:100]
['UNK', 'Alice', "'", 's', 'Adventures', 'in', 'Wonderland', 'by', 'UNK', 'UNK',
'UNK', 'UNK', 'CHAPTER', 'I', '.', 'UNK', 'the', 'Rabbit', '-', 'UNK', 'Alice',
'was', 'beginning', 'to', 'get', 'very', 'tired', 'of', 'sitting', 'by', 'her',
'sister', 'on', 'the', 'bank', ',', 'and', 'of', 'having', 'nothing', 'to', 'do',
':', 'once', 'or', 'twice', 'she', 'had', 'UNK', 'into', 'the', 'book', 'her',
'sister', 'was', 'UNK', ',', 'but', 'it', 'had', 'no', 'pictures', 'or', 'UNK',
'in', 'it', ',', "'", 'and', 'what', 'is', 'the', 'use', 'of', 'a', 'book', ",'",
'thought', 'Alice', "'", 'without', 'pictures', 'or', 'conversation', "?'", ...]
>>> len(set(alice2))
1001

Incrementally Updating a Dictionary
We can employ dictionaries to count occurrences, emulating the method for tallying
words shown in Figure 1-3. We begin by initializing an empty defaultdict, then process
each part-of-speech tag in the text. If the tag hasn’t been seen before, it will have a zero

194 | Chapter 5: Categorizing and Tagging Words



count by default. Each time we encounter a tag, we increment its count using the +=
operator (see Example 5-3).

Example 5-3. Incrementally updating a dictionary, and sorting by value.

>>> counts = nltk.defaultdict(int)
>>> from nltk.corpus import brown
>>> for (word, tag) in brown.tagged_words(categories='news'):
...     counts[tag] += 1
...
>>> counts['N']
22226
>>> list(counts)
['FW', 'DET', 'WH', "''", 'VBZ', 'VB+PPO', "'", ')', 'ADJ', 'PRO', '*', '-', ...]

>>> from operator import itemgetter
>>> sorted(counts.items(), key=itemgetter(1), reverse=True)
[('N', 22226), ('P', 10845), ('DET', 10648), ('NP', 8336), ('V', 7313), ...]
>>> [t for t, c in sorted(counts.items(), key=itemgetter(1), reverse=True)]
['N', 'P', 'DET', 'NP', 'V', 'ADJ', ',', '.', 'CNJ', 'PRO', 'ADV', 'VD', ...]

The listing in Example 5-3 illustrates an important idiom for sorting a dictionary by its
values, to show words in decreasing order of frequency. The first parameter of
sorted() is the items to sort, which is a list of tuples consisting of a POS tag and a
frequency. The second parameter specifies the sort key using a function itemget
ter(). In general, itemgetter(n) returns a function that can be called on some other
sequence object to obtain the nth element:

>>> pair = ('NP', 8336)
>>> pair[1]
8336
>>> itemgetter(1)(pair)
8336

The last parameter of sorted() specifies that the items should be returned in reverse
order, i.e., decreasing values of frequency.

There’s a second useful programming idiom at the beginning of Example 5-3, where
we initialize a defaultdict and then use a for loop to update its values. Here’s a sche-
matic version:

>>> my_dictionary = nltk.defaultdict(function to create default value)
>>> for item in sequence:
...      my_dictionary[item_key] is updated with information about item

Here’s another instance of this pattern, where we index words according to their last
two letters:

>>> last_letters = nltk.defaultdict(list)
>>> words = nltk.corpus.words.words('en')
>>> for word in words:
...     key = word[-2:]
...     last_letters[key].append(word)
...
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>>> last_letters['ly']
['abactinally', 'abandonedly', 'abasedly', 'abashedly', 'abashlessly', 'abbreviately',
'abdominally', 'abhorrently', 'abidingly', 'abiogenetically', 'abiologically', ...]
>>> last_letters['zy']
['blazy', 'bleezy', 'blowzy', 'boozy', 'breezy', 'bronzy', 'buzzy', 'Chazy', ...]

The following example uses the same pattern to create an anagram dictionary. (You
might experiment with the third line to get an idea of why this program works.)

>>> anagrams = nltk.defaultdict(list)
>>> for word in words:
...     key = ''.join(sorted(word))
...     anagrams[key].append(word)
...
>>> anagrams['aeilnrt']
['entrail', 'latrine', 'ratline', 'reliant', 'retinal', 'trenail']

Since accumulating words like this is such a common task, NLTK provides a more
convenient way of creating a defaultdict(list), in the form of nltk.Index():

>>> anagrams = nltk.Index((''.join(sorted(w)), w) for w in words)
>>> anagrams['aeilnrt']
['entrail', 'latrine', 'ratline', 'reliant', 'retinal', 'trenail']

nltk.Index is a defaultdict(list) with extra support for initialization.
Similarly, nltk.FreqDist is essentially a defaultdict(int) with extra
support for initialization (along with sorting and plotting methods).

Complex Keys and Values
We can use default dictionaries with complex keys and values. Let’s study the range of
possible tags for a word, given the word itself and the tag of the previous word. We will
see how this information can be used by a POS tagger.

>>> pos = nltk.defaultdict(lambda: nltk.defaultdict(int))
>>> brown_news_tagged = brown.tagged_words(categories='news', simplify_tags=True)
>>> for ((w1, t1), (w2, t2)) in nltk.ibigrams(brown_news_tagged): 
...     pos[(t1, w2)][t2] += 1 
...
>>> pos[('DET', 'right')] 
defaultdict(<type 'int'>, {'ADV': 3, 'ADJ': 9, 'N': 3})

This example uses a dictionary whose default value for an entry is a dictionary (whose
default value is int(), i.e., zero). Notice how we iterated over the bigrams of the tagged
corpus, processing a pair of word-tag pairs for each iteration . Each time through the
loop we updated our pos dictionary’s entry for (t1, w2), a tag and its following word

. When we look up an item in pos we must specify a compound key , and we get
back a dictionary object. A POS tagger could use such information to decide that the
word right, when preceded by a determiner, should be tagged as ADJ.
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Inverting a Dictionary
Dictionaries support efficient lookup, so long as you want to get the value for any key.
If d is a dictionary and k is a key, we type d[k] and immediately obtain the value. Finding
a key given a value is slower and more cumbersome:

>>> counts = nltk.defaultdict(int)
>>> for word in nltk.corpus.gutenberg.words('milton-paradise.txt'):
...     counts[word] += 1
...
>>> [key for (key, value) in counts.items() if value == 32]
['brought', 'Him', 'virtue', 'Against', 'There', 'thine', 'King', 'mortal',
'every', 'been']

If we expect to do this kind of “reverse lookup” often, it helps to construct a dictionary
that maps values to keys. In the case that no two keys have the same value, this is an
easy thing to do. We just get all the key-value pairs in the dictionary, and create a new
dictionary of value-key pairs. The next example also illustrates another way of initial-
izing a dictionary pos with key-value pairs.

>>> pos = {'colorless': 'ADJ', 'ideas': 'N', 'sleep': 'V', 'furiously': 'ADV'}
>>> pos2 = dict((value, key) for (key, value) in pos.items())
>>> pos2['N']
'ideas'

Let’s first make our part-of-speech dictionary a bit more realistic and add some more
words to pos using the dictionary update() method, to create the situation where mul-
tiple keys have the same value. Then the technique just shown for reverse lookup will
no longer work (why not?). Instead, we have to use append() to accumulate the words
for each part-of-speech, as follows:

>>> pos.update({'cats': 'N', 'scratch': 'V', 'peacefully': 'ADV', 'old': 'ADJ'})
>>> pos2 = nltk.defaultdict(list)
>>> for key, value in pos.items():
...     pos2[value].append(key)
...
>>> pos2['ADV']
['peacefully', 'furiously']

Now we have inverted the pos dictionary, and can look up any part-of-speech and find
all words having that part-of-speech. We can do the same thing even more simply using
NLTK’s support for indexing, as follows:

>>> pos2 = nltk.Index((value, key) for (key, value) in pos.items())
>>> pos2['ADV']
['peacefully', 'furiously']

A summary of Python’s dictionary methods is given in Table 5-5.
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Table 5-5. Python’s dictionary methods: A summary of commonly used methods and idioms involving
dictionaries

Example Description

d = {} Create an empty dictionary and assign it to d

d[key] = value Assign a value to a given dictionary key

d.keys() The list of keys of the dictionary

list(d) The list of keys of the dictionary

sorted(d) The keys of the dictionary, sorted

key in d Test whether a particular key is in the dictionary

for key in d Iterate over the keys of the dictionary

d.values() The list of values in the dictionary

dict([(k1,v1), (k2,v2), ...]) Create a dictionary from a list of key-value pairs

d1.update(d2) Add all items from d2 to d1

defaultdict(int) A dictionary whose default value is zero

5.4  Automatic Tagging
In the rest of this chapter we will explore various ways to automatically add part-of-
speech tags to text. We will see that the tag of a word depends on the word and its
context within a sentence. For this reason, we will be working with data at the level of
(tagged) sentences rather than words. We’ll begin by loading the data we will be using.

>>> from nltk.corpus import brown
>>> brown_tagged_sents = brown.tagged_sents(categories='news')
>>> brown_sents = brown.sents(categories='news')

The Default Tagger
The simplest possible tagger assigns the same tag to each token. This may seem to be
a rather banal step, but it establishes an important baseline for tagger performance. In
order to get the best result, we tag each word with the most likely tag. Let’s find out
which tag is most likely (now using the unsimplified tagset):

>>> tags = [tag for (word, tag) in brown.tagged_words(categories='news')]
>>> nltk.FreqDist(tags).max()
'NN'

Now we can create a tagger that tags everything as NN.

>>> raw = 'I do not like green eggs and ham, I do not like them Sam I am!'
>>> tokens = nltk.word_tokenize(raw)
>>> default_tagger = nltk.DefaultTagger('NN')
>>> default_tagger.tag(tokens)
[('I', 'NN'), ('do', 'NN'), ('not', 'NN'), ('like', 'NN'), ('green', 'NN'),
('eggs', 'NN'), ('and', 'NN'), ('ham', 'NN'), (',', 'NN'), ('I', 'NN'),
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('do', 'NN'), ('not', 'NN'), ('like', 'NN'), ('them', 'NN'), ('Sam', 'NN'),
('I', 'NN'), ('am', 'NN'), ('!', 'NN')]

Unsurprisingly, this method performs rather poorly. On a typical corpus, it will tag
only about an eighth of the tokens correctly, as we see here:

>>> default_tagger.evaluate(brown_tagged_sents)
0.13089484257215028

Default taggers assign their tag to every single word, even words that have never been
encountered before. As it happens, once we have processed several thousand words of
English text, most new words will be nouns. As we will see, this means that default
taggers can help to improve the robustness of a language processing system. We will
return to them shortly.

The Regular Expression Tagger
The regular expression tagger assigns tags to tokens on the basis of matching patterns.
For instance, we might guess that any word ending in ed is the past participle of a verb,
and any word ending with ’s is a possessive noun. We can express these as a list of
regular expressions:

>>> patterns = [
...     (r'.*ing$', 'VBG'),               # gerunds
...     (r'.*ed$', 'VBD'),                # simple past
...     (r'.*es$', 'VBZ'),                # 3rd singular present
...     (r'.*ould$', 'MD'),               # modals
...     (r'.*\'s$', 'NN$'),               # possessive nouns
...     (r'.*s$', 'NNS'),                 # plural nouns
...     (r'^-?[0-9]+(.[0-9]+)?$', 'CD'),  # cardinal numbers
...     (r'.*', 'NN')                     # nouns (default)
... ]

Note that these are processed in order, and the first one that matches is applied. Now
we can set up a tagger and use it to tag a sentence. After this step, it is correct about a
fifth of the time.

>>> regexp_tagger = nltk.RegexpTagger(patterns)
>>> regexp_tagger.tag(brown_sents[3])
[('``', 'NN'), ('Only', 'NN'), ('a', 'NN'), ('relative', 'NN'), ('handful', 'NN'),
('of', 'NN'), ('such', 'NN'), ('reports', 'NNS'), ('was', 'NNS'), ('received', 'VBD'),
("''", 'NN'), (',', 'NN'), ('the', 'NN'), ('jury', 'NN'), ('said', 'NN'), (',', 'NN'),
('``', 'NN'), ('considering', 'VBG'), ('the', 'NN'), ('widespread', 'NN'), ...]
>>> regexp_tagger.evaluate(brown_tagged_sents)
0.20326391789486245

The final regular expression «.*» is a catch-all that tags everything as a noun. This is
equivalent to the default tagger (only much less efficient). Instead of respecifying this
as part of the regular expression tagger, is there a way to combine this tagger with the
default tagger? We will see how to do this shortly.
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Your Turn: See if you can come up with patterns to improve the per-
formance of the regular expression tagger just shown. (Note that Sec-
tion 6.1 describes a way to partially automate such work.)

The Lookup Tagger
A lot of high-frequency words do not have the NN tag. Let’s find the hundred most
frequent words and store their most likely tag. We can then use this information as the
model for a “lookup tagger” (an NLTK UnigramTagger):

>>> fd = nltk.FreqDist(brown.words(categories='news'))
>>> cfd = nltk.ConditionalFreqDist(brown.tagged_words(categories='news'))
>>> most_freq_words = fd.keys()[:100]
>>> likely_tags = dict((word, cfd[word].max()) for word in most_freq_words)
>>> baseline_tagger = nltk.UnigramTagger(model=likely_tags)
>>> baseline_tagger.evaluate(brown_tagged_sents)
0.45578495136941344

It should come as no surprise by now that simply knowing the tags for the 100 most
frequent words enables us to tag a large fraction of tokens correctly (nearly half, in fact).
Let’s see what it does on some untagged input text:

>>> sent = brown.sents(categories='news')[3]
>>> baseline_tagger.tag(sent)
[('``', '``'), ('Only', None), ('a', 'AT'), ('relative', None),
('handful', None), ('of', 'IN'), ('such', None), ('reports', None),
('was', 'BEDZ'), ('received', None), ("''", "''"), (',', ','),
('the', 'AT'), ('jury', None), ('said', 'VBD'), (',', ','),
('``', '``'), ('considering', None), ('the', 'AT'), ('widespread', None),
('interest', None), ('in', 'IN'), ('the', 'AT'), ('election', None),
(',', ','), ('the', 'AT'), ('number', None), ('of', 'IN'),
('voters', None), ('and', 'CC'), ('the', 'AT'), ('size', None),
('of', 'IN'), ('this', 'DT'), ('city', None), ("''", "''"), ('.', '.')]

Many words have been assigned a tag of None, because they were not among the 100
most frequent words. In these cases we would like to assign the default tag of NN. In
other words, we want to use the lookup table first, and if it is unable to assign a tag,
then use the default tagger, a process known as backoff (Section 5.5). We do this by
specifying one tagger as a parameter to the other, as shown next. Now the lookup tagger
will only store word-tag pairs for words other than nouns, and whenever it cannot
assign a tag to a word, it will invoke the default tagger.

>>> baseline_tagger = nltk.UnigramTagger(model=likely_tags,
...                                      backoff=nltk.DefaultTagger('NN'))

Let’s put all this together and write a program to create and evaluate lookup taggers
having a range of sizes (Example 5-4).
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Example 5-4. Lookup tagger performance with varying model size.

def performance(cfd, wordlist):
    lt = dict((word, cfd[word].max()) for word in wordlist)
    baseline_tagger = nltk.UnigramTagger(model=lt, backoff=nltk.DefaultTagger('NN'))
    return baseline_tagger.evaluate(brown.tagged_sents(categories='news'))

def display():
    import pylab
    words_by_freq = list(nltk.FreqDist(brown.words(categories='news')))
    cfd = nltk.ConditionalFreqDist(brown.tagged_words(categories='news'))
    sizes = 2 ** pylab.arange(15)
    perfs = [performance(cfd, words_by_freq[:size]) for size in sizes]
    pylab.plot(sizes, perfs, '-bo')
    pylab.title('Lookup Tagger Performance with Varying Model Size')
    pylab.xlabel('Model Size')
    pylab.ylabel('Performance')
    pylab.show()

>>> display()                                  

Observe in Figure 5-4 that performance initially increases rapidly as the model size
grows, eventually reaching a plateau, when large increases in model size yield little
improvement in performance. (This example used the pylab plotting package, dis-
cussed in Section 4.8.)

Evaluation
In the previous examples, you will have noticed an emphasis on accuracy scores. In
fact, evaluating the performance of such tools is a central theme in NLP. Recall the
processing pipeline in Figure 1-5; any errors in the output of one module are greatly
multiplied in the downstream modules.

We evaluate the performance of a tagger relative to the tags a human expert would
assign. Since we usually don’t have access to an expert and impartial human judge, we
make do instead with gold standard test data. This is a corpus which has been man-
ually annotated and accepted as a standard against which the guesses of an automatic
system are assessed. The tagger is regarded as being correct if the tag it guesses for a
given word is the same as the gold standard tag.

Of course, the humans who designed and carried out the original gold standard anno-
tation were only human. Further analysis might show mistakes in the gold standard,
or may eventually lead to a revised tagset and more elaborate guidelines. Nevertheless,
the gold standard is by definition “correct” as far as the evaluation of an automatic
tagger is concerned.
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Developing an annotated corpus is a major undertaking. Apart from the
data, it generates sophisticated tools, documentation, and practices for
ensuring high-quality annotation. The tagsets and other coding schemes
inevitably depend on some theoretical position that is not shared by all.
However, corpus creators often go to great lengths to make their work
as theory-neutral as possible in order to maximize the usefulness of their
work. We will discuss the challenges of creating a corpus in Chapter 11.

5.5  N-Gram Tagging
Unigram Tagging
Unigram taggers are based on a simple statistical algorithm: for each token, assign the
tag that is most likely for that particular token. For example, it will assign the tag JJ to
any occurrence of the word frequent, since frequent is used as an adjective (e.g., a fre-
quent word) more often than it is used as a verb (e.g., I frequent this cafe). A unigram
tagger behaves just like a lookup tagger (Section 5.4), except there is a more convenient

Figure 5-4. Lookup tagger
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technique for setting it up, called training. In the following code sample, we train a
unigram tagger, use it to tag a sentence, and then evaluate:

>>> from nltk.corpus import brown
>>> brown_tagged_sents = brown.tagged_sents(categories='news')
>>> brown_sents = brown.sents(categories='news')
>>> unigram_tagger = nltk.UnigramTagger(brown_tagged_sents)
>>> unigram_tagger.tag(brown_sents[2007])
[('Various', 'JJ'), ('of', 'IN'), ('the', 'AT'), ('apartments', 'NNS'),
('are', 'BER'), ('of', 'IN'), ('the', 'AT'), ('terrace', 'NN'), ('type', 'NN'),
(',', ','), ('being', 'BEG'), ('on', 'IN'), ('the', 'AT'), ('ground', 'NN'),
('floor', 'NN'), ('so', 'QL'), ('that', 'CS'), ('entrance', 'NN'), ('is', 'BEZ'),
('direct', 'JJ'), ('.', '.')]
>>> unigram_tagger.evaluate(brown_tagged_sents)
0.9349006503968017

We train a UnigramTagger by specifying tagged sentence data as a parameter when we
initialize the tagger. The training process involves inspecting the tag of each word and
storing the most likely tag for any word in a dictionary that is stored inside the tagger.

Separating the Training and Testing Data
Now that we are training a tagger on some data, we must be careful not to test it on
the same data, as we did in the previous example. A tagger that simply memorized its
training data and made no attempt to construct a general model would get a perfect
score, but would be useless for tagging new text. Instead, we should split the data,
training on 90% and testing on the remaining 10%:

>>> size = int(len(brown_tagged_sents) * 0.9)
>>> size
4160
>>> train_sents = brown_tagged_sents[:size]
>>> test_sents = brown_tagged_sents[size:]
>>> unigram_tagger = nltk.UnigramTagger(train_sents)
>>> unigram_tagger.evaluate(test_sents)
0.81202033290142528

Although the score is worse, we now have a better picture of the usefulness of this
tagger, i.e., its performance on previously unseen text.

General N-Gram Tagging
When we perform a language processing task based on unigrams, we are using one
item of context. In the case of tagging, we consider only the current token, in isolation
from any larger context. Given such a model, the best we can do is tag each word with
its a priori most likely tag. This means we would tag a word such as wind with the same
tag, regardless of whether it appears in the context the wind or to wind.

An n-gram tagger is a generalization of a unigram tagger whose context is the current
word together with the part-of-speech tags of the n-1 preceding tokens, as shown in
Figure 5-5. The tag to be chosen, tn, is circled, and the context is shaded in grey. In the
example of an n-gram tagger shown in Figure 5-5, we have n=3; that is, we consider
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the tags of the two preceding words in addition to the current word. An n-gram tagger
picks the tag that is most likely in the given context.

A 1-gram tagger is another term for a unigram tagger: i.e., the context
used to tag a token is just the text of the token itself. 2-gram taggers are
also called bigram taggers, and 3-gram taggers are called trigram taggers.

The NgramTagger class uses a tagged training corpus to determine which part-of-speech
tag is most likely for each context. Here we see a special case of an n-gram tagger,
namely a bigram tagger. First we train it, then use it to tag untagged sentences:

>>> bigram_tagger = nltk.BigramTagger(train_sents)
>>> bigram_tagger.tag(brown_sents[2007])
[('Various', 'JJ'), ('of', 'IN'), ('the', 'AT'), ('apartments', 'NNS'),
('are', 'BER'), ('of', 'IN'), ('the', 'AT'), ('terrace', 'NN'),
('type', 'NN'), (',', ','), ('being', 'BEG'), ('on', 'IN'), ('the', 'AT'),
('ground', 'NN'), ('floor', 'NN'), ('so', 'CS'), ('that', 'CS'),
('entrance', 'NN'), ('is', 'BEZ'), ('direct', 'JJ'), ('.', '.')]
>>> unseen_sent = brown_sents[4203]
>>> bigram_tagger.tag(unseen_sent)
[('The', 'AT'), ('population', 'NN'), ('of', 'IN'), ('the', 'AT'), ('Congo', 'NP'),
('is', 'BEZ'), ('13.5', None), ('million', None), (',', None), ('divided', None),
('into', None), ('at', None), ('least', None), ('seven', None), ('major', None),
('``', None), ('culture', None), ('clusters', None), ("''", None), ('and', None),
('innumerable', None), ('tribes', None), ('speaking', None), ('400', None),
('separate', None), ('dialects', None), ('.', None)]

Notice that the bigram tagger manages to tag every word in a sentence it saw during
training, but does badly on an unseen sentence. As soon as it encounters a new word
(i.e., 13.5), it is unable to assign a tag. It cannot tag the following word (i.e., million),
even if it was seen during training, simply because it never saw it during training with
a None tag on the previous word. Consequently, the tagger fails to tag the rest of the
sentence. Its overall accuracy score is very low:

>>> bigram_tagger.evaluate(test_sents)
0.10276088906608193

Figure 5-5. Tagger context.
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As n gets larger, the specificity of the contexts increases, as does the chance that the
data we wish to tag contains contexts that were not present in the training data. This
is known as the sparse data problem, and is quite pervasive in NLP. As a consequence,
there is a trade-off between the accuracy and the coverage of our results (and this is
related to the precision/recall trade-off in information retrieval).

Caution!
N-gram taggers should not consider context that crosses a sentence
boundary. Accordingly, NLTK taggers are designed to work with lists
of sentences, where each sentence is a list of words. At the start of a
sentence, tn-1 and preceding tags are set to None.

Combining Taggers
One way to address the trade-off between accuracy and coverage is to use the more
accurate algorithms when we can, but to fall back on algorithms with wider coverage
when necessary. For example, we could combine the results of a bigram tagger, a
unigram tagger, and a default tagger, as follows:

1. Try tagging the token with the bigram tagger.

2. If the bigram tagger is unable to find a tag for the token, try the unigram tagger.

3. If the unigram tagger is also unable to find a tag, use a default tagger.

Most NLTK taggers permit a backoff tagger to be specified. The backoff tagger may
itself have a backoff tagger:

>>> t0 = nltk.DefaultTagger('NN')
>>> t1 = nltk.UnigramTagger(train_sents, backoff=t0)
>>> t2 = nltk.BigramTagger(train_sents, backoff=t1)
>>> t2.evaluate(test_sents)
0.84491179108940495

Your Turn: Extend the preceding example by defining a TrigramTag
ger called t3, which backs off to t2.

Note that we specify the backoff tagger when the tagger is initialized so that training
can take advantage of the backoff tagger. Thus, if the bigram tagger would assign the
same tag as its unigram backoff tagger in a certain context, the bigram tagger discards
the training instance. This keeps the bigram tagger model as small as possible. We can
further specify that a tagger needs to see more than one instance of a context in order
to retain it. For example, nltk.BigramTagger(sents, cutoff=2, backoff=t1) will dis-
card contexts that have only been seen once or twice.
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Tagging Unknown Words
Our approach to tagging unknown words still uses backoff to a regular expression
tagger or a default tagger. These are unable to make use of context. Thus, if our tagger
encountered the word blog, not seen during training, it would assign it the same tag,
regardless of whether this word appeared in the context the blog or to blog. How can
we do better with these unknown words, or out-of-vocabulary items?

A useful method to tag unknown words based on context is to limit the vocabulary of
a tagger to the most frequent n words, and to replace every other word with a special
word UNK using the method shown in Section 5.3. During training, a unigram tagger
will probably learn that UNK is usually a noun. However, the n-gram taggers will detect
contexts in which it has some other tag. For example, if the preceding word is to (tagged
TO), then UNK will probably be tagged as a verb.

Storing Taggers
Training a tagger on a large corpus may take a significant time. Instead of training a
tagger every time we need one, it is convenient to save a trained tagger in a file for later
reuse. Let’s save our tagger t2 to a file t2.pkl:

>>> from cPickle import dump
>>> output = open('t2.pkl', 'wb')
>>> dump(t2, output, -1)
>>> output.close()

Now, in a separate Python process, we can load our saved tagger:

>>> from cPickle import load
>>> input = open('t2.pkl', 'rb')
>>> tagger = load(input)
>>> input.close()

Now let’s check that it can be used for tagging:

>>> text = """The board's action shows what free enterprise
...     is up against in our complex maze of regulatory laws ."""
>>> tokens = text.split()
>>> tagger.tag(tokens)
[('The', 'AT'), ("board's", 'NN$'), ('action', 'NN'), ('shows', 'NNS'),
('what', 'WDT'), ('free', 'JJ'), ('enterprise', 'NN'), ('is', 'BEZ'),
('up', 'RP'), ('against', 'IN'), ('in', 'IN'), ('our', 'PP$'), ('complex', 'JJ'),
('maze', 'NN'), ('of', 'IN'), ('regulatory', 'NN'), ('laws', 'NNS'), ('.', '.')]

Performance Limitations
What is the upper limit to the performance of an n-gram tagger? Consider the case of
a trigram tagger. How many cases of part-of-speech ambiguity does it encounter? We
can determine the answer to this question empirically:
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>>> cfd = nltk.ConditionalFreqDist(
...            ((x[1], y[1], z[0]), z[1])
...            for sent in brown_tagged_sents
...            for x, y, z in nltk.trigrams(sent))
>>> ambiguous_contexts = [c for c in cfd.conditions() if len(cfd[c]) > 1]
>>> sum(cfd[c].N() for c in ambiguous_contexts) / cfd.N()
0.049297702068029296

Thus, 1 out of 20 trigrams is ambiguous. Given the current word and the previous two
tags, in 5% of cases there is more than one tag that could be legitimately assigned to
the current word according to the training data. Assuming we always pick the most
likely tag in such ambiguous contexts, we can derive a lower bound on the performance
of a trigram tagger.

Another way to investigate the performance of a tagger is to study its mistakes. Some
tags may be harder than others to assign, and it might be possible to treat them specially
by pre- or post-processing the data. A convenient way to look at tagging errors is the
confusion matrix. It charts expected tags (the gold standard) against actual tags gen-
erated by a tagger:

>>> test_tags = [tag for sent in brown.sents(categories='editorial')
...                  for (word, tag) in t2.tag(sent)]
>>> gold_tags = [tag for (word, tag) in brown.tagged_words(categories='editorial')]
>>> print nltk.ConfusionMatrix(gold, test)                

Based on such analysis we may decide to modify the tagset. Perhaps a distinction be-
tween tags that is difficult to make can be dropped, since it is not important in the
context of some larger processing task.

Another way to analyze the performance bound on a tagger comes from the less than
100% agreement between human annotators.

In general, observe that the tagging process collapses distinctions: e.g., lexical identity
is usually lost when all personal pronouns are tagged PRP. At the same time, the tagging
process introduces new distinctions and removes ambiguities: e.g., deal tagged as VB or
NN. This characteristic of collapsing certain distinctions and introducing new distinc-
tions is an important feature of tagging which facilitates classification and prediction.
When we introduce finer distinctions in a tagset, an n-gram tagger gets more detailed
information about the left-context when it is deciding what tag to assign to a particular
word. However, the tagger simultaneously has to do more work to classify the current
token, simply because there are more tags to choose from. Conversely, with fewer dis-
tinctions (as with the simplified tagset), the tagger has less information about context,
and it has a smaller range of choices in classifying the current token.

We have seen that ambiguity in the training data leads to an upper limit in tagger
performance. Sometimes more context will resolve the ambiguity. In other cases, how-
ever, as noted by (Abney, 1996), the ambiguity can be resolved only with reference to
syntax or to world knowledge. Despite these imperfections, part-of-speech tagging has
played a central role in the rise of statistical approaches to natural language processing.
In the early 1990s, the surprising accuracy of statistical taggers was a striking
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demonstration that it was possible to solve one small part of the language understand-
ing problem, namely part-of-speech disambiguation, without reference to deeper sour-
ces of linguistic knowledge. Can this idea be pushed further? In Chapter 7, we will see
that it can.

Tagging Across Sentence Boundaries
An n-gram tagger uses recent tags to guide the choice of tag for the current word. When
tagging the first word of a sentence, a trigram tagger will be using the part-of-speech
tag of the previous two tokens, which will normally be the last word of the previous
sentence and the sentence-ending punctuation. However, the lexical category that
closed the previous sentence has no bearing on the one that begins the next sentence.

To deal with this situation, we can train, run, and evaluate taggers using lists of tagged
sentences, as shown in Example 5-5.

Example 5-5. N-gram tagging at the sentence level.

brown_tagged_sents = brown.tagged_sents(categories='news')
brown_sents = brown.sents(categories='news')

size = int(len(brown_tagged_sents) * 0.9)
train_sents = brown_tagged_sents[:size]
test_sents = brown_tagged_sents[size:]

t0 = nltk.DefaultTagger('NN')
t1 = nltk.UnigramTagger(train_sents, backoff=t0)
t2 = nltk.BigramTagger(train_sents, backoff=t1)

>>> t2.evaluate(test_sents)
0.84491179108940495

5.6  Transformation-Based Tagging
A potential issue with n-gram taggers is the size of their n-gram table (or language
model). If tagging is to be employed in a variety of language technologies deployed on
mobile computing devices, it is important to strike a balance between model size and
tagger performance. An n-gram tagger with backoff may store trigram and bigram ta-
bles, which are large, sparse arrays that may have hundreds of millions of entries.

A second issue concerns context. The only information an n-gram tagger considers
from prior context is tags, even though words themselves might be a useful source of
information. It is simply impractical for n-gram models to be conditioned on the iden-
tities of words in the context. In this section, we examine Brill tagging, an inductive
tagging method which performs very well using models that are only a tiny fraction of
the size of n-gram taggers.

Brill tagging is a kind of transformation-based learning, named after its inventor. The
general idea is very simple: guess the tag of each word, then go back and fix the mistakes.

208 | Chapter 5: Categorizing and Tagging Words



In this way, a Brill tagger successively transforms a bad tagging of a text into a better
one. As with n-gram tagging, this is a supervised learning method, since we need an-
notated training data to figure out whether the tagger’s guess is a mistake or not. How-
ever, unlike n-gram tagging, it does not count observations but compiles a list of trans-
formational correction rules.

The process of Brill tagging is usually explained by analogy with painting. Suppose we
were painting a tree, with all its details of boughs, branches, twigs, and leaves, against
a uniform sky-blue background. Instead of painting the tree first and then trying to
paint blue in the gaps, it is simpler to paint the whole canvas blue, then “correct” the
tree section by over-painting the blue background. In the same fashion, we might paint
the trunk a uniform brown before going back to over-paint further details with even
finer brushes. Brill tagging uses the same idea: begin with broad brush strokes, and
then fix up the details, with successively finer changes. Let’s look at an example in-
volving the following sentence:

(1) The President said he will ask Congress to increase grants to states for voca-
tional rehabilitation.

We will examine the operation of two rules: (a) replace NN with VB when the previous
word is TO; (b) replace TO with IN when the next tag is NNS. Table 5-6 illustrates this
process, first tagging with the unigram tagger, then applying the rules to fix the errors.

Table 5-6. Steps in Brill tagging

Phrase to increase grants to states for vocational rehabilitation

Unigram TO NN NNS TO NNS IN JJ NN

Rule 1  VB       

Rule 2    IN     

Output TO VB NNS IN NNS IN JJ NN

Gold TO VB NNS IN NNS IN JJ NN

In this table, we see two rules. All such rules are generated from a template of the
following form: “replace T1 with T2 in the context C.” Typical contexts are the identity
or the tag of the preceding or following word, or the appearance of a specific tag within
two to three words of the current word. During its training phase, the tagger guesses
values for T1, T2, and C, to create thousands of candidate rules. Each rule is scored
according to its net benefit: the number of incorrect tags that it corrects, less the number
of correct tags it incorrectly modifies.

Brill taggers have another interesting property: the rules are linguistically interpretable.
Compare this with the n-gram taggers, which employ a potentially massive table of n-
grams. We cannot learn much from direct inspection of such a table, in comparison to
the rules learned by the Brill tagger. Example 5-6 demonstrates NLTK’s Brill tagger.
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Example 5-6. Brill tagger demonstration: The tagger has a collection of templates of the form X → Y
if the preceding word is Z; the variables in these templates are instantiated to particular words and
tags to create “rules”; the score for a rule is the number of broken examples it corrects minus the
number of correct cases it breaks; apart from training a tagger, the demonstration displays residual
errors.

>>> nltk.tag.brill.demo()
Training Brill tagger on 80 sentences...
Finding initial useful rules...
    Found 6555 useful rules.

           B      |
   S   F   r   O  |        Score = Fixed - Broken
   c   i   o   t  |  R     Fixed = num tags changed incorrect -> correct
   o   x   k   h  |  u     Broken = num tags changed correct -> incorrect
   r   e   e   e  |  l     Other = num tags changed incorrect -> incorrect
   e   d   n   r  |  e
------------------+-------------------------------------------------------
  12  13   1   4  | NN -> VB if the tag of the preceding word is 'TO'
   8   9   1  23  | NN -> VBD if the tag of the following word is 'DT'
   8   8   0   9  | NN -> VBD if the tag of the preceding word is 'NNS'
   6   9   3  16  | NN -> NNP if the tag of words i-2...i-1 is '-NONE-'
   5   8   3   6  | NN -> NNP if the tag of the following word is 'NNP'
   5   6   1   0  | NN -> NNP if the text of words i-2...i-1 is 'like'
   5   5   0   3  | NN -> VBN if the text of the following word is '*-1'
   ...
>>> print(open("errors.out").read())
             left context |    word/test->gold     | right context
--------------------------+------------------------+--------------------------
                          |      Then/NN->RB       | ,/, in/IN the/DT guests/N
, in/IN the/DT guests/NNS |       '/VBD->POS       | honor/NN ,/, the/DT speed
'/POS honor/NN ,/, the/DT |    speedway/JJ->NN     | hauled/VBD out/RP four/CD
NN ,/, the/DT speedway/NN |     hauled/NN->VBD     | out/RP four/CD drivers/NN
DT speedway/NN hauled/VBD |      out/NNP->RP       | four/CD drivers/NNS ,/, c
dway/NN hauled/VBD out/RP |      four/NNP->CD      | drivers/NNS ,/, crews/NNS
hauled/VBD out/RP four/CD |    drivers/NNP->NNS    | ,/, crews/NNS and/CC even
P four/CD drivers/NNS ,/, |     crews/NN->NNS      | and/CC even/RB the/DT off
NNS and/CC even/RB the/DT |    official/NNP->JJ    | Indianapolis/NNP 500/CD a
                          |     After/VBD->IN      | the/DT race/NN ,/, Fortun
ter/IN the/DT race/NN ,/, |    Fortune/IN->NNP     | 500/CD executives/NNS dro
s/NNS drooled/VBD like/IN |  schoolboys/NNP->NNS   | over/IN the/DT cars/NNS a
olboys/NNS over/IN the/DT |      cars/NN->NNS      | and/CC drivers/NNS ./.

5.7  How to Determine the Category of a Word
Now that we have examined word classes in detail, we turn to a more basic question:
how do we decide what category a word belongs to in the first place? In general, linguists
use morphological, syntactic, and semantic clues to determine the category of a word.
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Morphological Clues
The internal structure of a word may give useful clues as to the word’s category. For
example, -ness is a suffix that combines with an adjective to produce a noun, e.g., happy
→ happiness, ill → illness. So if we encounter a word that ends in -ness, this is very likely
to be a noun. Similarly, -ment is a suffix that combines with some verbs to produce a
noun, e.g., govern → government and establish → establishment.

English verbs can also be morphologically complex. For instance, the present par-
ticiple of a verb ends in -ing, and expresses the idea of ongoing, incomplete action (e.g.,
falling, eating). The -ing suffix also appears on nouns derived from verbs, e.g., the falling
of the leaves (this is known as the gerund).

Syntactic Clues
Another source of information is the typical contexts in which a word can occur. For
example, assume that we have already determined the category of nouns. Then we
might say that a syntactic criterion for an adjective in English is that it can occur im-
mediately before a noun, or immediately following the words be or very. According to
these tests, near should be categorized as an adjective:

(2) a. the near window

b. The end is (very) near.

Semantic Clues
Finally, the meaning of a word is a useful clue as to its lexical category. For example,
the best-known definition of a noun is semantic: “the name of a person, place, or thing.”
Within modern linguistics, semantic criteria for word classes are treated with suspicion,
mainly because they are hard to formalize. Nevertheless, semantic criteria underpin
many of our intuitions about word classes, and enable us to make a good guess about
the categorization of words in languages with which we are unfamiliar. For example,
if all we know about the Dutch word verjaardag is that it means the same as the English
word birthday, then we can guess that verjaardag is a noun in Dutch. However, some
care is needed: although we might translate zij is vandaag jarig as it’s her birthday to-
day, the word jarig is in fact an adjective in Dutch, and has no exact equivalent in
English.

New Words
All languages acquire new lexical items. A list of words recently added to the Oxford
Dictionary of English includes cyberslacker, fatoush, blamestorm, SARS, cantopop,
bupkis, noughties, muggle, and robata. Notice that all these new words are nouns, and
this is reflected in calling nouns an open class. By contrast, prepositions are regarded
as a closed class. That is, there is a limited set of words belonging to the class (e.g.,
above, along, at, below, beside, between, during, for, from, in, near, on, outside, over,

5.7  How to Determine the Category of a Word | 211



past, through, towards, under, up, with), and membership of the set only changes very
gradually over time.

Morphology in Part-of-Speech Tagsets
Common tagsets often capture some morphosyntactic information, that is, informa-
tion about the kind of morphological markings that words receive by virtue of their
syntactic role. Consider, for example, the selection of distinct grammatical forms of the
word go illustrated in the following sentences:

(3) a. Go away!

b. He sometimes goes to the cafe.

c. All the cakes have gone.

d. We went on the excursion.

Each of these forms—go, goes, gone, and went—is morphologically distinct from the
others. Consider the form goes. This occurs in a restricted set of grammatical contexts,
and requires a third person singular subject. Thus, the following sentences are
ungrammatical.

(4) a. *They sometimes goes to the cafe.

b. *I sometimes goes to the cafe.

By contrast, gone is the past participle form; it is required after have (and cannot be
replaced in this context by goes), and cannot occur as the main verb of a clause.

(5) a. *All the cakes have goes.

b. *He sometimes gone to the cafe.

We can easily imagine a tagset in which the four distinct grammatical forms just dis-
cussed were all tagged as VB. Although this would be adequate for some purposes, a
more fine-grained tagset provides useful information about these forms that can help
other processors that try to detect patterns in tag sequences. The Brown tagset captures
these distinctions, as summarized in Table 5-7.

Table 5-7. Some morphosyntactic distinctions in the Brown tagset

Form Category Tag

go base VB

goes third singular present VBZ

gone past participle VBN

going gerund VBG

went simple past VBD
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In addition to this set of verb tags, the various forms of the verb to be have special tags:
be/BE, being/BEG, am/BEM, are/BER, is/BEZ, been/BEN, were/BED, and was/BEDZ (plus extra
tags for negative forms of the verb). All told, this fine-grained tagging of verbs means
that an automatic tagger that uses this tagset is effectively carrying out a limited amount
of morphological analysis.

Most part-of-speech tagsets make use of the same basic categories, such as noun, verb,
adjective, and preposition. However, tagsets differ both in how finely they divide words
into categories, and in how they define their categories. For example, is might be tagged
simply as a verb in one tagset, but as a distinct form of the lexeme be in another tagset
(as in the Brown Corpus). This variation in tagsets is unavoidable, since part-of-speech
tags are used in different ways for different tasks. In other words, there is no one “right
way” to assign tags, only more or less useful ways depending on one’s goals.

5.8  Summary
• Words can be grouped into classes, such as nouns, verbs, adjectives, and adverbs.

These classes are known as lexical categories or parts-of-speech. Parts-of-speech
are assigned short labels, or tags, such as NN and VB.

• The process of automatically assigning parts-of-speech to words in text is called
part-of-speech tagging, POS tagging, or just tagging.

• Automatic tagging is an important step in the NLP pipeline, and is useful in a variety
of situations, including predicting the behavior of previously unseen words, ana-
lyzing word usage in corpora, and text-to-speech systems.

• Some linguistic corpora, such as the Brown Corpus, have been POS tagged.

• A variety of tagging methods are possible, e.g., default tagger, regular expression
tagger, unigram tagger, and n-gram taggers. These can be combined using a tech-
nique known as backoff.

• Taggers can be trained and evaluated using tagged corpora.

• Backoff is a method for combining models: when a more specialized model (such
as a bigram tagger) cannot assign a tag in a given context, we back off to a more
general model (such as a unigram tagger).

• Part-of-speech tagging is an important, early example of a sequence classification
task in NLP: a classification decision at any one point in the sequence makes use
of words and tags in the local context.

• A dictionary is used to map between arbitrary types of information, such as a string
and a number: freq['cat'] = 12. We create dictionaries using the brace notation:
pos = {}, pos = {'furiously': 'adv', 'ideas': 'n', 'colorless': 'adj'}.

• N-gram taggers can be defined for large values of n, but once n is larger than 3, we
usually encounter the sparse data problem; even with a large quantity of training
data, we see only a tiny fraction of possible contexts.
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• Transformation-based tagging involves learning a series of repair rules of the form
“change tag s to tag t in context c,” where each rule fixes mistakes and possibly
introduces a (smaller) number of errors.

5.9  Further Reading
Extra materials for this chapter are posted at http://www.nltk.org/, including links to
freely available resources on the Web. For more examples of tagging with NLTK, please
see the Tagging HOWTO at http://www.nltk.org/howto. Chapters 4 and 5 of (Jurafsky
& Martin, 2008) contain more advanced material on n-grams and part-of-speech tag-
ging. Other approaches to tagging involve machine learning methods (Chapter 6). In
Chapter 7, we will see a generalization of tagging called chunking in which a contiguous
sequence of words is assigned a single tag.

For tagset documentation, see nltk.help.upenn_tagset() and nltk.help.brown_tag
set(). Lexical categories are introduced in linguistics textbooks, including those listed
in Chapter 1 of this book.

There are many other kinds of tagging. Words can be tagged with directives to a speech
synthesizer, indicating which words should be emphasized. Words can be tagged with
sense numbers, indicating which sense of the word was used. Words can also be tagged
with morphological features. Examples of each of these kinds of tags are shown in the
following list. For space reasons, we only show the tag for a single word. Note also that
the first two examples use XML-style tags, where elements in angle brackets enclose
the word that is tagged.

Speech Synthesis Markup Language (W3C SSML)
That is a <emphasis>big</emphasis> car!

SemCor: Brown Corpus tagged with WordNet senses
Space in any <wf pos="NN" lemma="form" wnsn="4">form</wf> is completely meas
ured by the three dimensions. (Wordnet form/nn sense 4: “shape, form, config-
uration, contour, conformation”)

Morphological tagging, from the Turin University Italian Treebank
E' italiano , come progetto e realizzazione , il primo (PRIMO ADJ ORDIN M
SING) porto turistico dell' Albania .

Note that tagging is also performed at higher levels. Here is an example of dialogue act
tagging, from the NPS Chat Corpus (Forsyth & Martell, 2007) included with NLTK.
Each turn of the dialogue is categorized as to its communicative function:

Statement  User117 Dude..., I wanted some of that
ynQuestion User120 m I missing something?
Bye        User117 I'm gonna go fix food, I'll be back later.
System     User122 JOIN
System     User2   slaps User122 around a bit with a large trout.
Statement  User121 18/m pm me if u tryin to chat
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5.10  Exercises
1. ○ Search the Web for “spoof newspaper headlines,” to find such gems as: British

Left Waffles on Falkland Islands, and Juvenile Court to Try Shooting Defendant.
Manually tag these headlines to see whether knowledge of the part-of-speech tags
removes the ambiguity.

2. ○ Working with someone else, take turns picking a word that can be either a noun
or a verb (e.g., contest); the opponent has to predict which one is likely to be the
most frequent in the Brown Corpus. Check the opponent’s prediction, and tally
the score over several turns.

3. ○ Tokenize and tag the following sentence: They wind back the clock, while we
chase after the wind. What different pronunciations and parts-of-speech are
involved?

4. ○ Review the mappings in Table 5-4. Discuss any other examples of mappings you
can think of. What type of information do they map from and to?

5. ○ Using the Python interpreter in interactive mode, experiment with the dictionary
examples in this chapter. Create a dictionary d, and add some entries. What hap-
pens whether you try to access a non-existent entry, e.g., d['xyz']?

6. ○ Try deleting an element from a dictionary d, using the syntax del d['abc']. Check
that the item was deleted.

7. ○ Create two dictionaries, d1 and d2, and add some entries to each. Now issue the
command d1.update(d2). What did this do? What might it be useful for?

8. ○ Create a dictionary e, to represent a single lexical entry for some word of your
choice. Define keys such as headword, part-of-speech, sense, and example, and as-
sign them suitable values.

9. ○ Satisfy yourself that there are restrictions on the distribution of go and went, in
the sense that they cannot be freely interchanged in the kinds of contexts illustrated
in (3), Section 5.7.

10. ○ Train a unigram tagger and run it on some new text. Observe that some words
are not assigned a tag. Why not?

11. ○ Learn about the affix tagger (type help(nltk.AffixTagger)). Train an affix tagger
and run it on some new text. Experiment with different settings for the affix length
and the minimum word length. Discuss your findings.

12. ○ Train a bigram tagger with no backoff tagger, and run it on some of the training
data. Next, run it on some new data. What happens to the performance of the
tagger? Why?

13. ○ We can use a dictionary to specify the values to be substituted into a formatting
string. Read Python’s library documentation for formatting strings (http://docs.py
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thon.org/lib/typesseq-strings.html) and use this method to display today’s date in
two different formats.

14. ◑ Use sorted() and set() to get a sorted list of tags used in the Brown Corpus,
removing duplicates.

15. ◑ Write programs to process the Brown Corpus and find answers to the following
questions:

a. Which nouns are more common in their plural form, rather than their singular
form? (Only consider regular plurals, formed with the -s suffix.)

b. Which word has the greatest number of distinct tags? What are they, and what
do they represent?

c. List tags in order of decreasing frequency. What do the 20 most frequent tags
represent?

d. Which tags are nouns most commonly found after? What do these tags
represent?

16. ◑ Explore the following issues that arise in connection with the lookup tagger:

a. What happens to the tagger performance for the various model sizes when a
backoff tagger is omitted?

b. Consider the curve in Figure 5-4; suggest a good size for a lookup tagger that
balances memory and performance. Can you come up with scenarios where it
would be preferable to minimize memory usage, or to maximize performance
with no regard for memory usage?

17. ◑ What is the upper limit of performance for a lookup tagger, assuming no limit
to the size of its table? (Hint: write a program to work out what percentage of tokens
of a word are assigned the most likely tag for that word, on average.)

18. ◑ Generate some statistics for tagged data to answer the following questions:

a. What proportion of word types are always assigned the same part-of-speech
tag?

b. How many words are ambiguous, in the sense that they appear with at least
two tags?

c. What percentage of word tokens in the Brown Corpus involve these ambiguous
words?

19. ◑ The evaluate() method works out how accurately the tagger performs on this
text. For example, if the supplied tagged text was [('the', 'DT'), ('dog',
'NN')] and the tagger produced the output [('the', 'NN'), ('dog', 'NN')], then
the score would be 0.5. Let’s try to figure out how the evaluation method works:

a. A tagger t takes a list of words as input, and produces a list of tagged words
as output. However, t.evaluate() is given correctly tagged text as its only
parameter. What must it do with this input before performing the tagging?

216 | Chapter 5: Categorizing and Tagging Words

http://docs.python.org/lib/typesseq-strings.html


b. Once the tagger has created newly tagged text, how might the evaluate()
method go about comparing it with the original tagged text and computing
the accuracy score?

c. Now examine the source code to see how the method is implemented. Inspect
nltk.tag.api.__file__ to discover the location of the source code, and open
this file using an editor (be sure to use the api.py file and not the compiled
api.pyc binary file).

20. ◑ Write code to search the Brown Corpus for particular words and phrases ac-
cording to tags, to answer the following questions:

a. Produce an alphabetically sorted list of the distinct words tagged as MD.

b. Identify words that can be plural nouns or third person singular verbs (e.g.,
deals, flies).

c. Identify three-word prepositional phrases of the form IN + DET + NN (e.g.,
in the lab).

d. What is the ratio of masculine to feminine pronouns?

21. ◑ In Table 3-1, we saw a table involving frequency counts for the verbs adore, love,
like, and prefer, and preceding qualifiers such as really. Investigate the full range
of qualifiers (Brown tag QL) that appear before these four verbs.

22. ◑ We defined the regexp_tagger that can be used as a fall-back tagger for unknown
words. This tagger only checks for cardinal numbers. By testing for particular prefix
or suffix strings, it should be possible to guess other tags. For example, we could
tag any word that ends with -s as a plural noun. Define a regular expression tagger
(using RegexpTagger()) that tests for at least five other patterns in the spelling of
words. (Use inline documentation to explain the rules.)

23. ◑ Consider the regular expression tagger developed in the exercises in the previous
section. Evaluate the tagger using its accuracy() method, and try to come up with
ways to improve its performance. Discuss your findings. How does objective eval-
uation help in the development process?

24. ◑ How serious is the sparse data problem? Investigate the performance of n-gram
taggers as n increases from 1 to 6. Tabulate the accuracy score. Estimate the training
data required for these taggers, assuming a vocabulary size of 105 and a tagset size
of 102.

25. ◑ Obtain some tagged data for another language, and train and evaluate a variety
of taggers on it. If the language is morphologically complex, or if there are any
orthographic clues (e.g., capitalization) to word classes, consider developing a reg-
ular expression tagger for it (ordered after the unigram tagger, and before the de-
fault tagger). How does the accuracy of your tagger(s) compare with the same
taggers run on English data? Discuss any issues you encounter in applying these
methods to the language.
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26. ◑ Example 5-4 plotted a curve showing change in the performance of a lookup
tagger as the model size was increased. Plot the performance curve for a unigram
tagger, as the amount of training data is varied.

27. ◑ Inspect the confusion matrix for the bigram tagger t2 defined in Section 5.5, and
identify one or more sets of tags to collapse. Define a dictionary to do the mapping,
and evaluate the tagger on the simplified data.

28. ◑ Experiment with taggers using the simplified tagset (or make one of your own
by discarding all but the first character of each tag name). Such a tagger has fewer
distinctions to make, but much less information on which to base its work. Discuss
your findings.

29. ◑ Recall the example of a bigram tagger which encountered a word it hadn’t seen
during training, and tagged the rest of the sentence as None. It is possible for a
bigram tagger to fail partway through a sentence even if it contains no unseen words
(even if the sentence was used during training). In what circumstance can this
happen? Can you write a program to find some examples of this?

30. ◑ Preprocess the Brown News data by replacing low-frequency words with UNK,
but leaving the tags untouched. Now train and evaluate a bigram tagger on this
data. How much does this help? What is the contribution of the unigram tagger
and default tagger now?

31. ◑ Modify the program in Example 5-4 to use a logarithmic scale on the x-axis, by
replacing pylab.plot() with pylab.semilogx(). What do you notice about the
shape of the resulting plot? Does the gradient tell you anything?

32. ◑ Consult the documentation for the Brill tagger demo function, using
help(nltk.tag.brill.demo). Experiment with the tagger by setting different values
for the parameters. Is there any trade-off between training time (corpus size) and
performance?

33. ◑ Write code that builds a dictionary of dictionaries of sets. Use it to store the set
of POS tags that can follow a given word having a given POS tag, i.e., wordi → tagi →
tagi+1.

34. ● There are 264 distinct words in the Brown Corpus having exactly three possible
tags.

a. Print a table with the integers 1..10 in one column, and the number of distinct
words in the corpus having 1..10 distinct tags in the other column.

b. For the word with the greatest number of distinct tags, print out sentences
from the corpus containing the word, one for each possible tag.

35. ● Write a program to classify contexts involving the word must according to the
tag of the following word. Can this be used to discriminate between the epistemic
and deontic uses of must?

36. ● Create a regular expression tagger and various unigram and n-gram taggers,
incorporating backoff, and train them on part of the Brown Corpus.
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a. Create three different combinations of the taggers. Test the accuracy of each
combined tagger. Which combination works best?

b. Try varying the size of the training corpus. How does it affect your results?

37. ● Our approach for tagging an unknown word has been to consider the letters of
the word (using RegexpTagger()), or to ignore the word altogether and tag it as a
noun (using nltk.DefaultTagger()). These methods will not do well for texts hav-
ing new words that are not nouns. Consider the sentence I like to blog on Kim’s
blog. If blog is a new word, then looking at the previous tag (TO versus NP$) would
probably be helpful, i.e., we need a default tagger that is sensitive to the preceding
tag.

a. Create a new kind of unigram tagger that looks at the tag of the previous word,
and ignores the current word. (The best way to do this is to modify the source
code for UnigramTagger(), which presumes knowledge of object-oriented pro-
gramming in Python.)

b. Add this tagger to the sequence of backoff taggers (including ordinary trigram
and bigram taggers that look at words), right before the usual default tagger.

c. Evaluate the contribution of this new unigram tagger.

38. ● Consider the code in Section 5.5, which determines the upper bound for accuracy
of a trigram tagger. Review Abney’s discussion concerning the impossibility of
exact tagging (Abney, 2006). Explain why correct tagging of these examples re-
quires access to other kinds of information than just words and tags. How might
you estimate the scale of this problem?

39. ● Use some of the estimation techniques in nltk.probability, such as Lidstone or
Laplace estimation, to develop a statistical tagger that does a better job than n-
gram backoff taggers in cases where contexts encountered during testing were not
seen during training.

40. ● Inspect the diagnostic files created by the Brill tagger rules.out and
errors.out. Obtain the demonstration code by accessing the source code (at http:
//www.nltk.org/code) and create your own version of the Brill tagger. Delete some
of the rule templates, based on what you learned from inspecting rules.out. Add
some new rule templates which employ contexts that might help to correct the
errors you saw in errors.out.

41. ● Develop an n-gram backoff tagger that permits “anti-n-grams” such as ["the",
"the"] to be specified when a tagger is initialized. An anti-n-gram is assigned a
count of zero and is used to prevent backoff for this n-gram (e.g., to avoid esti-
mating P(the | the) as just P(the)).

42. ● Investigate three different ways to define the split between training and testing
data when developing a tagger using the Brown Corpus: genre (category), source
(fileid), and sentence. Compare their relative performance and discuss which
method is the most legitimate. (You might use n-fold cross validation, discussed
in Section 6.3, to improve the accuracy of the evaluations.)

5.10  Exercises | 219

http://www.nltk.org/code
http://www.nltk.org/code




CHAPTER 6

Learning to Classify Text

Detecting patterns is a central part of Natural Language Processing. Words ending in
-ed tend to be past tense verbs (Chapter 5). Frequent use of will is indicative of news
text (Chapter 3). These observable patterns—word structure and word frequency—
happen to correlate with particular aspects of meaning, such as tense and topic. But
how did we know where to start looking, which aspects of form to associate with which
aspects of meaning?

The goal of this chapter is to answer the following questions:

1. How can we identify particular features of language data that are salient for clas-
sifying it?

2. How can we construct models of language that can be used to perform language
processing tasks automatically?

3. What can we learn about language from these models?

Along the way we will study some important machine learning techniques, including
decision trees, naive Bayes classifiers, and maximum entropy classifiers. We will gloss
over the mathematical and statistical underpinnings of these techniques, focusing in-
stead on how and when to use them (see Section 6.9 for more technical background).
Before looking at these methods, we first need to appreciate the broad scope of this
topic.

6.1  Supervised Classification
Classification is the task of choosing the correct class label for a given input. In basic
classification tasks, each input is considered in isolation from all other inputs, and the
set of labels is defined in advance. Some examples of classification tasks are:
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• Deciding whether an email is spam or not.

• Deciding what the topic of a news article is, from a fixed list of topic areas such as
“sports,” “technology,” and “politics.”

• Deciding whether a given occurrence of the word bank is used to refer to a river
bank, a financial institution, the act of tilting to the side, or the act of depositing
something in a financial institution.

The basic classification task has a number of interesting variants. For example, in multi-
class classification, each instance may be assigned multiple labels; in open-class clas-
sification, the set of labels is not defined in advance; and in sequence classification, a
list of inputs are jointly classified.

A classifier is called supervised if it is built based on training corpora containing the
correct label for each input. The framework used by supervised classification is shown
in Figure 6-1.

Figure 6-1. Supervised classification. (a) During training, a feature extractor is used to convert each
input value to a feature set. These feature sets, which capture the basic information about each input
that should be used to classify it, are discussed in the next section. Pairs of feature sets and labels are
fed into the machine learning algorithm to generate a model. (b) During prediction, the same feature
extractor is used to convert unseen inputs to feature sets. These feature sets are then fed into the model,
which generates predicted labels.

In the rest of this section, we will look at how classifiers can be employed to solve a
wide variety of tasks. Our discussion is not intended to be comprehensive, but to give
a representative sample of tasks that can be performed with the help of text classifiers.

Gender Identification
In Section 2.4, we saw that male and female names have some distinctive characteristics.
Names ending in a, e, and i are likely to be female, while names ending in k, o, r, s, and
t are likely to be male. Let’s build a classifier to model these differences more precisely.
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The first step in creating a classifier is deciding what features of the input are relevant,
and how to encode those features. For this example, we’ll start by just looking at the
final letter of a given name. The following feature extractor function builds a dic-
tionary containing relevant information about a given name:

>>> def gender_features(word):
...     return {'last_letter': word[-1]}
>>> gender_features('Shrek')
{'last_letter': 'k'}

The dictionary that is returned by this function is called a feature set and maps from
features’ names to their values. Feature names are case-sensitive strings that typically
provide a short human-readable description of the feature. Feature values are values
with simple types, such as Booleans, numbers, and strings.

Most classification methods require that features be encoded using sim-
ple value types, such as Booleans, numbers, and strings. But note that
just because a feature has a simple type, this does not necessarily mean
that the feature’s value is simple to express or compute; indeed, it is
even possible to use very complex and informative values, such as the
output of a second supervised classifier, as features.

Now that we’ve defined a feature extractor, we need to prepare a list of examples and
corresponding class labels:

>>> from nltk.corpus import names
>>> import random
>>> names = ([(name, 'male') for name in names.words('male.txt')] +
...          [(name, 'female') for name in names.words('female.txt')])
>>> random.shuffle(names)

Next, we use the feature extractor to process the names data, and divide the resulting
list of feature sets into a training set and a test set. The training set is used to train a
new “naive Bayes” classifier.

>>> featuresets = [(gender_features(n), g) for (n,g) in names]
>>> train_set, test_set = featuresets[500:], featuresets[:500]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)

We will learn more about the naive Bayes classifier later in the chapter. For now, let’s
just test it out on some names that did not appear in its training data:

>>> classifier.classify(gender_features('Neo'))
'male'
>>> classifier.classify(gender_features('Trinity'))
'female'

Observe that these character names from The Matrix are correctly classified. Although
this science fiction movie is set in 2199, it still conforms with our expectations about
names and genders. We can systematically evaluate the classifier on a much larger
quantity of unseen data:
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>>> print nltk.classify.accuracy(classifier, test_set)
0.758

Finally, we can examine the classifier to determine which features it found most effec-
tive for distinguishing the names’ genders:

>>> classifier.show_most_informative_features(5)
Most Informative Features
             last_letter = 'a'            female : male   =     38.3 : 1.0
             last_letter = 'k'              male : female =     31.4 : 1.0
             last_letter = 'f'              male : female =     15.3 : 1.0
             last_letter = 'p'              male : female =     10.6 : 1.0
             last_letter = 'w'              male : female =     10.6 : 1.0

This listing shows that the names in the training set that end in a are female 38 times
more often than they are male, but names that end in k are male 31 times more often
than they are female. These ratios are known as likelihood ratios, and can be useful
for comparing different feature-outcome relationships.

Your Turn: Modify the gender_features() function to provide the clas-
sifier with features encoding the length of the name, its first letter, and
any other features that seem like they might be informative. Retrain the
classifier with these new features, and test its accuracy.

When working with large corpora, constructing a single list that contains the features
of every instance can use up a large amount of memory. In these cases, use the function
nltk.classify.apply_features, which returns an object that acts like a list but does not
store all the feature sets in memory:

>>> from nltk.classify import apply_features
>>> train_set = apply_features(gender_features, names[500:])
>>> test_set = apply_features(gender_features, names[:500])

Choosing the Right Features
Selecting relevant features and deciding how to encode them for a learning method can
have an enormous impact on the learning method’s ability to extract a good model.
Much of the interesting work in building a classifier is deciding what features might be
relevant, and how we can represent them. Although it’s often possible to get decent
performance by using a fairly simple and obvious set of features, there are usually sig-
nificant gains to be had by using carefully constructed features based on a thorough
understanding of the task at hand.

Typically, feature extractors are built through a process of trial-and-error, guided by
intuitions about what information is relevant to the problem. It’s common to start with
a “kitchen sink” approach, including all the features that you can think of, and then
checking to see which features actually are helpful. We take this approach for name
gender features in Example 6-1.
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Example 6-1. A feature extractor that overfits gender features. The featuresets returned by this feature
extractor contain a large number of specific features, leading to overfitting for the relatively small
Names Corpus.

def gender_features2(name):
    features = {}
    features["firstletter"] = name[0].lower()
    features["lastletter"] = name[–1].lower()
    for letter in 'abcdefghijklmnopqrstuvwxyz':
        features["count(%s)" % letter] = name.lower().count(letter)
        features["has(%s)" % letter] = (letter in name.lower())
    return features

>>> gender_features2('John') 
{'count(j)': 1, 'has(d)': False, 'count(b)': 0, ...}

However, there are usually limits to the number of features that you should use with a
given learning algorithm—if you provide too many features, then the algorithm will
have a higher chance of relying on idiosyncrasies of your training data that don’t gen-
eralize well to new examples. This problem is known as overfitting, and can be espe-
cially problematic when working with small training sets. For example, if we train a
naive Bayes classifier using the feature extractor shown in Example 6-1, it will overfit
the relatively small training set, resulting in a system whose accuracy is about 1% lower
than the accuracy of a classifier that only pays attention to the final letter of each name:

>>> featuresets = [(gender_features2(n), g) for (n,g) in names]
>>> train_set, test_set = featuresets[500:], featuresets[:500]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print nltk.classify.accuracy(classifier, test_set)
0.748

Once an initial set of features has been chosen, a very productive method for refining
the feature set is error analysis. First, we select a development set, containing the
corpus data for creating the model. This development set is then subdivided into the
training set and the dev-test set.

>>> train_names = names[1500:]
>>> devtest_names = names[500:1500]
>>> test_names = names[:500]

The training set is used to train the model, and the dev-test set is used to perform error
analysis. The test set serves in our final evaluation of the system. For reasons discussed
later, it is important that we employ a separate dev-test set for error analysis, rather
than just using the test set. The division of the corpus data into different subsets is
shown in Figure 6-2.

Having divided the corpus into appropriate datasets, we train a model using the training
set , and then run it on the dev-test set .

>>> train_set = [(gender_features(n), g) for (n,g) in train_names]
>>> devtest_set = [(gender_features(n), g) for (n,g) in devtest_names]
>>> test_set = [(gender_features(n), g) for (n,g) in test_names]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set) 
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>>> print nltk.classify.accuracy(classifier, devtest_set) 
0.765

Figure 6-2. Organization of corpus data for training supervised classifiers. The corpus data is divided
into two sets: the development set and the test set. The development set is often further subdivided into
a training set and a dev-test set.

Using the dev-test set, we can generate a list of the errors that the classifier makes when
predicting name genders:

>>> errors = []
>>> for (name, tag) in devtest_names:
...     guess = classifier.classify(gender_features(name))
...     if guess != tag:
...         errors.append( (tag, guess, name) )

We can then examine individual error cases where the model predicted the wrong label,
and try to determine what additional pieces of information would allow it to make the
right decision (or which existing pieces of information are tricking it into making the
wrong decision). The feature set can then be adjusted accordingly. The names classifier
that we have built generates about 100 errors on the dev-test corpus:

>>> for (tag, guess, name) in sorted(errors): # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE 
...     print 'correct=%-8s guess=%-8s name=%-30s' % 
(tag, guess, name)
       ...
correct=female   guess=male     name=Cindelyn
       ...
correct=female   guess=male     name=Katheryn
correct=female   guess=male     name=Kathryn
       ...
correct=male     guess=female   name=Aldrich
       ...
correct=male     guess=female   name=Mitch
       ...
correct=male     guess=female   name=Rich
       ...
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Looking through this list of errors makes it clear that some suffixes that are more than
one letter can be indicative of name genders. For example, names ending in yn appear
to be predominantly female, despite the fact that names ending in n tend to be male;
and names ending in ch are usually male, even though names that end in h tend to be
female. We therefore adjust our feature extractor to include features for two-letter
suffixes:

>>> def gender_features(word):
...     return {'suffix1': word[-1:],
...             'suffix2': word[-2:]}

Rebuilding the classifier with the new feature extractor, we see that the performance
on the dev-test dataset improves by almost three percentage points (from 76.5% to
78.2%):

>>> train_set = [(gender_features(n), g) for (n,g) in train_names]
>>> devtest_set = [(gender_features(n), g) for (n,g) in devtest_names]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print nltk.classify.accuracy(classifier, devtest_set)
0.782

This error analysis procedure can then be repeated, checking for patterns in the errors
that are made by the newly improved classifier. Each time the error analysis procedure
is repeated, we should select a different dev-test/training split, to ensure that the clas-
sifier does not start to reflect idiosyncrasies in the dev-test set.

But once we’ve used the dev-test set to help us develop the model, we can no longer
trust that it will give us an accurate idea of how well the model would perform on new
data. It is therefore important to keep the test set separate, and unused, until our model
development is complete. At that point, we can use the test set to evaluate how well
our model will perform on new input values.

Document Classification
In Section 2.1, we saw several examples of corpora where documents have been labeled
with categories. Using these corpora, we can build classifiers that will automatically
tag new documents with appropriate category labels. First, we construct a list of docu-
ments, labeled with the appropriate categories. For this example, we’ve chosen the
Movie Reviews Corpus, which categorizes each review as positive or negative.

>>> from nltk.corpus import movie_reviews
>>> documents = [(list(movie_reviews.words(fileid)), category)
...              for category in movie_reviews.categories()
...              for fileid in movie_reviews.fileids(category)]
>>> random.shuffle(documents)

Next, we define a feature extractor for documents, so the classifier will know which
aspects of the data it should pay attention to (see Example 6-2). For document topic
identification, we can define a feature for each word, indicating whether the document
contains that word. To limit the number of features that the classifier needs to process,
we begin by constructing a list of the 2,000 most frequent words in the overall
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corpus . We can then define a feature extractor  that simply checks whether each
of these words is present in a given document.

Example 6-2. A feature extractor for document classification, whose features indicate whether or not
individual words are present in a given document.

all_words = nltk.FreqDist(w.lower() for w in movie_reviews.words())
word_features = all_words.keys()[:2000] 

def document_features(document): 
    document_words = set(document) 
    features = {}
    for word in word_features:
        features['contains(%s)' % word] = (word in document_words)
    return features

>>> print document_features(movie_reviews.words('pos/cv957_8737.txt')) 
{'contains(waste)': False, 'contains(lot)': False, ...}

We compute the set of all words in a document in , rather than just
checking if word in document, because checking whether a word occurs
in a set is much faster than checking whether it occurs in a list (see
Section 4.7).

Now that we’ve defined our feature extractor, we can use it to train a classifier to label
new movie reviews (Example 6-3). To check how reliable the resulting classifier is, we
compute its accuracy on the test set . And once again, we can use show_most_infor
mative_features() to find out which features the classifier found to be most
informative .

Example 6-3. Training and testing a classifier for document classification.

featuresets = [(document_features(d), c) for (d,c) in documents]
train_set, test_set = featuresets[100:], featuresets[:100]
classifier = nltk.NaiveBayesClassifier.train(train_set)

>>> print nltk.classify.accuracy(classifier, test_set) 
0.81
>>> classifier.show_most_informative_features(5) 
Most Informative Features
   contains(outstanding) = True               pos : neg   =     11.1 : 1.0
        contains(seagal) = True               neg : pos   =      7.7 : 1.0
   contains(wonderfully) = True               pos : neg   =      6.8 : 1.0
         contains(damon) = True               pos : neg   =      5.9 : 1.0
        contains(wasted) = True               neg : pos   =      5.8 : 1.0

Apparently in this corpus, a review that mentions Seagal is almost 8 times more likely
to be negative than positive, while a review that mentions Damon is about 6 times more
likely to be positive.
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Part-of-Speech Tagging
In Chapter 5, we built a regular expression tagger that chooses a part-of-speech tag for
a word by looking at the internal makeup of the word. However, this regular expression
tagger had to be handcrafted. Instead, we can train a classifier to work out which suf-
fixes are most informative. Let’s begin by finding the most common suffixes:

>>> from nltk.corpus import brown
>>> suffix_fdist = nltk.FreqDist()
>>> for word in brown.words():
...     word = word.lower()
...     suffix_fdist.inc(word[-1:])
...     suffix_fdist.inc(word[-2:])
...     suffix_fdist.inc(word[-3:])

>>> common_suffixes = suffix_fdist.keys()[:100]
>>> print common_suffixes 
['e', ',', '.', 's', 'd', 't', 'he', 'n', 'a', 'of', 'the',
 'y', 'r', 'to', 'in', 'f', 'o', 'ed', 'nd', 'is', 'on', 'l',
 'g', 'and', 'ng', 'er', 'as', 'ing', 'h', 'at', 'es', 'or',
 're', 'it', '``', 'an', "''", 'm', ';', 'i', 'ly', 'ion', ...]

Next, we’ll define a feature extractor function that checks a given word for these
suffixes:

>>> def pos_features(word):
...     features = {}
...     for suffix in common_suffixes:
...         features['endswith(%s)' % suffix] = word.lower().endswith(suffix)
...     return features

Feature extraction functions behave like tinted glasses, highlighting some of the prop-
erties (colors) in our data and making it impossible to see other properties. The classifier
will rely exclusively on these highlighted properties when determining how to label
inputs. In this case, the classifier will make its decisions based only on information
about which of the common suffixes (if any) a given word has.

Now that we’ve defined our feature extractor, we can use it to train a new “decision
tree” classifier (to be discussed in Section 6.4):

>>> tagged_words = brown.tagged_words(categories='news')
>>> featuresets = [(pos_features(n), g) for (n,g) in tagged_words]

>>> size = int(len(featuresets) * 0.1)
>>> train_set, test_set = featuresets[size:], featuresets[:size]

>>> classifier = nltk.DecisionTreeClassifier.train(train_set)
>>> nltk.classify.accuracy(classifier, test_set)
0.62705121829935351

>>> classifier.classify(pos_features('cats'))
'NNS'

One nice feature of decision tree models is that they are often fairly easy to interpret.
We can even instruct NLTK to print them out as pseudocode:
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>>> print classifier.pseudocode(depth=4)
if endswith(,) == True: return ','
if endswith(,) == False:
  if endswith(the) == True: return 'AT'
  if endswith(the) == False:
    if endswith(s) == True:
      if endswith(is) == True: return 'BEZ'
      if endswith(is) == False: return 'VBZ'
    if endswith(s) == False:
      if endswith(.) == True: return '.'
      if endswith(.) == False: return 'NN'

Here, we can see that the classifier begins by checking whether a word ends with a
comma—if so, then it will receive the special tag ",". Next, the classifier checks whether
the word ends in "the", in which case it’s almost certainly a determiner. This “suffix”
gets used early by the decision tree because the word the is so common. Continuing
on, the classifier checks if the word ends in s. If so, then it’s most likely to receive the
verb tag VBZ (unless it’s the word is, which has the special tag BEZ), and if not, then it’s
most likely a noun (unless it’s the punctuation mark “.”). The actual classifier contains
further nested if-then statements below the ones shown here, but the depth=4 argument
just displays the top portion of the decision tree.

Exploiting Context
By augmenting the feature extraction function, we could modify this part-of-speech
tagger to leverage a variety of other word-internal features, such as the length of the
word, the number of syllables it contains, or its prefix. However, as long as the feature
extractor just looks at the target word, we have no way to add features that depend on
the context in which the word appears. But contextual features often provide powerful
clues about the correct tag—for example, when tagging the word fly, knowing that the
previous word is a will allow us to determine that it is functioning as a noun, not a verb.

In order to accommodate features that depend on a word’s context, we must revise the
pattern that we used to define our feature extractor. Instead of just passing in the word
to be tagged, we will pass in a complete (untagged) sentence, along with the index of
the target word. This approach is demonstrated in Example 6-4, which employs a con-
text-dependent feature extractor to define a part-of-speech tag classifier.
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Example 6-4. A part-of-speech classifier whose feature detector examines the context in which a word
appears in order to determine which part-of-speech tag should be assigned. In particular, the identity
of the previous word is included as a feature.

def pos_features(sentence, i): 
    features = {"suffix(1)": sentence[i][-1:],
                "suffix(2)": sentence[i][-2:],
                "suffix(3)": sentence[i][-3:]}
    if i == 0:
        features["prev-word"] = "<START>"
    else:
        features["prev-word"] = sentence[i-1]
    return features

>>> pos_features(brown.sents()[0], 8)
{'suffix(3)': 'ion', 'prev-word': 'an', 'suffix(2)': 'on', 'suffix(1)': 'n'}
>>> tagged_sents = brown.tagged_sents(categories='news')
>>> featuresets = []
>>> for tagged_sent in tagged_sents:
...     untagged_sent = nltk.tag.untag(tagged_sent)
...     for i, (word, tag) in enumerate(tagged_sent):
...         featuresets.append( 
(pos_features(untagged_sent, i), tag) )

>>> size = int(len(featuresets) * 0.1)
>>> train_set, test_set = featuresets[size:], featuresets[:size]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)

>>> nltk.classify.accuracy(classifier, test_set)
0.78915962207856782

It’s clear that exploiting contextual features improves the performance of our part-of-
speech tagger. For example, the classifier learns that a word is likely to be a noun if it
comes immediately after the word large or the word gubernatorial. However, it is unable
to learn the generalization that a word is probably a noun if it follows an adjective,
because it doesn’t have access to the previous word’s part-of-speech tag. In general,
simple classifiers always treat each input as independent from all other inputs. In many
contexts, this makes perfect sense. For example, decisions about whether names tend
to be male or female can be made on a case-by-case basis. However, there are often
cases, such as part-of-speech tagging, where we are interested in solving classification
problems that are closely related to one another.

Sequence Classification
In order to capture the dependencies between related classification tasks, we can use
joint classifier models, which choose an appropriate labeling for a collection of related
inputs. In the case of part-of-speech tagging, a variety of different sequence
classifier models can be used to jointly choose part-of-speech tags for all the words in
a given sentence.
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One sequence classification strategy, known as consecutive classification or greedy
sequence classification, is to find the most likely class label for the first input, then
to use that answer to help find the best label for the next input. The process can then
be repeated until all of the inputs have been labeled. This is the approach that was taken
by the bigram tagger from Section 5.5, which began by choosing a part-of-speech tag
for the first word in the sentence, and then chose the tag for each subsequent word
based on the word itself and the predicted tag for the previous word.

This strategy is demonstrated in Example 6-5. First, we must augment our feature
extractor function to take a history argument, which provides a list of the tags that
we’ve predicted for the sentence so far . Each tag in history corresponds with a word
in sentence. But note that history will only contain tags for words we’ve already clas-
sified, that is, words to the left of the target word. Thus, although it is possible to look
at some features of words to the right of the target word, it is not possible to look at
the tags for those words (since we haven’t generated them yet).

Having defined a feature extractor, we can proceed to build our sequence
classifier . During training, we use the annotated tags to provide the appropriate
history to the feature extractor, but when tagging new sentences, we generate the his-
tory list based on the output of the tagger itself.

Example 6-5. Part-of-speech tagging with a consecutive classifier.

def pos_features(sentence, i, history): 
    features = {"suffix(1)": sentence[i][-1:],
                "suffix(2)": sentence[i][-2:],
                "suffix(3)": sentence[i][-3:]}
    if i == 0:
        features["prev-word"] = "<START>"
        features["prev-tag"] = "<START>"
    else:
        features["prev-word"] = sentence[i-1]
        features["prev-tag"] = history[i-1]
    return features

class ConsecutivePosTagger(nltk.TaggerI): 
    def __init__(self, train_sents):
        train_set = []
        for tagged_sent in train_sents:
            untagged_sent = nltk.tag.untag(tagged_sent)
            history = []
            for i, (word, tag) in enumerate(tagged_sent):
                featureset = pos_features(untagged_sent, i, history)
                train_set.append( (featureset, tag) )
                history.append(tag)
        self.classifier = nltk.NaiveBayesClassifier.train(train_set)
 

    def tag(self, sentence):
        history = []
        for i, word in enumerate(sentence):
            featureset = pos_features(sentence, i, history)
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            tag = self.classifier.classify(featureset)
            history.append(tag)
        return zip(sentence, history)

>>> tagged_sents = brown.tagged_sents(categories='news')
>>> size = int(len(tagged_sents) * 0.1)
>>> train_sents, test_sents = tagged_sents[size:], tagged_sents[:size]
>>> tagger = ConsecutivePosTagger(train_sents)
>>> print tagger.evaluate(test_sents)
0.79796012981

Other Methods for Sequence Classification
One shortcoming of this approach is that we commit to every decision that we make.
For example, if we decide to label a word as a noun, but later find evidence that it should
have been a verb, there’s no way to go back and fix our mistake. One solution to this
problem is to adopt a transformational strategy instead. Transformational joint classi-
fiers work by creating an initial assignment of labels for the inputs, and then iteratively
refining that assignment in an attempt to repair inconsistencies between related inputs.
The Brill tagger, described in Section 5.6, is a good example of this strategy.

Another solution is to assign scores to all of the possible sequences of part-of-speech
tags, and to choose the sequence whose overall score is highest. This is the approach
taken by Hidden Markov Models. Hidden Markov Models are similar to consecutive
classifiers in that they look at both the inputs and the history of predicted tags. How-
ever, rather than simply finding the single best tag for a given word, they generate a
probability distribution over tags. These probabilities are then combined to calculate
probability scores for tag sequences, and the tag sequence with the highest probability
is chosen. Unfortunately, the number of possible tag sequences is quite large. Given a
tag set with 30 tags, there are about 600 trillion (3010) ways to label a 10-word sentence.
In order to avoid considering all these possible sequences separately, Hidden Markov
Models require that the feature extractor only look at the most recent tag (or the most
recent n tags, where n is fairly small). Given that restriction, it is possible to use dynamic
programming (Section 4.7) to efficiently find the most likely tag sequence. In particular,
for each consecutive word index i, a score is computed for each possible current and
previous tag. This same basic approach is taken by two more advanced models, called
Maximum Entropy Markov Models and Linear-Chain Conditional Random
Field Models; but different algorithms are used to find scores for tag sequences.

6.2  Further Examples of Supervised Classification
Sentence Segmentation
Sentence segmentation can be viewed as a classification task for punctuation: whenever
we encounter a symbol that could possibly end a sentence, such as a period or a question
mark, we have to decide whether it terminates the preceding sentence.
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The first step is to obtain some data that has already been segmented into sentences
and convert it into a form that is suitable for extracting features:

>>> sents = nltk.corpus.treebank_raw.sents()
>>> tokens = []
>>> boundaries = set()
>>> offset = 0
>>> for sent in nltk.corpus.treebank_raw.sents():
...     tokens.extend(sent)
...     offset += len(sent)
...     boundaries.add(offset-1)

Here, tokens is a merged list of tokens from the individual sentences, and boundaries
is a set containing the indexes of all sentence-boundary tokens. Next, we need to specify
the features of the data that will be used in order to decide whether punctuation indi-
cates a sentence boundary:

>>> def punct_features(tokens, i):
...     return {'next-word-capitalized': tokens[i+1][0].isupper(),
...             'prevword': tokens[i-1].lower(),
...             'punct': tokens[i],
...             'prev-word-is-one-char': len(tokens[i-1]) == 1}

Based on this feature extractor, we can create a list of labeled featuresets by selecting
all the punctuation tokens, and tagging whether they are boundary tokens or not:

>>> featuresets = [(punct_features(tokens, i), (i in boundaries))
...                for i in range(1, len(tokens)-1)
...                if tokens[i] in '.?!']

Using these featuresets, we can train and evaluate a punctuation classifier:

>>> size = int(len(featuresets) * 0.1)
>>> train_set, test_set = featuresets[size:], featuresets[:size]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> nltk.classify.accuracy(classifier, test_set)
0.97419354838709682

To use this classifier to perform sentence segmentation, we simply check each punc-
tuation mark to see whether it’s labeled as a boundary, and divide the list of words at
the boundary marks. The listing in Example 6-6 shows how this can be done.

Example 6-6. Classification-based sentence segmenter.

def segment_sentences(words):
    start = 0
    sents = []
    for i, word in words:
        if word in '.?!' and classifier.classify(words, i) == True:
            sents.append(words[start:i+1])
            start = i+1
    if start < len(words):
        sents.append(words[start:])
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Identifying Dialogue Act Types
When processing dialogue, it can be useful to think of utterances as a type of action
performed by the speaker. This interpretation is most straightforward for performative
statements such as I forgive you or I bet you can’t climb that hill. But greetings, questions,
answers, assertions, and clarifications can all be thought of as types of speech-based
actions. Recognizing the dialogue acts underlying the utterances in a dialogue can be
an important first step in understanding the conversation.

The NPS Chat Corpus, which was demonstrated in Section 2.1, consists of over 10,000
posts from instant messaging sessions. These posts have all been labeled with one of
15 dialogue act types, such as “Statement,” “Emotion,” “ynQuestion,” and “Contin-
uer.” We can therefore use this data to build a classifier that can identify the dialogue
act types for new instant messaging posts. The first step is to extract the basic messaging
data. We will call xml_posts() to get a data structure representing the XML annotation
for each post:

>>> posts = nltk.corpus.nps_chat.xml_posts()[:10000]

Next, we’ll define a simple feature extractor that checks what words the post contains:

>>> def dialogue_act_features(post):
...     features = {}
...     for word in nltk.word_tokenize(post):
...         features['contains(%s)' % word.lower()] = True
...     return features

Finally, we construct the training and testing data by applying the feature extractor to
each post (using post.get('class') to get a post’s dialogue act type), and create a new
classifier:

>>> featuresets = [(dialogue_act_features(post.text), post.get('class'))
...                for post in posts]
>>> size = int(len(featuresets) * 0.1)
>>> train_set, test_set = featuresets[size:], featuresets[:size]
>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print nltk.classify.accuracy(classifier, test_set)
0.66

Recognizing Textual Entailment
Recognizing textual entailment (RTE) is the task of determining whether a given piece
of text T entails another text called the “hypothesis” (as already discussed in Sec-
tion 1.5). To date, there have been four RTE Challenges, where shared development
and test data is made available to competing teams. Here are a couple of examples of
text/hypothesis pairs from the Challenge 3 development dataset. The label True indi-
cates that the entailment holds, and False indicates that it fails to hold.
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Challenge 3, Pair 34 (True)

T: Parviz Davudi was representing Iran at a meeting of the Shanghai Co-operation
Organisation (SCO), the fledgling association that binds Russia, China and four
former Soviet republics of central Asia together to fight terrorism.

H: China is a member of SCO.

Challenge 3, Pair 81 (False)

T: According to NC Articles of Organization, the members of LLC company are
H. Nelson Beavers, III, H. Chester Beavers and Jennie Beavers Stewart.

H: Jennie Beavers Stewart is a share-holder of Carolina Analytical Laboratory.

It should be emphasized that the relationship between text and hypothesis is not in-
tended to be logical entailment, but rather whether a human would conclude that the
text provides reasonable evidence for taking the hypothesis to be true.

We can treat RTE as a classification task, in which we try to predict the True/False label
for each pair. Although it seems likely that successful approaches to this task will in-
volve a combination of parsing, semantics, and real-world knowledge, many early at-
tempts at RTE achieved reasonably good results with shallow analysis, based on sim-
ilarity between the text and hypothesis at the word level. In the ideal case, we would
expect that if there is an entailment, then all the information expressed by the hypoth-
esis should also be present in the text. Conversely, if there is information found in the
hypothesis that is absent from the text, then there will be no entailment.

In our RTE feature detector (Example 6-7), we let words (i.e., word types) serve as
proxies for information, and our features count the degree of word overlap, and the
degree to which there are words in the hypothesis but not in the text (captured by the
method hyp_extra()). Not all words are equally important—named entity mentions,
such as the names of people, organizations, and places, are likely to be more significant,
which motivates us to extract distinct information for words and nes (named entities).
In addition, some high-frequency function words are filtered out as “stopwords.”

Example 6-7. “Recognizing Text Entailment” feature extractor: The RTEFeatureExtractor class
builds a bag of words for both the text and the hypothesis after throwing away some stopwords, then
calculates overlap and difference.

def rte_features(rtepair):
    extractor = nltk.RTEFeatureExtractor(rtepair)
    features = {}
    features['word_overlap'] = len(extractor.overlap('word'))
    features['word_hyp_extra'] = len(extractor.hyp_extra('word'))
    features['ne_overlap'] = len(extractor.overlap('ne'))
    features['ne_hyp_extra'] = len(extractor.hyp_extra('ne'))
    return features

To illustrate the content of these features, we examine some attributes of the text/
hypothesis Pair 34 shown earlier:
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>>> rtepair = nltk.corpus.rte.pairs(['rte3_dev.xml'])[33]
>>> extractor = nltk.RTEFeatureExtractor(rtepair)
>>> print extractor.text_words
set(['Russia', 'Organisation', 'Shanghai', 'Asia', 'four', 'at',
'operation', 'SCO', ...])
>>> print extractor.hyp_words
set(['member', 'SCO', 'China'])
>>> print extractor.overlap('word')
set([])
>>> print extractor.overlap('ne')
set(['SCO', 'China'])
>>> print extractor.hyp_extra('word')
set(['member'])

These features indicate that all important words in the hypothesis are contained in the
text, and thus there is some evidence for labeling this as True.

The module nltk.classify.rte_classify reaches just over 58% accuracy on the com-
bined RTE test data using methods like these. Although this figure is not very
impressive, it requires significant effort, and more linguistic processing, to achieve
much better results.

Scaling Up to Large Datasets
Python provides an excellent environment for performing basic text processing and
feature extraction. However, it is not able to perform the numerically intensive calcu-
lations required by machine learning methods nearly as quickly as lower-level languages
such as C. Thus, if you attempt to use the pure-Python machine learning implemen-
tations (such as nltk.NaiveBayesClassifier) on large datasets, you may find that the
learning algorithm takes an unreasonable amount of time and memory to complete.

If you plan to train classifiers with large amounts of training data or a large number of
features, we recommend that you explore NLTK’s facilities for interfacing with external
machine learning packages. Once these packages have been installed, NLTK can trans-
parently invoke them (via system calls) to train classifier models significantly faster than
the pure-Python classifier implementations. See the NLTK web page for a list of rec-
ommended machine learning packages that are supported by NLTK.

6.3  Evaluation
In order to decide whether a classification model is accurately capturing a pattern, we
must evaluate that model. The result of this evaluation is important for deciding how
trustworthy the model is, and for what purposes we can use it. Evaluation can also be
an effective tool for guiding us in making future improvements to the model.

The Test Set
Most evaluation techniques calculate a score for a model by comparing the labels that
it generates for the inputs in a test set (or evaluation set) with the correct labels for
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those inputs. This test set typically has the same format as the training set. However,
it is very important that the test set be distinct from the training corpus: if we simply
reused the training set as the test set, then a model that simply memorized its input,
without learning how to generalize to new examples, would receive misleadingly high
scores.

When building the test set, there is often a trade-off between the amount of data avail-
able for testing and the amount available for training. For classification tasks that have
a small number of well-balanced labels and a diverse test set, a meaningful evaluation
can be performed with as few as 100 evaluation instances. But if a classification task
has a large number of labels or includes very infrequent labels, then the size of the test
set should be chosen to ensure that the least frequent label occurs at least 50 times.
Additionally, if the test set contains many closely related instances—such as instances
drawn from a single document—then the size of the test set should be increased to
ensure that this lack of diversity does not skew the evaluation results. When large
amounts of annotated data are available, it is common to err on the side of safety by
using 10% of the overall data for evaluation.

Another consideration when choosing the test set is the degree of similarity between
instances in the test set and those in the development set. The more similar these two
datasets are, the less confident we can be that evaluation results will generalize to other
datasets. For example, consider the part-of-speech tagging task. At one extreme, we
could create the training set and test set by randomly assigning sentences from a data
source that reflects a single genre, such as news:

>>> import random
>>> from nltk.corpus import brown
>>> tagged_sents = list(brown.tagged_sents(categories='news'))
>>> random.shuffle(tagged_sents)
>>> size = int(len(tagged_sents) * 0.1)
>>> train_set, test_set = tagged_sents[size:], tagged_sents[:size]

In this case, our test set will be very similar to our training set. The training set and test
set are taken from the same genre, and so we cannot be confident that evaluation results
would generalize to other genres. What’s worse, because of the call to
random.shuffle(), the test set contains sentences that are taken from the same docu-
ments that were used for training. If there is any consistent pattern within a document
(say, if a given word appears with a particular part-of-speech tag especially frequently),
then that difference will be reflected in both the development set and the test set. A
somewhat better approach is to ensure that the training set and test set are taken from
different documents:

>>> file_ids = brown.fileids(categories='news')
>>> size = int(len(file_ids) * 0.1)
>>> train_set = brown.tagged_sents(file_ids[size:])
>>> test_set = brown.tagged_sents(file_ids[:size])

If we want to perform a more stringent evaluation, we can draw the test set from docu-
ments that are less closely related to those in the training set:
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>>> train_set = brown.tagged_sents(categories='news')
>>> test_set = brown.tagged_sents(categories='fiction')

If we build a classifier that performs well on this test set, then we can be confident that
it has the power to generalize well beyond the data on which it was trained.

Accuracy
The simplest metric that can be used to evaluate a classifier, accuracy, measures the
percentage of inputs in the test set that the classifier correctly labeled. For example, a
name gender classifier that predicts the correct name 60 times in a test set containing
80 names would have an accuracy of 60/80 = 75%. The function nltk.classify.accu
racy() will calculate the accuracy of a classifier model on a given test set:

>>> classifier = nltk.NaiveBayesClassifier.train(train_set)
>>> print 'Accuracy: %4.2f' % nltk.classify.accuracy(classifier, test_set) 
0.75

When interpreting the accuracy score of a classifier, it is important to consider the
frequencies of the individual class labels in the test set. For example, consider a classifier
that determines the correct word sense for each occurrence of the word bank. If we
evaluate this classifier on financial newswire text, then we may find that the financial-
institution sense appears 19 times out of 20. In that case, an accuracy of 95% would
hardly be impressive, since we could achieve that accuracy with a model that always
returns the financial-institution sense. However, if we instead evaluate the classifier
on a more balanced corpus, where the most frequent word sense has a frequency of
40%, then a 95% accuracy score would be a much more positive result. (A similar issue
arises when measuring inter-annotator agreement in Section 11.2.)

Precision and Recall
Another instance where accuracy scores can be misleading is in “search” tasks, such as
information retrieval, where we are attempting to find documents that are relevant to
a particular task. Since the number of irrelevant documents far outweighs the number
of relevant documents, the accuracy score for a model that labels every document as
irrelevant would be very close to 100%.

It is therefore conventional to employ a different set of measures for search tasks, based
on the number of items in each of the four categories shown in Figure 6-3:

• True positives are relevant items that we correctly identified as relevant.

• True negatives are irrelevant items that we correctly identified as irrelevant.

• False positives (or Type I errors) are irrelevant items that we incorrectly identi-
fied as relevant.

• False negatives (or Type II errors) are relevant items that we incorrectly identi-
fied as irrelevant.
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Given these four numbers, we can define the following metrics:

• Precision, which indicates how many of the items that we identified were relevant,
is TP/(TP+FP).

• Recall, which indicates how many of the relevant items that we identified, is
TP/(TP+FN).

• The F-Measure (or F-Score), which combines the precision and recall to give a
single score, is defined to be the harmonic mean of the precision and recall
(2 × Precision × Recall)/(Precision+Recall).

Confusion Matrices
When performing classification tasks with three or more labels, it can be informative
to subdivide the errors made by the model based on which types of mistake it made. A
confusion matrix is a table where each cell [i,j] indicates how often label j was pre-
dicted when the correct label was i. Thus, the diagonal entries (i.e., cells [i,j]) indicate
labels that were correctly predicted, and the off-diagonal entries indicate errors. In the
following example, we generate a confusion matrix for the unigram tagger developed
in Section 5.4:

Figure 6-3. True and false positives and negatives.
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>>> def tag_list(tagged_sents):
...     return [tag for sent in tagged_sents for (word, tag) in sent]
>>> def apply_tagger(tagger, corpus):
...     return [tagger.tag(nltk.tag.untag(sent)) for sent in corpus]
>>> gold = tag_list(brown.tagged_sents(categories='editorial'))
>>> test = tag_list(apply_tagger(t2, brown.tagged_sents(categories='editorial'))) 
>>> cm = nltk.ConfusionMatrix(gold, test)
    |                                         N                      |
    |      N      I      A      J             N             V      N |
    |      N      N      T      J      .      S      ,      B      P |
----+----------------------------------------------------------------+
 NN | <11.8%>  0.0%      .   0.2%      .   0.0%      .   0.3%   0.0% |
 IN |   0.0%  <9.0%>     .      .      .   0.0%      .      .      . |
 AT |      .      .  <8.6%>     .      .      .      .      .      . |
 JJ |   1.6%      .      .  <4.0%>     .      .      .   0.0%   0.0% |
  . |      .      .      .      .  <4.8%>     .      .      .      . |
 NS |   1.5%      .      .      .      .  <3.2%>     .      .   0.0% |
  , |      .      .      .      .      .      .  <4.4%>     .      . |
  B |   0.9%      .      .   0.0%      .      .      .  <2.4%>     . |
 NP |   1.0%      .      .   0.0%      .      .      .      .  <1.9%>|
----+----------------------------------------------------------------+
(row = reference; col = test)

The confusion matrix indicates that common errors include a substitution of NN for
JJ (for 1.6% of words), and of NN for NNS (for 1.5% of words). Note that periods (.)
indicate cells whose value is 0, and that the diagonal entries—which correspond to
correct classifications—are marked with angle brackets.

Cross-Validation
In order to evaluate our models, we must reserve a portion of the annotated data for
the test set. As we already mentioned, if the test set is too small, our evaluation may
not be accurate. However, making the test set larger usually means making the training
set smaller, which can have a significant impact on performance if a limited amount of
annotated data is available.

One solution to this problem is to perform multiple evaluations on different test sets,
then to combine the scores from those evaluations, a technique known as cross-
validation. In particular, we subdivide the original corpus into N subsets called
folds. For each of these folds, we train a model using all of the data except the data in
that fold, and then test that model on the fold. Even though the individual folds might
be too small to give accurate evaluation scores on their own, the combined evaluation
score is based on a large amount of data and is therefore quite reliable.

A second, and equally important, advantage of using cross-validation is that it allows
us to examine how widely the performance varies across different training sets. If we
get very similar scores for all N training sets, then we can be fairly confident that the
score is accurate. On the other hand, if scores vary widely across the N training sets,
then we should probably be skeptical about the accuracy of the evaluation score.
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6.4  Decision Trees
In the next three sections, we’ll take a closer look at three machine learning methods
that can be used to automatically build classification models: decision trees, naive Bayes
classifiers, and Maximum Entropy classifiers. As we’ve seen, it’s possible to treat these
learning methods as black boxes, simply training models and using them for prediction
without understanding how they work. But there’s a lot to be learned from taking a
closer look at how these learning methods select models based on the data in a training
set. An understanding of these methods can help guide our selection of appropriate
features, and especially our decisions about how those features should be encoded.
And an understanding of the generated models can allow us to extract information
about which features are most informative, and how those features relate to one an-
other.

A decision tree is a simple flowchart that selects labels for input values. This flowchart
consists of decision nodes, which check feature values, and leaf nodes, which assign
labels. To choose the label for an input value, we begin at the flowchart’s initial decision
node, known as its root node. This node contains a condition that checks one of the
input value’s features, and selects a branch based on that feature’s value. Following the
branch that describes our input value, we arrive at a new decision node, with a new
condition on the input value’s features. We continue following the branch selected by
each node’s condition, until we arrive at a leaf node which provides a label for the input
value. Figure 6-4 shows an example decision tree model for the name gender task.

Once we have a decision tree, it is straightforward to use it to assign labels to new input
values. What’s less straightforward is how we can build a decision tree that models a
given training set. But before we look at the learning algorithm for building decision
trees, we’ll consider a simpler task: picking the best “decision stump” for a corpus. A

Figure 6-4. Decision Tree model for the name gender task. Note that tree diagrams are conventionally
drawn “upside down,” with the root at the top, and the leaves at the bottom.
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decision stump is a decision tree with a single node that decides how to classify inputs
based on a single feature. It contains one leaf for each possible feature value, specifying
the class label that should be assigned to inputs whose features have that value. In order
to build a decision stump, we must first decide which feature should be used. The
simplest method is to just build a decision stump for each possible feature, and see
which one achieves the highest accuracy on the training data, although there are other
alternatives that we will discuss later. Once we’ve picked a feature, we can build the
decision stump by assigning a label to each leaf based on the most frequent label for
the selected examples in the training set (i.e., the examples where the selected feature
has that value).

Given the algorithm for choosing decision stumps, the algorithm for growing larger
decision trees is straightforward. We begin by selecting the overall best decision stump
for the classification task. We then check the accuracy of each of the leaves on the
training set. Leaves that do not achieve sufficient accuracy are then replaced by new
decision stumps, trained on the subset of the training corpus that is selected by the path
to the leaf. For example, we could grow the decision tree in Figure 6-4 by replacing the
leftmost leaf with a new decision stump, trained on the subset of the training set names
that do not start with a k or end with a vowel or an l.

Entropy and Information Gain
As was mentioned before, there are several methods for identifying the most informa-
tive feature for a decision stump. One popular alternative, called information gain,
measures how much more organized the input values become when we divide them up
using a given feature. To measure how disorganized the original set of input values are,
we calculate entropy of their labels, which will be high if the input values have highly
varied labels, and low if many input values all have the same label. In particular, entropy
is defined as the sum of the probability of each label times the log probability of that
same label:

(1) H = Σl ∈ labelsP(l) × log2P(l).

For example, Figure 6-5 shows how the entropy of labels in the name gender prediction
task depends on the ratio of male to female names. Note that if most input values have
the same label (e.g., if P(male) is near 0 or near 1), then entropy is low. In particular,
labels that have low frequency do not contribute much to the entropy (since P(l) is
small), and labels with high frequency also do not contribute much to the entropy (since
log2P(l) is small). On the other hand, if the input values have a wide variety of labels,
then there are many labels with a “medium” frequency, where neither P(l) nor
log2P(l) is small, so the entropy is high. Example 6-8 demonstrates how to calculate
the entropy of a list of labels.
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Figure 6-5. The entropy of labels in the name gender prediction task, as a function of the percentage
of names in a given set that are male.

Example 6-8. Calculating the entropy of a list of labels.

import math
def entropy(labels):
    freqdist = nltk.FreqDist(labels)
    probs = [freqdist.freq(l) for l in nltk.FreqDist(labels)]
    return -sum([p * math.log(p,2) for p in probs])

>>> print entropy(['male', 'male', 'male', 'male']) 
0.0
>>> print entropy(['male', 'female', 'male', 'male'])
0.811278124459
 

>>> print entropy(['female', 'male', 'female', 'male'])
1.0
>>> print entropy(['female', 'female', 'male', 'female'])
0.811278124459
>>> print entropy(['female', 'female', 'female', 'female'])
0.0

Once we have calculated the entropy of the labels of the original set of input values, we
can determine how much more organized the labels become once we apply the decision
stump. To do so, we calculate the entropy for each of the decision stump’s leaves, and
take the average of those leaf entropy values (weighted by the number of samples in
each leaf). The information gain is then equal to the original entropy minus this new,
reduced entropy. The higher the information gain, the better job the decision stump
does of dividing the input values into coherent groups, so we can build decision trees
by selecting the decision stumps with the highest information gain.

Another consideration for decision trees is efficiency. The simple algorithm for selecting
decision stumps described earlier must construct a candidate decision stump for every
possible feature, and this process must be repeated for every node in the constructed
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decision tree. A number of algorithms have been developed to cut down on the training
time by storing and reusing information about previously evaluated examples.

Decision trees have a number of useful qualities. To begin with, they’re simple to un-
derstand, and easy to interpret. This is especially true near the top of the decision tree,
where it is usually possible for the learning algorithm to find very useful features. De-
cision trees are especially well suited to cases where many hierarchical categorical dis-
tinctions can be made. For example, decision trees can be very effective at capturing
phylogeny trees.

However, decision trees also have a few disadvantages. One problem is that, since each
branch in the decision tree splits the training data, the amount of training data available
to train nodes lower in the tree can become quite small. As a result, these lower decision
nodes may overfit the training set, learning patterns that reflect idiosyncrasies of the
training set rather than linguistically significant patterns in the underlying problem.
One solution to this problem is to stop dividing nodes once the amount of training data
becomes too small. Another solution is to grow a full decision tree, but then to
prune decision nodes that do not improve performance on a dev-test.

A second problem with decision trees is that they force features to be checked in a
specific order, even when features may act relatively independently of one another. For
example, when classifying documents into topics (such as sports, automotive, or mur-
der mystery), features such as hasword(football) are highly indicative of a specific label,
regardless of what the other feature values are. Since there is limited space near the top
of the decision tree, most of these features will need to be repeated on many different
branches in the tree. And since the number of branches increases exponentially as we
go down the tree, the amount of repetition can be very large.

A related problem is that decision trees are not good at making use of features that are
weak predictors of the correct label. Since these features make relatively small
incremental improvements, they tend to occur very low in the decision tree. But by the
time the decision tree learner has descended far enough to use these features, there is
not enough training data left to reliably determine what effect they should have. If we
could instead look at the effect of these features across the entire training set, then we
might be able to make some conclusions about how they should affect the choice of
label.

The fact that decision trees require that features be checked in a specific order limits
their ability to exploit features that are relatively independent of one another. The naive
Bayes classification method, which we’ll discuss next, overcomes this limitation by
allowing all features to act “in parallel.”

6.5  Naive Bayes Classifiers
In naive Bayes classifiers, every feature gets a say in determining which label should
be assigned to a given input value. To choose a label for an input value, the naive Bayes
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classifier begins by calculating the prior probability of each label, which is determined
by checking the frequency of each label in the training set. The contribution from each
feature is then combined with this prior probability, to arrive at a likelihood estimate
for each label. The label whose likelihood estimate is the highest is then assigned to the
input value. Figure 6-6 illustrates this process.

Figure 6-6. An abstract illustration of the procedure used by the naive Bayes classifier to choose the
topic for a document. In the training corpus, most documents are automotive, so the classifier starts
out at a point closer to the “automotive” label. But it then considers the effect of each feature. In this
example, the input document contains the word dark, which is a weak indicator for murder mysteries,
but it also contains the word football, which is a strong indicator for sports documents. After every
feature has made its contribution, the classifier checks which label it is closest to, and assigns that
label to the input.

Individual features make their contribution to the overall decision by “voting against”
labels that don’t occur with that feature very often. In particular, the likelihood score
for each label is reduced by multiplying it by the probability that an input value with
that label would have the feature. For example, if the word run occurs in 12% of the
sports documents, 10% of the murder mystery documents, and 2% of the automotive
documents, then the likelihood score for the sports label will be multiplied by 0.12, the
likelihood score for the murder mystery label will be multiplied by 0.1, and the likeli-
hood score for the automotive label will be multiplied by 0.02. The overall effect will
be to reduce the score of the murder mystery label slightly more than the score of the
sports label, and to significantly reduce the automotive label with respect to the other
two labels. This process is illustrated in Figures 6-7 and 6-8.
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Figure 6-7. Calculating label likelihoods with naive Bayes. Naive Bayes begins by calculating the prior
probability of each label, based on how frequently each label occurs in the training data. Every feature
then contributes to the likelihood estimate for each label, by multiplying it by the probability that
input values with that label will have that feature. The resulting likelihood score can be thought of as
an estimate of the probability that a randomly selected value from the training set would have both
the given label and the set of features, assuming that the feature probabilities are all independent.

Figure 6-8. A Bayesian Network Graph illustrating the generative process that is assumed by the naive
Bayes classifier. To generate a labeled input, the model first chooses a label for the input, and then it
generates each of the input’s features based on that label. Every feature is assumed to be entirely
independent of every other feature, given the label.

Underlying Probabilistic Model
Another way of understanding the naive Bayes classifier is that it chooses the most likely
label for an input, under the assumption that every input value is generated by first
choosing a class label for that input value, and then generating each feature, entirely
independent of every other feature. Of course, this assumption is unrealistic; features
are often highly dependent on one another. We’ll return to some of the consequences
of this assumption at the end of this section. This simplifying assumption, known as
the naive Bayes assumption (or independence assumption), makes it much easier
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to combine the contributions of the different features, since we don’t need to worry
about how they should interact with one another.

Based on this assumption, we can calculate an expression for P(label|features), the
probability that an input will have a particular label given that it has a particular set of
features. To choose a label for a new input, we can then simply pick the label l that
maximizes P(l|features).

To begin, we note that P(label|features) is equal to the probability that an input has a
particular label and the specified set of features, divided by the probability that it has
the specified set of features:

(2) P(label|features) = P(features, label)/P(features)

Next, we note that P(features) will be the same for every choice of label, so if we are
simply interested in finding the most likely label, it suffices to calculate P(features,
label), which we’ll call the label likelihood.

If we want to generate a probability estimate for each label, rather than
just choosing the most likely label, then the easiest way to compute
P(features) is to simply calculate the sum over labels of P(features, label):

(3) P(features) = Σlabel ∈ labels P(features, label)

The label likelihood can be expanded out as the probability of the label times the prob-
ability of the features given the label:

(4) P(features, label) = P(label) × P(features|label)

Furthermore, since the features are all independent of one another (given the label), we
can separate out the probability of each individual feature:

(5) P(features, label) = P(label) × ⊓f ∈ featuresP(f|label)

This is exactly the equation we discussed earlier for calculating the label likelihood:
P(label) is the prior probability for a given label, and each P(f|label) is the contribution
of a single feature to the label likelihood.

Zero Counts and Smoothing
The simplest way to calculate P(f|label), the contribution of a feature f toward the label
likelihood for a label label, is to take the percentage of training instances with the given
label that also have the given feature:

(6) P(f|label) = count(f, label)/count(label)
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However, this simple approach can become problematic when a feature never occurs
with a given label in the training set. In this case, our calculated value for P(f|label) will
be zero, which will cause the label likelihood for the given label to be zero. Thus, the
input will never be assigned this label, regardless of how well the other features fit the
label.

The basic problem here is with our calculation of P(f|label), the probability that an
input will have a feature, given a label. In particular, just because we haven’t seen a
feature/label combination occur in the training set, doesn’t mean it’s impossible for
that combination to occur. For example, we may not have seen any murder mystery
documents that contained the word football, but we wouldn’t want to conclude that
it’s completely impossible for such documents to exist.

Thus, although count(f,label)/count(label) is a good estimate for P(f|label) when count(f,
label) is relatively high, this estimate becomes less reliable when count(f) becomes
smaller. Therefore, when building naive Bayes models, we usually employ more so-
phisticated techniques, known as smoothing techniques, for calculating P(f|label), the
probability of a feature given a label. For example, the Expected Likelihood Estima-
tion for the probability of a feature given a label basically adds 0.5 to each
count(f,label) value, and the Heldout Estimation uses a heldout corpus to calculate
the relationship between feature frequencies and feature probabilities. The nltk.prob
ability module provides support for a wide variety of smoothing techniques.

Non-Binary Features
We have assumed here that each feature is binary, i.e., that each input either has a
feature or does not. Label-valued features (e.g., a color feature, which could be red,
green, blue, white, or orange) can be converted to binary features by replacing them
with binary features, such as “color-is-red”. Numeric features can be converted to bi-
nary features by binning, which replaces them with features such as “4<x<6.”

Another alternative is to use regression methods to model the probabilities of numeric
features. For example, if we assume that the height feature has a bell curve distribution,
then we could estimate P(height|label) by finding the mean and variance of the heights
of the inputs with each label. In this case, P(f=v|label) would not be a fixed value, but
would vary depending on the value of v.

The Naivete of Independence
The reason that naive Bayes classifiers are called “naive” is that it’s unreasonable to
assume that all features are independent of one another (given the label). In particular,
almost all real-world problems contain features with varying degrees of dependence on
one another. If we had to avoid any features that were dependent on one another, it
would be very difficult to construct good feature sets that provide the required infor-
mation to the machine learning algorithm.
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So what happens when we ignore the independence assumption, and use the naive
Bayes classifier with features that are not independent? One problem that arises is that
the classifier can end up “double-counting” the effect of highly correlated features,
pushing the classifier closer to a given label than is justified.

To see how this can occur, consider a name gender classifier that contains two identical
features, f1 and f2. In other words, f2 is an exact copy of f1, and contains no new infor-
mation. When the classifier is considering an input, it will include the contribution of
both f1 and f2 when deciding which label to choose. Thus, the information content of
these two features will be given more weight than it deserves.

Of course, we don’t usually build naive Bayes classifiers that contain two identical
features. However, we do build classifiers that contain features which are dependent
on one another. For example, the features ends-with(a) and ends-with(vowel) are de-
pendent on one another, because if an input value has the first feature, then it must
also have the second feature. For features like these, the duplicated information may
be given more weight than is justified by the training set.

The Cause of Double-Counting
The reason for the double-counting problem is that during training, feature contribu-
tions are computed separately; but when using the classifier to choose labels for new
inputs, those feature contributions are combined. One solution, therefore, is to con-
sider the possible interactions between feature contributions during training. We could
then use those interactions to adjust the contributions that individual features make.

To make this more precise, we can rewrite the equation used to calculate the likelihood
of a label, separating out the contribution made by each feature (or label):

(7) P(features, label) = w[label] × ⊓f ∈ features w[f, label]

Here, w[label] is the “starting score” for a given label, and w[f, label] is the contribution
made by a given feature towards a label’s likelihood. We call these values w[label] and
w[f, label] the parameters or weights for the model. Using the naive Bayes algorithm,
we set each of these parameters independently:

(8) w[label] = P(label)

(9) w[f, label] = P(f|label)

However, in the next section, we’ll look at a classifier that considers the possible in-
teractions between these parameters when choosing their values.

6.6  Maximum Entropy Classifiers
The Maximum Entropy classifier uses a model that is very similar to the model em-
ployed by the naive Bayes classifier. But rather than using probabilities to set the

250 | Chapter 6: Learning to Classify Text



model’s parameters, it uses search techniques to find a set of parameters that will max-
imize the performance of the classifier. In particular, it looks for the set of parameters
that maximizes the total likelihood of the training corpus, which is defined as:

(10) P(features) = Σx ∈ corpus P(label(x)|features(x))

Where P(label|features), the probability that an input whose features are features will
have class label label, is defined as:

(11) P(label|features) = P(label, features)/Σlabel P(label, features)

Because of the potentially complex interactions between the effects of related features,
there is no way to directly calculate the model parameters that maximize the likelihood
of the training set. Therefore, Maximum Entropy classifiers choose the model param-
eters using iterative optimization techniques, which initialize the model’s parameters
to random values, and then repeatedly refine those parameters to bring them closer to
the optimal solution. These iterative optimization techniques guarantee that each re-
finement of the parameters will bring them closer to the optimal values, but do not
necessarily provide a means of determining when those optimal values have been
reached. Because the parameters for Maximum Entropy classifiers are selected using
iterative optimization techniques, they can take a long time to learn. This is especially
true when the size of the training set, the number of features, and the number of labels
are all large.

Some iterative optimization techniques are much faster than others.
When training Maximum Entropy models, avoid the use of Generalized
Iterative Scaling (GIS) or Improved Iterative Scaling (IIS), which are both
considerably slower than the Conjugate Gradient (CG) and the BFGS
optimization methods.

The Maximum Entropy Model
The Maximum Entropy classifier model is a generalization of the model used by the
naive Bayes classifier. Like the naive Bayes model, the Maximum Entropy classifier
calculates the likelihood of each label for a given input value by multiplying together
the parameters that are applicable for the input value and label. The naive Bayes clas-
sifier model defines a parameter for each label, specifying its prior probability, and a
parameter for each (feature, label) pair, specifying the contribution of individual fea-
tures toward a label’s likelihood.

In contrast, the Maximum Entropy classifier model leaves it up to the user to decide
what combinations of labels and features should receive their own parameters. In par-
ticular, it is possible to use a single parameter to associate a feature with more than one
label; or to associate more than one feature with a given label. This will sometimes
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allow the model to “generalize” over some of the differences between related labels or
features.

Each combination of labels and features that receives its own parameter is called a
joint-feature. Note that joint-features are properties of labeled values, whereas (sim-
ple) features are properties of unlabeled values.

In literature that describes and discusses Maximum Entropy models,
the term “features” often refers to joint-features; the term “contexts”
refers to what we have been calling (simple) features.

Typically, the joint-features that are used to construct Maximum Entropy models ex-
actly mirror those that are used by the naive Bayes model. In particular, a joint-feature
is defined for each label, corresponding to w[label], and for each combination of (sim-
ple) feature and label, corresponding to w[f, label]. Given the joint-features for a Max-
imum Entropy model, the score assigned to a label for a given input is simply the
product of the parameters associated with the joint-features that apply to that input
and label:

(12) P(input, label) = ⊓joint-features(input,label)w[joint-feature]

Maximizing Entropy
The intuition that motivates Maximum Entropy classification is that we should build
a model that captures the frequencies of individual joint-features, without making any
unwarranted assumptions. An example will help to illustrate this principle.

Suppose we are assigned the task of picking the correct word sense for a given word,
from a list of 10 possible senses (labeled A–J). At first, we are not told anything more
about the word or the senses. There are many probability distributions that we could
choose for the 10 senses, such as:

A B C D E F G H I J

(i) 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%

(ii) 5% 15% 0% 30% 0% 8% 12% 0% 6% 24%

(iii) 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%

Although any of these distributions might be correct, we are likely to choose distribution
(i), because without any more information, there is no reason to believe that any word
sense is more likely than any other. On the other hand, distributions (ii) and (iii) reflect
assumptions that are not supported by what we know.

One way to capture this intuition that distribution (i) is more “fair” than the other two
is to invoke the concept of entropy. In the discussion of decision trees, we described
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entropy as a measure of how “disorganized” a set of labels was. In particular, if a single
label dominates then entropy is low, but if the labels are more evenly distributed then
entropy is high. In our example, we chose distribution (i) because its label probabilities
are evenly distributed—in other words, because its entropy is high. In general, the
Maximum Entropy principle states that, among the distributions that are consistent
with what we know, we should choose the distribution whose entropy is highest.

Next, suppose that we are told that sense A appears 55% of the time. Once again, there
are many distributions that are consistent with this new piece of information, such as:

A B C D E F G H I J

(iv) 55% 45% 0% 0% 0% 0% 0% 0% 0% 0%

(v) 55% 5% 5% 5% 5% 5% 5% 5% 5% 5%

(vi) 55% 3% 1% 2% 9% 5% 0% 25% 0% 0%

But again, we will likely choose the distribution that makes the fewest unwarranted
assumptions—in this case, distribution (v).

Finally, suppose that we are told that the word up appears in the nearby context 10%
of the time, and that when it does appear in the context there’s an 80% chance that
sense A or C will be used. In this case, we will have a harder time coming up with an
appropriate distribution by hand; however, we can verify that the following distribution
looks appropriate:

 A B C D E F G H I J

(vii) +up 5.1% 0.25% 2.9% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25%

–up 49.9% 4.46% 4.46% 4.46% 4.46% 4.46% 4.46% 4.46% 4.46% 4.46%

In particular, the distribution is consistent with what we know: if we add up the prob-
abilities in column A, we get 55%; if we add up the probabilities of row 1, we get 10%;
and if we add up the boxes for senses A and C in the +up row, we get 8% (or 80% of
the +up cases). Furthermore, the remaining probabilities appear to be “evenly
distributed.”

Throughout this example, we have restricted ourselves to distributions that are con-
sistent with what we know; among these, we chose the distribution with the highest
entropy. This is exactly what the Maximum Entropy classifier does as well. In
particular, for each joint-feature, the Maximum Entropy model calculates the “empir-
ical frequency” of that feature—i.e., the frequency with which it occurs in the training
set. It then searches for the distribution which maximizes entropy, while still predicting
the correct frequency for each joint-feature.
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Generative Versus Conditional Classifiers
An important difference between the naive Bayes classifier and the Maximum Entropy
classifier concerns the types of questions they can be used to answer. The naive Bayes
classifier is an example of a generative classifier, which builds a model that predicts
P(input, label), the joint probability of an (input, label) pair. As a result, generative
models can be used to answer the following questions:

1. What is the most likely label for a given input?

2. How likely is a given label for a given input?

3. What is the most likely input value?

4. How likely is a given input value?

5. How likely is a given input value with a given label?

6. What is the most likely label for an input that might have one of two values (but
we don’t know which)?

The Maximum Entropy classifier, on the other hand, is an example of a conditional
classifier. Conditional classifiers build models that predict P(label|input)—the proba-
bility of a label given the input value. Thus, conditional models can still be used to
answer questions 1 and 2. However, conditional models cannot be used to answer the
remaining questions 3–6.

In general, generative models are strictly more powerful than conditional models, since
we can calculate the conditional probability P(label|input) from the joint probability
P(input, label), but not vice versa. However, this additional power comes at a price.
Because the model is more powerful, it has more “free parameters” that need to be
learned. However, the size of the training set is fixed. Thus, when using a more powerful
model, we end up with less data that can be used to train each parameter’s value, making
it harder to find the best parameter values. As a result, a generative model may not do
as good a job at answering questions 1 and 2 as a conditional model, since the condi-
tional model can focus its efforts on those two questions. However, if we do need
answers to questions like 3–6, then we have no choice but to use a generative model.

The difference between a generative model and a conditional model is analogous to the
difference between a topographical map and a picture of a skyline. Although the topo-
graphical map can be used to answer a wider variety of questions, it is significantly
more difficult to generate an accurate topographical map than it is to generate an ac-
curate skyline.

6.7  Modeling Linguistic Patterns
Classifiers can help us to understand the linguistic patterns that occur in natural lan-
guage, by allowing us to create explicit models that capture those patterns. Typically,
these models are using supervised classification techniques, but it is also possible to
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build analytically motivated models. Either way, these explicit models serve two im-
portant purposes: they help us to understand linguistic patterns, and they can be used
to make predictions about new language data.

The extent to which explicit models can give us insights into linguistic patterns depends
largely on what kind of model is used. Some models, such as decision trees, are relatively
transparent, and give us direct information about which factors are important in mak-
ing decisions and about which factors are related to one another. Other models, such
as multilevel neural networks, are much more opaque. Although it can be possible to
gain insight by studying them, it typically takes a lot more work.

But all explicit models can make predictions about new unseen language data that was
not included in the corpus used to build the model. These predictions can be evaluated
to assess the accuracy of the model. Once a model is deemed sufficiently accurate, it
can then be used to automatically predict information about new language data. These
predictive models can be combined into systems that perform many useful language
processing tasks, such as document classification, automatic translation, and question
answering.

What Do Models Tell Us?
It’s important to understand what we can learn about language from an automatically
constructed model. One important consideration when dealing with models of lan-
guage is the distinction between descriptive models and explanatory models. Descrip-
tive models capture patterns in the data, but they don’t provide any information about
why the data contains those patterns. For example, as we saw in Table 3-1, the syno-
nyms absolutely and definitely are not interchangeable: we say absolutely adore not
definitely adore, and definitely prefer, not absolutely prefer. In contrast, explanatory
models attempt to capture properties and relationships that cause the linguistic pat-
terns. For example, we might introduce the abstract concept of “polar adjective” as an
adjective that has an extreme meaning, and categorize some adjectives, such as adore
and detest as polar. Our explanatory model would contain the constraint that abso-
lutely can combine only with polar adjectives, and definitely can only combine with
non-polar adjectives. In summary, descriptive models provide information about cor-
relations in the data, while explanatory models go further to postulate causal
relationships.

Most models that are automatically constructed from a corpus are descriptive models;
in other words, they can tell us what features are relevant to a given pattern or con-
struction, but they can’t necessarily tell us how those features and patterns relate to
one another. If our goal is to understand the linguistic patterns, then we can use this
information about which features are related as a starting point for further experiments
designed to tease apart the relationships between features and patterns. On the other
hand, if we’re just interested in using the model to make predictions (e.g., as part of a
language processing system), then we can use the model to make predictions about
new data without worrying about the details of underlying causal relationships.
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6.8  Summary
• Modeling the linguistic data found in corpora can help us to understand linguistic

patterns, and can be used to make predictions about new language data.

• Supervised classifiers use labeled training corpora to build models that predict the
label of an input based on specific features of that input.

• Supervised classifiers can perform a wide variety of NLP tasks, including document
classification, part-of-speech tagging, sentence segmentation, dialogue act type
identification, and determining entailment relations, and many other tasks.

• When training a supervised classifier, you should split your corpus into three da-
tasets: a training set for building the classifier model, a dev-test set for helping select
and tune the model’s features, and a test set for evaluating the final model’s
performance.

• When evaluating a supervised classifier, it is important that you use fresh data that
was not included in the training or dev-test set. Otherwise, your evaluation results
may be unrealistically optimistic.

• Decision trees are automatically constructed tree-structured flowcharts that are
used to assign labels to input values based on their features. Although they’re easy
to interpret, they are not very good at handling cases where feature values interact
in determining the proper label.

• In naive Bayes classifiers, each feature independently contributes to the decision
of which label should be used. This allows feature values to interact, but can be
problematic when two or more features are highly correlated with one another.

• Maximum Entropy classifiers use a basic model that is similar to the model used
by naive Bayes; however, they employ iterative optimization to find the set of fea-
ture weights that maximizes the probability of the training set.

• Most of the models that are automatically constructed from a corpus are descrip-
tive, that is, they let us know which features are relevant to a given pattern or
construction, but they don’t give any information about causal relationships be-
tween those features and patterns.

6.9  Further Reading
Please consult http://www.nltk.org/ for further materials on this chapter and on how to
install external machine learning packages, such as Weka, Mallet, TADM, and MegaM.
For more examples of classification and machine learning with NLTK, please see the
classification HOWTOs at http://www.nltk.org/howto.

For a general introduction to machine learning, we recommend (Alpaydin, 2004). For
a more mathematically intense introduction to the theory of machine learning, see
(Hastie, Tibshirani & Friedman, 2009). Excellent books on using machine learning
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techniques for NLP include (Abney, 2008), (Daelemans & Bosch, 2005), (Feldman &
Sanger, 2007), (Segaran, 2007), and (Weiss et al., 2004). For more on smoothing tech-
niques for language problems, see (Manning & Schütze, 1999). For more on sequence
modeling, and especially hidden Markov models, see (Manning & Schütze, 1999) or
(Jurafsky & Martin, 2008). Chapter 13 of (Manning, Raghavan & Schütze, 2008) dis-
cusses the use of naive Bayes for classifying texts.

Many of the machine learning algorithms discussed in this chapter are numerically
intensive, and as a result, they will run slowly when coded naively in Python. For in-
formation on increasing the efficiency of numerically intensive algorithms in Python,
see (Kiusalaas, 2005).

The classification techniques described in this chapter can be applied to a very wide
variety of problems. For example, (Agirre & Edmonds, 2007) uses classifiers to perform
word-sense disambiguation; and (Melamed, 2001) uses classifiers to create parallel
texts. Recent textbooks that cover text classification include (Manning, Raghavan &
Schütze, 2008) and (Croft, Metzler & Strohman, 2009).

Much of the current research in the application of machine learning techniques to NLP
problems is driven by government-sponsored “challenges,” where a set of research
organizations are all provided with the same development corpus and asked to build a
system, and the resulting systems are compared based on a reserved test set. Examples
of these challenge competitions include CoNLL Shared Tasks, the Recognizing Textual
Entailment competitions, the ACE competitions, and the AQUAINT competitions.
Consult http://www.nltk.org/ for a list of pointers to the web pages for these challenges.

6.10  Exercises
1. ○ Read up on one of the language technologies mentioned in this section, such as

word sense disambiguation, semantic role labeling, question answering, machine
translation, or named entity recognition. Find out what type and quantity of an-
notated data is required for developing such systems. Why do you think a large
amount of data is required?

2. ○ Using any of the three classifiers described in this chapter, and any features you
can think of, build the best name gender classifier you can. Begin by splitting the
Names Corpus into three subsets: 500 words for the test set, 500 words for the
dev-test set, and the remaining 6,900 words for the training set. Then, starting with
the example name gender classifier, make incremental improvements. Use the dev-
test set to check your progress. Once you are satisfied with your classifier, check
its final performance on the test set. How does the performance on the test set
compare to the performance on the dev-test set? Is this what you’d expect?

3. ○ The Senseval 2 Corpus contains data intended to train word-sense disambigua-
tion classifiers. It contains data for four words: hard, interest, line, and serve.
Choose one of these four words, and load the corresponding data:
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>>> from nltk.corpus import senseval
>>> instances = senseval.instances('hard.pos')
>>> size = int(len(instances) * 0.1)
>>> train_set, test_set = instances[size:], instances[:size]

Using this dataset, build a classifier that predicts the correct sense tag for a given
instance. See the corpus HOWTO at http://www.nltk.org/howto for information
on using the instance objects returned by the Senseval 2 Corpus.

4. ○ Using the movie review document classifier discussed in this chapter, generate
a list of the 30 features that the classifier finds to be most informative. Can you
explain why these particular features are informative? Do you find any of them
surprising?

5. ○ Select one of the classification tasks described in this chapter, such as name
gender detection, document classification, part-of-speech tagging, or dialogue act
classification. Using the same training and test data, and the same feature extractor,
build three classifiers for the task: a decision tree, a naive Bayes classifier, and a
Maximum Entropy classifier. Compare the performance of the three classifiers on
your selected task. How do you think that your results might be different if you
used a different feature extractor?

6. ○ The synonyms strong and powerful pattern differently (try combining them with
chip and sales). What features are relevant in this distinction? Build a classifier that
predicts when each word should be used.

7. ◑ The dialogue act classifier assigns labels to individual posts, without considering
the context in which the post is found. However, dialogue acts are highly depend-
ent on context, and some sequences of dialogue act are much more likely than
others. For example, a ynQuestion dialogue act is much more likely to be answered
by a yanswer than by a greeting. Make use of this fact to build a consecutive clas-
sifier for labeling dialogue acts. Be sure to consider what features might be useful.
See the code for the consecutive classifier for part-of-speech tags in Example 6-5
to get some ideas.

8. ◑ Word features can be very useful for performing document classification, since
the words that appear in a document give a strong indication about what its se-
mantic content is. However, many words occur very infrequently, and some of the
most informative words in a document may never have occurred in our training
data. One solution is to make use of a lexicon, which describes how different words
relate to one another. Using the WordNet lexicon, augment the movie review
document classifier presented in this chapter to use features that generalize the
words that appear in a document, making it more likely that they will match words
found in the training data.

9. ● The PP Attachment Corpus is a corpus describing prepositional phrase attach-
ment decisions. Each instance in the corpus is encoded as a PPAttachment object:

258 | Chapter 6: Learning to Classify Text

http://www.nltk.org/howto


>>> from nltk.corpus import ppattach
>>> ppattach.attachments('training') 
[PPAttachment(sent='0', verb='join', noun1='board',
              prep='as', noun2='director', attachment='V'),
 PPAttachment(sent='1', verb='is', noun1='chairman',
              prep='of', noun2='N.V.', attachment='N'),
 ...]
>>> inst = ppattach.attachments('training')[1]
>>> (inst.noun1, inst.prep, inst.noun2)
('chairman', 'of', 'N.V.')

Select only the instances where inst.attachment is N:

>>> nattach = [inst for inst in ppattach.attachments('training')
...            if inst.attachment == 'N']

Using this subcorpus, build a classifier that attempts to predict which preposition
is used to connect a given pair of nouns. For example, given the pair of nouns
team and researchers, the classifier should predict the preposition of. See the corpus
HOWTO at http://www.nltk.org/howto for more information on using the PP At-
tachment Corpus.

10. ● Suppose you wanted to automatically generate a prose description of a scene,
and already had a word to uniquely describe each entity, such as the book, and
simply wanted to decide whether to use in or on in relating various items, e.g., the
book is in the cupboard versus the book is on the shelf. Explore this issue by looking
at corpus data and writing programs as needed. Consider the following examples:

(13) a. in the car versus on the train

b. in town versus on campus

c. in the picture versus on the screen

d. in Macbeth versus on Letterman

6.10  Exercises | 259

http://www.nltk.org/howto




CHAPTER 7

Extracting Information from Text

For any given question, it’s likely that someone has written the answer down some-
where. The amount of natural language text that is available in electronic form is truly
staggering, and is increasing every day. However, the complexity of natural language
can make it very difficult to access the information in that text. The state of the art in
NLP is still a long way from being able to build general-purpose representations of
meaning from unrestricted text. If we instead focus our efforts on a limited set of ques-
tions or “entity relations,” such as “where are different facilities located” or “who is
employed by what company,” we can make significant progress. The goal of this chap-
ter is to answer the following questions:

1. How can we build a system that extracts structured data from unstructured text?

2. What are some robust methods for identifying the entities and relationships de-
scribed in a text?

3. Which corpora are appropriate for this work, and how do we use them for training
and evaluating our models?

Along the way, we’ll apply techniques from the last two chapters to the problems of
chunking and named entity recognition.

7.1  Information Extraction
Information comes in many shapes and sizes. One important form is structured
data, where there is a regular and predictable organization of entities and relationships.
For example, we might be interested in the relation between companies and locations.
Given a particular company, we would like to be able to identify the locations where
it does business; conversely, given a location, we would like to discover which com-
panies do business in that location. If our data is in tabular form, such as the example
in Table 7-1, then answering these queries is straightforward.
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Table 7-1. Locations data

OrgName LocationName

Omnicom New York

DDB Needham New York

Kaplan Thaler Group New York

BBDO South Atlanta

Georgia-Pacific Atlanta

If this location data was stored in Python as a list of tuples (entity, relation,
entity), then the question “Which organizations operate in Atlanta?” could be trans-
lated as follows:

>>> print [org for (e1, rel, e2) if rel=='IN' and e2=='Atlanta'] 
['BBDO South', 'Georgia-Pacific']

Things are more tricky if we try to get similar information out of text. For example,
consider the following snippet (from nltk.corpus.ieer, for fileid NYT19980315.0085).

(1) The fourth Wells account moving to another agency is the packaged paper-
products division of Georgia-Pacific Corp., which arrived at Wells only last fall.
Like Hertz and the History Channel, it is also leaving for an Omnicom-owned
agency, the BBDO South unit of BBDO Worldwide. BBDO South in Atlanta,
which handles corporate advertising for Georgia-Pacific, will assume additional
duties for brands like Angel Soft toilet tissue and Sparkle paper towels, said
Ken Haldin, a spokesman for Georgia-Pacific in Atlanta.

If you read through (1), you will glean the information required to answer the example
question. But how do we get a machine to understand enough about (1) to return the
list ['BBDO South', 'Georgia-Pacific'] as an answer? This is obviously a much harder
task. Unlike Table 7-1, (1) contains no structure that links organization names with
location names.

One approach to this problem involves building a very general representation of mean-
ing (Chapter 10). In this chapter we take a different approach, deciding in advance that
we will only look for very specific kinds of information in text, such as the relation
between organizations and locations. Rather than trying to use text like (1) to answer
the question directly, we first convert the unstructured data of natural language sen-
tences into the structured data of Table 7-1. Then we reap the benefits of powerful
query tools such as SQL. This method of getting meaning from text is called Infor-
mation Extraction.

Information Extraction has many applications, including business intelligence, resume
harvesting, media analysis, sentiment detection, patent search, and email scanning. A
particularly important area of current research involves the attempt to extract
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structured data out of electronically available scientific literature, especially in the do-
main of biology and medicine.

Information Extraction Architecture
Figure 7-1 shows the architecture for a simple information extraction system. It begins
by processing a document using several of the procedures discussed in Chapters 3 and
5: first, the raw text of the document is split into sentences using a sentence segmenter,
and each sentence is further subdivided into words using a tokenizer. Next, each sen-
tence is tagged with part-of-speech tags, which will prove very helpful in the next step,
named entity recognition. In this step, we search for mentions of potentially inter-
esting entities in each sentence. Finally, we use relation recognition to search for likely
relations between different entities in the text.

Figure 7-1. Simple pipeline architecture for an information extraction system. This system takes the
raw text of a document as its input, and generates a list of (entity, relation, entity) tuples as its
output. For example, given a document that indicates that the company Georgia-Pacific is located in
Atlanta, it might generate the tuple ([ORG: 'Georgia-Pacific'] 'in' [LOC: 'Atlanta']).

To perform the first three tasks, we can define a function that simply connects together
NLTK’s default sentence segmenter , word tokenizer , and part-of-speech
tagger :

>>> def ie_preprocess(document):
...    sentences = nltk.sent_tokenize(document) 
...    sentences = [nltk.word_tokenize(sent) for sent in sentences] 
...    sentences = [nltk.pos_tag(sent) for sent in sentences] 
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Remember that our program samples assume you begin your interactive
session or your program with import nltk, re, pprint.

Next, in named entity recognition, we segment and label the entities that might par-
ticipate in interesting relations with one another. Typically, these will be definite noun
phrases such as the knights who say “ni”, or proper names such as Monty Python. In
some tasks it is useful to also consider indefinite nouns or noun chunks, such as every
student or cats, and these do not necessarily refer to entities in the same way as definite
NPs and proper names.

Finally, in relation extraction, we search for specific patterns between pairs of entities
that occur near one another in the text, and use those patterns to build tuples recording
the relationships between the entities.

7.2  Chunking
The basic technique we will use for entity recognition is chunking, which segments
and labels multitoken sequences as illustrated in Figure 7-2. The smaller boxes show
the word-level tokenization and part-of-speech tagging, while the large boxes show
higher-level chunking. Each of these larger boxes is called a chunk. Like tokenization,
which omits whitespace, chunking usually selects a subset of the tokens. Also like
tokenization, the pieces produced by a chunker do not overlap in the source text.

In this section, we will explore chunking in some depth, beginning with the definition
and representation of chunks. We will see regular expression and n-gram approaches
to chunking, and will develop and evaluate chunkers using the CoNLL-2000 Chunking
Corpus. We will then return in Sections 7.5 and 7.6 to the tasks of named entity rec-
ognition and relation extraction.

Noun Phrase Chunking
We will begin by considering the task of noun phrase chunking, or NP-chunking,
where we search for chunks corresponding to individual noun phrases. For example,
here is some Wall Street Journal text with NP-chunks marked using brackets:

Figure 7-2. Segmentation and labeling at both the Token and Chunk levels.
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(2) [ The/DT market/NN ] for/IN [ system-management/NN software/NN ] for/
IN [ Digital/NNP ] [ ’s/POS hardware/NN ] is/VBZ fragmented/JJ enough/RB
that/IN [ a/DT giant/NN ] such/JJ as/IN [ Computer/NNP Associates/NNPS ]
should/MD do/VB well/RB there/RB ./.

As we can see, NP-chunks are often smaller pieces than complete noun phrases. For
example, the market for system-management software for Digital’s hardware is a single
noun phrase (containing two nested noun phrases), but it is captured in NP-chunks by
the simpler chunk the market. One of the motivations for this difference is that NP-
chunks are defined so as not to contain other NP-chunks. Consequently, any preposi-
tional phrases or subordinate clauses that modify a nominal will not be included in the
corresponding NP-chunk, since they almost certainly contain further noun phrases.

One of the most useful sources of information for NP-chunking is part-of-speech tags.
This is one of the motivations for performing part-of-speech tagging in our information
extraction system. We demonstrate this approach using an example sentence that has
been part-of-speech tagged in Example 7-1. In order to create an NP-chunker, we will
first define a chunk grammar, consisting of rules that indicate how sentences should
be chunked. In this case, we will define a simple grammar with a single regular
expression rule . This rule says that an NP chunk should be formed whenever the
chunker finds an optional determiner (DT) followed by any number of adjectives (JJ)
and then a noun (NN). Using this grammar, we create a chunk parser , and test it on
our example sentence . The result is a tree, which we can either print , or display
graphically .

Example 7-1. Example of a simple regular expression–based NP chunker.

>>> sentence = [("the", "DT"), ("little", "JJ"), ("yellow", "JJ"), 
... ("dog", "NN"), ("barked", "VBD"), ("at", "IN"),  ("the", "DT"), ("cat", "NN")]

>>> grammar = "NP: {<DT>?<JJ>*<NN>}" 

>>> cp = nltk.RegexpParser(grammar) 
>>> result = cp.parse(sentence) 
>>> print result 
(S
  (NP the/DT little/JJ yellow/JJ dog/NN)
  barked/VBD
  at/IN
  (NP the/DT cat/NN))
>>> result.draw() 
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Tag Patterns
The rules that make up a chunk grammar use tag patterns to describe sequences of
tagged words. A tag pattern is a sequence of part-of-speech tags delimited using angle
brackets, e.g.,<DT>?<JJ>*<NN>. Tag patterns are similar to regular expression patterns
(Section 3.4). Now, consider the following noun phrases from the Wall Street Journal:

another/DT sharp/JJ dive/NN
trade/NN figures/NNS
any/DT new/JJ policy/NN measures/NNS
earlier/JJR stages/NNS
Panamanian/JJ dictator/NN Manuel/NNP Noriega/NNP

We can match these noun phrases using a slight refinement of the first tag pattern
above, i.e., <DT>?<JJ.*>*<NN.*>+. This will chunk any sequence of tokens beginning
with an optional determiner, followed by zero or more adjectives of any type (including
relative adjectives like earlier/JJR), followed by one or more nouns of any type. How-
ever, it is easy to find many more complicated examples which this rule will not cover:

his/PRP$ Mansion/NNP House/NNP speech/NN
the/DT price/NN cutting/VBG
3/CD %/NN to/TO 4/CD %/NN
more/JJR than/IN 10/CD %/NN
the/DT fastest/JJS developing/VBG trends/NNS
's/POS skill/NN

Your Turn: Try to come up with tag patterns to cover these cases. Test
them using the graphical interface nltk.app.chunkparser(). Continue
to refine your tag patterns with the help of the feedback given by this
tool.

Chunking with Regular Expressions
To find the chunk structure for a given sentence, the RegexpParser chunker begins with
a flat structure in which no tokens are chunked. The chunking rules are applied in turn,
successively updating the chunk structure. Once all of the rules have been invoked, the
resulting chunk structure is returned.

Example 7-2 shows a simple chunk grammar consisting of two rules. The first rule
matches an optional determiner or possessive pronoun, zero or more adjectives, then
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a noun. The second rule matches one or more proper nouns. We also define an example
sentence to be chunked , and run the chunker on this input .

Example 7-2. Simple noun phrase chunker.

grammar = r"""
  NP: {<DT|PP\$>?<JJ>*<NN>}   # chunk determiner/possessive, adjectives and nouns
      {<NNP>+}                # chunk sequences of proper nouns
"""
cp = nltk.RegexpParser(grammar)
sentence = [("Rapunzel", "NNP"), ("let", "VBD"), ("down", "RP"), 
                 ("her", "PP$"), ("long", "JJ"), ("golden", "JJ"), ("hair", "NN")]

>>> print cp.parse(sentence) 
(S
  (NP Rapunzel/NNP)
  let/VBD
  down/RP
  (NP her/PP$ long/JJ golden/JJ hair/NN))

The $ symbol is a special character in regular expressions, and must be
backslash escaped in order to match the tag PP$.

If a tag pattern matches at overlapping locations, the leftmost match takes precedence.
For example, if we apply a rule that matches two consecutive nouns to a text containing
three consecutive nouns, then only the first two nouns will be chunked:

>>> nouns = [("money", "NN"), ("market", "NN"), ("fund", "NN")]
>>> grammar = "NP: {<NN><NN>}  # Chunk two consecutive nouns"
>>> cp = nltk.RegexpParser(grammar)
>>> print cp.parse(nouns)
(S (NP money/NN market/NN) fund/NN)

Once we have created the chunk for money market, we have removed the context that
would have permitted fund to be included in a chunk. This issue would have been
avoided with a more permissive chunk rule, e.g., NP: {<NN>+}.

We have added a comment to each of our chunk rules. These are op-
tional; when they are present, the chunker prints these comments as
part of its tracing output.

Exploring Text Corpora
In Section 5.2, we saw how we could interrogate a tagged corpus to extract phrases
matching a particular sequence of part-of-speech tags. We can do the same work more
easily with a chunker, as follows:
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>>> cp = nltk.RegexpParser('CHUNK: {<V.*> <TO> <V.*>}')
>>> brown = nltk.corpus.brown
>>> for sent in brown.tagged_sents():
...     tree = cp.parse(sent)
...     for subtree in tree.subtrees():
...         if subtree.node == 'CHUNK': print subtree
...
(CHUNK combined/VBN to/TO achieve/VB)
(CHUNK continue/VB to/TO place/VB)
(CHUNK serve/VB to/TO protect/VB)
(CHUNK wanted/VBD to/TO wait/VB)
(CHUNK allowed/VBN to/TO place/VB)
(CHUNK expected/VBN to/TO become/VB)
...
(CHUNK seems/VBZ to/TO overtake/VB)
(CHUNK want/VB to/TO buy/VB)

Your Turn: Encapsulate the previous example inside a function
find_chunks() that takes a chunk string like "CHUNK: {<V.*> <TO>
<V.*>}" as an argument. Use it to search the corpus for several other
patterns, such as four or more nouns in a row, e.g., "NOUNS:
{<N.*>{4,}}".

Chinking
Sometimes it is easier to define what we want to exclude from a chunk. We can define
a chink to be a sequence of tokens that is not included in a chunk. In the following
example, barked/VBD at/IN is a chink:

[ the/DT little/JJ yellow/JJ dog/NN ] barked/VBD at/IN [ the/DT cat/NN ]

Chinking is the process of removing a sequence of tokens from a chunk. If the matching
sequence of tokens spans an entire chunk, then the whole chunk is removed; if the
sequence of tokens appears in the middle of the chunk, these tokens are removed,
leaving two chunks where there was only one before. If the sequence is at the periphery
of the chunk, these tokens are removed, and a smaller chunk remains. These three
possibilities are illustrated in Table 7-2.

Table 7-2. Three chinking rules applied to the same chunk

Entire chunk Middle of a chunk End of a chunk

Input [a/DT little/JJ dog/NN] [a/DT little/JJ dog/NN] [a/DT little/JJ dog/NN]

Operation Chink “DT JJ NN” Chink “JJ” Chink “NN”

Pattern }DT JJ NN{ }JJ{ }NN{

Output a/DT little/JJ dog/NN [a/DT] little/JJ [dog/NN] [a/DT little/JJ] dog/NN
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In Example 7-3, we put the entire sentence into a single chunk, then excise the chinks.

Example 7-3. Simple chinker.

grammar = r"""
  NP:
    {<.*>+}          # Chunk everything
    }<VBD|IN>+{      # Chink sequences of VBD and IN
  """
sentence = [("the", "DT"), ("little", "JJ"), ("yellow", "JJ"),
       ("dog", "NN"), ("barked", "VBD"), ("at", "IN"),  ("the", "DT"), ("cat", "NN")]
cp = nltk.RegexpParser(grammar)

>>> print cp.parse(sentence)
(S
  (NP the/DT little/JJ yellow/JJ dog/NN)
  barked/VBD
  at/IN
  (NP the/DT cat/NN))

Representing Chunks: Tags Versus Trees
As befits their intermediate status between tagging and parsing (Chapter 8), chunk
structures can be represented using either tags or trees. The most widespread file rep-
resentation uses IOB tags. In this scheme, each token is tagged with one of three special
chunk tags, I (inside), O (outside), or B (begin). A token is tagged as B if it marks the
beginning of a chunk. Subsequent tokens within the chunk are tagged I. All other
tokens are tagged O. The B and I tags are suffixed with the chunk type, e.g., B-NP, I-
NP. Of course, it is not necessary to specify a chunk type for tokens that appear outside
a chunk, so these are just labeled O. An example of this scheme is shown in Figure 7-3.

Figure 7-3. Tag representation of chunk structures.

IOB tags have become the standard way to represent chunk structures in files, and we
will also be using this format. Here is how the information in Figure 7-3 would appear
in a file:

We PRP B-NP
saw VBD O
the DT B-NP
little JJ I-NP
yellow JJ I-NP
dog NN I-NP
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In this representation there is one token per line, each with its part-of-speech tag and
chunk tag. This format permits us to represent more than one chunk type, so long as
the chunks do not overlap. As we saw earlier, chunk structures can also be represented
using trees. These have the benefit that each chunk is a constituent that can be manip-
ulated directly. An example is shown in Figure 7-4.

Figure 7-4. Tree representation of chunk structures.

NLTK uses trees for its internal representation of chunks, but provides
methods for converting between such trees and the IOB format.

7.3  Developing and Evaluating Chunkers
Now you have a taste of what chunking does, but we haven’t explained how to evaluate
chunkers. As usual, this requires a suitably annotated corpus. We begin by looking at
the mechanics of converting IOB format into an NLTK tree, then at how this is done
on a larger scale using a chunked corpus. We will see how to score the accuracy of a
chunker relative to a corpus, then look at some more data-driven ways to search for
NP chunks. Our focus throughout will be on expanding the coverage of a chunker.

Reading IOB Format and the CoNLL-2000 Chunking Corpus
Using the corpora module we can load Wall Street Journal text that has been tagged
then chunked using the IOB notation. The chunk categories provided in this corpus
are NP, VP, and PP. As we have seen, each sentence is represented using multiple lines,
as shown here:

he PRP B-NP
accepted VBD B-VP
the DT B-NP
position NN I-NP
...
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A conversion function chunk.conllstr2tree() builds a tree representation from one of
these multiline strings. Moreover, it permits us to choose any subset of the three chunk
types to use, here just for NP chunks:

>>> text = '''
... he PRP B-NP
... accepted VBD B-VP
... the DT B-NP
... position NN I-NP
... of IN B-PP
... vice NN B-NP
... chairman NN I-NP
... of IN B-PP
... Carlyle NNP B-NP
... Group NNP I-NP
... , , O
... a DT B-NP
... merchant NN I-NP
... banking NN I-NP
... concern NN I-NP
... . . O
... '''
>>> nltk.chunk.conllstr2tree(text, chunk_types=['NP']).draw()

We can use the NLTK corpus module to access a larger amount of chunked text. The
CoNLL-2000 Chunking Corpus contains 270k words of Wall Street Journal text, divi-
ded into “train” and “test” portions, annotated with part-of-speech tags and chunk tags
in the IOB format. We can access the data using nltk.corpus.conll2000. Here is an
example that reads the 100th sentence of the “train” portion of the corpus:

>>> from nltk.corpus import conll2000
>>> print conll2000.chunked_sents('train.txt')[99]
(S
  (PP Over/IN)
  (NP a/DT cup/NN)
  (PP of/IN)
  (NP coffee/NN)
  ,/,
  (NP Mr./NNP Stone/NNP)
  (VP told/VBD)
  (NP his/PRP$ story/NN)
  ./.)

As you can see, the CoNLL-2000 Chunking Corpus contains three chunk types: NP
chunks, which we have already seen; VP chunks, such as has already delivered; and PP
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chunks, such as because of. Since we are only interested in the NP chunks right now, we
can use the chunk_types argument to select them:

>>> print conll2000.chunked_sents('train.txt', chunk_types=['NP'])[99]
(S
  Over/IN
  (NP a/DT cup/NN)
  of/IN
  (NP coffee/NN)
  ,/,
  (NP Mr./NNP Stone/NNP)
  told/VBD
  (NP his/PRP$ story/NN)
  ./.)

Simple Evaluation and Baselines
Now that we can access a chunked corpus, we can evaluate chunkers. We start off by
establishing a baseline for the trivial chunk parser cp that creates no chunks:

>>> from nltk.corpus import conll2000
>>> cp = nltk.RegexpParser("")
>>> test_sents = conll2000.chunked_sents('test.txt', chunk_types=['NP'])
>>> print cp.evaluate(test_sents)
ChunkParse score:
    IOB Accuracy:  43.4%
    Precision:      0.0%
    Recall:         0.0%
    F-Measure:      0.0%

The IOB tag accuracy indicates that more than a third of the words are tagged with O,
i.e., not in an NP chunk. However, since our tagger did not find any chunks, its precision,
recall, and F-measure are all zero. Now let’s try a naive regular expression chunker that
looks for tags beginning with letters that are characteristic of noun phrase tags (e.g.,
CD, DT, and JJ).

>>> grammar = r"NP: {<[CDJNP].*>+}"
>>> cp = nltk.RegexpParser(grammar)
>>> print cp.evaluate(test_sents)
ChunkParse score:
    IOB Accuracy:  87.7%
    Precision:     70.6%
    Recall:        67.8%
    F-Measure:     69.2%

As you can see, this approach achieves decent results. However, we can improve on it
by adopting a more data-driven approach, where we use the training corpus to find the
chunk tag (I, O, or B) that is most likely for each part-of-speech tag. In other words, we
can build a chunker using a unigram tagger (Section 5.4). But rather than trying to
determine the correct part-of-speech tag for each word, we are trying to determine the
correct chunk tag, given each word’s part-of-speech tag.
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In Example 7-4, we define the UnigramChunker class, which uses a unigram tagger to
label sentences with chunk tags. Most of the code in this class is simply used to convert
back and forth between the chunk tree representation used by NLTK’s ChunkParserI
interface, and the IOB representation used by the embedded tagger. The class defines
two methods: a constructor , which is called when we build a new UnigramChunker;
and the parse method , which is used to chunk new sentences.

Example 7-4. Noun phrase chunking with a unigram tagger.

class UnigramChunker(nltk.ChunkParserI):
    def __init__(self, train_sents): 
        train_data = [[(t,c) for w,t,c in nltk.chunk.tree2conlltags(sent)]
                      for sent in train_sents]
        self.tagger = nltk.UnigramTagger(train_data) 

    def parse(self, sentence): 
        pos_tags = [pos for (word,pos) in sentence]
        tagged_pos_tags = self.tagger.tag(pos_tags)
        chunktags = [chunktag for (pos, chunktag) in tagged_pos_tags]
        conlltags = [(word, pos, chunktag) for ((word,pos),chunktag)
                     in zip(sentence, chunktags)]
        return nltk.chunk.conlltags2tree(conlltags)

The constructor  expects a list of training sentences, which will be in the form of
chunk trees. It first converts training data to a form that’s suitable for training the tagger,
using tree2conlltags to map each chunk tree to a list of word,tag,chunk triples. It then
uses that converted training data to train a unigram tagger, and stores it in self.tag
ger for later use.

The parse method  takes a tagged sentence as its input, and begins by extracting the
part-of-speech tags from that sentence. It then tags the part-of-speech tags with IOB
chunk tags, using the tagger self.tagger that was trained in the constructor. Next, it
extracts the chunk tags, and combines them with the original sentence, to yield
conlltags. Finally, it uses conlltags2tree to convert the result back into a chunk tree.

Now that we have UnigramChunker, we can train it using the CoNLL-2000 Chunking
Corpus, and test its resulting performance:

>>> test_sents = conll2000.chunked_sents('test.txt', chunk_types=['NP'])
>>> train_sents = conll2000.chunked_sents('train.txt', chunk_types=['NP'])
>>> unigram_chunker = UnigramChunker(train_sents)
>>> print unigram_chunker.evaluate(test_sents)
ChunkParse score:
    IOB Accuracy:  92.9%
    Precision:     79.9%
    Recall:        86.8%
    F-Measure:     83.2%

This chunker does reasonably well, achieving an overall F-measure score of 83%. Let’s
take a look at what it’s learned, by using its unigram tagger to assign a tag to each of
the part-of-speech tags that appear in the corpus:
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>>> postags = sorted(set(pos for sent in train_sents
...                      for (word,pos) in sent.leaves()))
>>> print unigram_chunker.tagger.tag(postags)
[('#', 'B-NP'), ('$', 'B-NP'), ("''", 'O'), ('(', 'O'), (')', 'O'),
 (',', 'O'), ('.', 'O'), (':', 'O'), ('CC', 'O'), ('CD', 'I-NP'),
 ('DT', 'B-NP'), ('EX', 'B-NP'), ('FW', 'I-NP'), ('IN', 'O'),
 ('JJ', 'I-NP'), ('JJR', 'B-NP'), ('JJS', 'I-NP'), ('MD', 'O'),
 ('NN', 'I-NP'), ('NNP', 'I-NP'), ('NNPS', 'I-NP'), ('NNS', 'I-NP'),
 ('PDT', 'B-NP'), ('POS', 'B-NP'), ('PRP', 'B-NP'), ('PRP$', 'B-NP'),
 ('RB', 'O'), ('RBR', 'O'), ('RBS', 'B-NP'), ('RP', 'O'), ('SYM', 'O'),
 ('TO', 'O'), ('UH', 'O'), ('VB', 'O'), ('VBD', 'O'), ('VBG', 'O'),
 ('VBN', 'O'), ('VBP', 'O'), ('VBZ', 'O'), ('WDT', 'B-NP'),
 ('WP', 'B-NP'), ('WP$', 'B-NP'), ('WRB', 'O'), ('``', 'O')]

It has discovered that most punctuation marks occur outside of NP chunks, with the
exception of # and $, both of which are used as currency markers. It has also found that
determiners (DT) and possessives (PRP$ and WP$) occur at the beginnings of NP chunks,
while noun types (NN, NNP, NNPS, NNS) mostly occur inside of NP chunks.

Having built a unigram chunker, it is quite easy to build a bigram chunker: we simply
change the class name to BigramChunker, and modify line  in Example 7-4 to construct
a BigramTagger rather than a UnigramTagger. The resulting chunker has slightly higher
performance than the unigram chunker:

>>> bigram_chunker = BigramChunker(train_sents)
>>> print bigram_chunker.evaluate(test_sents)
ChunkParse score:
    IOB Accuracy:  93.3%
    Precision:     82.3%
    Recall:        86.8%
    F-Measure:     84.5%

Training Classifier-Based Chunkers
Both the regular expression–based chunkers and the n-gram chunkers decide what
chunks to create entirely based on part-of-speech tags. However, sometimes part-of-
speech tags are insufficient to determine how a sentence should be chunked. For ex-
ample, consider the following two statements:

(3) a. Joey/NN sold/VBD the/DT farmer/NN rice/NN ./.

b. Nick/NN broke/VBD my/DT computer/NN monitor/NN ./.

These two sentences have the same part-of-speech tags, yet they are chunked differ-
ently. In the first sentence, the farmer and rice are separate chunks, while the corre-
sponding material in the second sentence, the computer monitor, is a single chunk.
Clearly, we need to make use of information about the content of the words, in addition
to just their part-of-speech tags, if we wish to maximize chunking performance.

One way that we can incorporate information about the content of words is to use a
classifier-based tagger to chunk the sentence. Like the n-gram chunker considered in
the previous section, this classifier-based chunker will work by assigning IOB tags to
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the words in a sentence, and then converting those tags to chunks. For the classifier-
based tagger itself, we will use the same approach that we used in Section 6.1 to build
a part-of-speech tagger.

The basic code for the classifier-based NP chunker is shown in Example 7-5. It consists
of two classes. The first class  is almost identical to the ConsecutivePosTagger class
from Example 6-5. The only two differences are that it calls a different feature extractor

 and that it uses a MaxentClassifier rather than a NaiveBayesClassifier . The sec-
ond class  is basically a wrapper around the tagger class that turns it into a chunker.
During training, this second class maps the chunk trees in the training corpus into tag
sequences; in the parse() method, it converts the tag sequence provided by the tagger
back into a chunk tree.

Example 7-5. Noun phrase chunking with a consecutive classifier.

class ConsecutiveNPChunkTagger(nltk.TaggerI): 

    def __init__(self, train_sents):
        train_set = []
        for tagged_sent in train_sents:
            untagged_sent = nltk.tag.untag(tagged_sent)
            history = []
            for i, (word, tag) in enumerate(tagged_sent):
                featureset = npchunk_features(untagged_sent, i, history) 
                train_set.append( (featureset, tag) )
                history.append(tag)
        self.classifier = nltk.MaxentClassifier.train( 
            train_set, algorithm='megam', trace=0)

    def tag(self, sentence):
        history = []
        for i, word in enumerate(sentence):
            featureset = npchunk_features(sentence, i, history)
            tag = self.classifier.classify(featureset)
            history.append(tag)
        return zip(sentence, history)

class ConsecutiveNPChunker(nltk.ChunkParserI): 
    def __init__(self, train_sents):
        tagged_sents = [[((w,t),c) for (w,t,c) in
                         nltk.chunk.tree2conlltags(sent)]
                        for sent in train_sents]
        self.tagger = ConsecutiveNPChunkTagger(tagged_sents)

    def parse(self, sentence):
        tagged_sents = self.tagger.tag(sentence)
        conlltags = [(w,t,c) for ((w,t),c) in tagged_sents]
        return nltk.chunk.conlltags2tree(conlltags)

The only piece left to fill in is the feature extractor. We begin by defining a simple
feature extractor, which just provides the part-of-speech tag of the current token. Using
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this feature extractor, our classifier-based chunker is very similar to the unigram chunk-
er, as is reflected in its performance:

>>> def npchunk_features(sentence, i, history):
...     word, pos = sentence[i]
...     return {"pos": pos}
>>> chunker = ConsecutiveNPChunker(train_sents)
>>> print chunker.evaluate(test_sents)
ChunkParse score:
    IOB Accuracy:  92.9%
    Precision:     79.9%
    Recall:        86.7%
    F-Measure:     83.2%

We can also add a feature for the previous part-of-speech tag. Adding this feature allows
the classifier to model interactions between adjacent tags, and results in a chunker that
is closely related to the bigram chunker.

>>> def npchunk_features(sentence, i, history):
...     word, pos = sentence[i]
...     if i == 0:
...         prevword, prevpos = "<START>", "<START>"
...     else:
...         prevword, prevpos = sentence[i-1]
...     return {"pos": pos, "prevpos": prevpos}
>>> chunker = ConsecutiveNPChunker(train_sents)
>>> print chunker.evaluate(test_sents)
ChunkParse score:
    IOB Accuracy:  93.6%
    Precision:     81.9%
    Recall:        87.1%
    F-Measure:     84.4%

Next, we’ll try adding a feature for the current word, since we hypothesized that word
content should be useful for chunking. We find that this feature does indeed improve
the chunker’s performance, by about 1.5 percentage points (which corresponds to
about a 10% reduction in the error rate).

>>> def npchunk_features(sentence, i, history):
...     word, pos = sentence[i]
...     if i == 0:
...         prevword, prevpos = "<START>", "<START>"
...     else:
...         prevword, prevpos = sentence[i-1]
...     return {"pos": pos, "word": word, "prevpos": prevpos}
>>> chunker = ConsecutiveNPChunker(train_sents)
>>> print chunker.evaluate(test_sents)
ChunkParse score:
    IOB Accuracy:  94.2%
    Precision:     83.4%
    Recall:        88.6%
    F-Measure:     85.9%
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Finally, we can try extending the feature extractor with a variety of additional features,
such as lookahead features , paired features , and complex contextual features .
This last feature, called tags-since-dt, creates a string describing the set of all part-of-
speech tags that have been encountered since the most recent determiner.

>>> def npchunk_features(sentence, i, history):
...     word, pos = sentence[i]
...     if i == 0:
...         prevword, prevpos = "<START>", "<START>"
...     else:
...         prevword, prevpos = sentence[i-1]
...     if i == len(sentence)-1:
...         nextword, nextpos = "<END>", "<END>"
...     else:
...         nextword, nextpos = sentence[i+1]
...     return {"pos": pos,
...             "word": word,
...             "prevpos": prevpos,
...             "nextpos": nextpos, 
...             "prevpos+pos": "%s+%s" % (prevpos, pos),  
...             "pos+nextpos": "%s+%s" % (pos, nextpos),
...             "tags-since-dt": tags_since_dt(sentence, i)}  

>>> def tags_since_dt(sentence, i):
...     tags = set()
...     for word, pos in sentence[:i]:
...         if pos == 'DT':
...             tags = set()
...         else:
...             tags.add(pos)
...     return '+'.join(sorted(tags))

>>> chunker = ConsecutiveNPChunker(train_sents)
>>> print chunker.evaluate(test_sents)
ChunkParse score:
    IOB Accuracy:  95.9%
    Precision:     88.3%
    Recall:        90.7%
    F-Measure:     89.5%

Your Turn: Try adding different features to the feature extractor func-
tion npchunk_features, and see if you can further improve the perform-
ance of the NP chunker.

7.4  Recursion in Linguistic Structure
Building Nested Structure with Cascaded Chunkers
So far, our chunk structures have been relatively flat. Trees consist of tagged tokens,
optionally grouped under a chunk node such as NP. However, it is possible to build
chunk structures of arbitrary depth, simply by creating a multistage chunk grammar
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containing recursive rules. Example 7-6 has patterns for noun phrases, prepositional
phrases, verb phrases, and sentences. This is a four-stage chunk grammar, and can be
used to create structures having a depth of at most four.

Example 7-6. A chunker that handles NP, PP, VP, and S.

grammar = r"""
  NP: {<DT|JJ|NN.*>+}          # Chunk sequences of DT, JJ, NN
  PP: {<IN><NP>}               # Chunk prepositions followed by NP
  VP: {<VB.*><NP|PP|CLAUSE>+$} # Chunk verbs and their arguments
  CLAUSE: {<NP><VP>}           # Chunk NP, VP
  """
cp = nltk.RegexpParser(grammar)
sentence = [("Mary", "NN"), ("saw", "VBD"), ("the", "DT"), ("cat", "NN"),
    ("sit", "VB"), ("on", "IN"), ("the", "DT"), ("mat", "NN")]

>>> print cp.parse(sentence)
(S
  (NP Mary/NN)
  saw/VBD
  (CLAUSE
    (NP the/DT cat/NN)
    (VP sit/VB (PP on/IN (NP the/DT mat/NN)))))

Unfortunately this result misses the VP headed by saw. It has other shortcomings, too.
Let’s see what happens when we apply this chunker to a sentence having deeper nesting.
Notice that it fails to identify the VP chunk starting at .

>>> sentence = [("John", "NNP"), ("thinks", "VBZ"), ("Mary", "NN"),
...     ("saw", "VBD"), ("the", "DT"), ("cat", "NN"), ("sit", "VB"),
...     ("on", "IN"), ("the", "DT"), ("mat", "NN")]
>>> print cp.parse(sentence)
(S
  (NP John/NNP)
  thinks/VBZ
  (NP Mary/NN)
  saw/VBD 
  (CLAUSE
    (NP the/DT cat/NN)
    (VP sit/VB (PP on/IN (NP the/DT mat/NN)))))

The solution to these problems is to get the chunker to loop over its patterns: after
trying all of them, it repeats the process. We add an optional second argument loop to
specify the number of times the set of patterns should be run:

>>> cp = nltk.RegexpParser(grammar, loop=2)
>>> print cp.parse(sentence)
(S
  (NP John/NNP)
  thinks/VBZ
  (CLAUSE
    (NP Mary/NN)
    (VP
      saw/VBD
      (CLAUSE
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        (NP the/DT cat/NN)
        (VP sit/VB (PP on/IN (NP the/DT mat/NN)))))))

This cascading process enables us to create deep structures. However,
creating and debugging a cascade is difficult, and there comes a point
where it is more effective to do full parsing (see Chapter 8). Also, the
cascading process can only produce trees of fixed depth (no deeper than
the number of stages in the cascade), and this is insufficient for complete
syntactic analysis.

Trees
A tree is a set of connected labeled nodes, each reachable by a unique path from a
distinguished root node. Here’s an example of a tree (note that they are standardly
drawn upside-down):

(4)

We use a ‘family’ metaphor to talk about the relationships of nodes in a tree: for ex-
ample, S is the parent of VP; conversely VP is a child of S. Also, since NP and VP are both
children of S, they are also siblings. For convenience, there is also a text format for
specifying trees:

(S
   (NP Alice)
   (VP
      (V chased)
      (NP
         (Det the)
         (N rabbit))))

Although we will focus on syntactic trees, trees can be used to encode any homogeneous
hierarchical structure that spans a sequence of linguistic forms (e.g., morphological
structure, discourse structure). In the general case, leaves and node values do not have
to be strings.

In NLTK, we create a tree by giving a node label and a list of children:
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>>> tree1 = nltk.Tree('NP', ['Alice'])
>>> print tree1
(NP Alice)
>>> tree2 = nltk.Tree('NP', ['the', 'rabbit'])
>>> print tree2
(NP the rabbit)

We can incorporate these into successively larger trees as follows:

>>> tree3 = nltk.Tree('VP', ['chased', tree2])
>>> tree4 = nltk.Tree('S', [tree1, tree3])
>>> print tree4
(S (NP Alice) (VP chased (NP the rabbit)))

Here are some of the methods available for tree objects:

>>> print tree4[1]
(VP chased (NP the rabbit))
>>> tree4[1].node
'VP'
>>> tree4.leaves()
['Alice', 'chased', 'the', 'rabbit']
>>> tree4[1][1][1]
'rabbit'

The bracketed representation for complex trees can be difficult to read. In these cases,
the draw method can be very useful. It opens a new window, containing a graphical
representation of the tree. The tree display window allows you to zoom in and out, to
collapse and expand subtrees, and to print the graphical representation to a postscript
file (for inclusion in a document).

>>> tree3.draw()

Tree Traversal
It is standard to use a recursive function to traverse a tree. The listing in Example 7-7
demonstrates this.

Example 7-7. A recursive function to traverse a tree.

def traverse(t):
    try:
        t.node
    except AttributeError:
        print t,
 

    else:
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        # Now we know that t.node is defined
        print '(', t.node,
        for child in t:
            traverse(child)
        print ')',

>>> t = nltk.Tree('(S (NP Alice) (VP chased (NP the rabbit)))')
>>> traverse(t)
( S ( NP Alice ) ( VP chased ( NP the rabbit ) ) )

We have used a technique called duck typing to detect that t is a tree
(i.e., t.node is defined).

7.5  Named Entity Recognition
At the start of this chapter, we briefly introduced named entities (NEs). Named entities
are definite noun phrases that refer to specific types of individuals, such as organiza-
tions, persons, dates, and so on. Table 7-3 lists some of the more commonly used types
of NEs. These should be self-explanatory, except for “FACILITY”: human-made arti-
facts in the domains of architecture and civil engineering; and “GPE”: geo-political
entities such as city, state/province, and country.

Table 7-3. Commonly used types of named entity

NE type Examples

ORGANIZATION Georgia-Pacific Corp., WHO

PERSON Eddy Bonte, President Obama

LOCATION Murray River, Mount Everest

DATE June, 2008-06-29

TIME two fifty a m, 1:30 p.m.

MONEY 175 million Canadian Dollars, GBP 10.40

PERCENT twenty pct, 18.75 %

FACILITY Washington Monument, Stonehenge

GPE South East Asia, Midlothian

The goal of a named entity recognition (NER) system is to identify all textual men-
tions of the named entities. This can be broken down into two subtasks: identifying
the boundaries of the NE, and identifying its type. While named entity recognition is
frequently a prelude to identifying relations in Information Extraction, it can also con-
tribute to other tasks. For example, in Question Answering (QA), we try to improve
the precision of Information Retrieval by recovering not whole pages, but just those
parts which contain an answer to the user’s question. Most QA systems take the
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documents returned by standard Information Retrieval, and then attempt to isolate the
minimal text snippet in the document containing the answer. Now suppose the
question was Who was the first President of the US?, and one of the documents that was
retrieved contained the following passage:

(5) The Washington Monument is the most prominent structure in Washington,
D.C. and one of the city’s early attractions. It was built in honor of George
Washington, who led the country to independence and then became its first
President.

Analysis of the question leads us to expect that an answer should be of the form X was
the first President of the US, where X is not only a noun phrase, but also refers to a
named entity of type PER. This should allow us to ignore the first sentence in the passage.
Although it contains two occurrences of Washington, named entity recognition should
tell us that neither of them has the correct type.

How do we go about identifying named entities? One option would be to look up each
word in an appropriate list of names. For example, in the case of locations, we could
use a gazetteer, or geographical dictionary, such as the Alexandria Gazetteer or the
Getty Gazetteer. However, doing this blindly runs into problems, as shown in Fig-
ure 7-5.

Figure 7-5. Location detection by simple lookup for a news story: Looking up every word in a gazetteer
is error-prone; case distinctions may help, but these are not always present.

Observe that the gazetteer has good coverage of locations in many countries, and in-
correctly finds locations like Sanchez in the Dominican Republic and On in Vietnam.
Of course we could omit such locations from the gazetteer, but then we won’t be able
to identify them when they do appear in a document.

It gets even harder in the case of names for people or organizations. Any list of such
names will probably have poor coverage. New organizations come into existence every
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day, so if we are trying to deal with contemporary newswire or blog entries, it is unlikely
that we will be able to recognize many of the entities using gazetteer lookup.

Another major source of difficulty is caused by the fact that many named entity terms
are ambiguous. Thus May and North are likely to be parts of named entities for DATE
and LOCATION, respectively, but could both be part of a PERSON; conversely Chris-
tian Dior looks like a PERSON but is more likely to be of type ORGANIZATION. A
term like Yankee will be an ordinary modifier in some contexts, but will be marked as
an entity of type ORGANIZATION in the phrase Yankee infielders.

Further challenges are posed by multiword names like Stanford University, and by
names that contain other names, such as Cecil H. Green Library and Escondido Village
Conference Service Center. In named entity recognition, therefore, we need to be able
to identify the beginning and end of multitoken sequences.

Named entity recognition is a task that is well suited to the type of classifier-based
approach that we saw for noun phrase chunking. In particular, we can build a tagger
that labels each word in a sentence using the IOB format, where chunks are labeled by
their appropriate type. Here is part of the CONLL 2002 (conll2002) Dutch training
data:

Eddy N B-PER
Bonte N I-PER
is V O
woordvoerder N O
van Prep O
diezelfde Pron O
Hogeschool N B-ORG
. Punc O

In this representation, there is one token per line, each with its part-of-speech tag and
its named entity tag. Based on this training corpus, we can construct a tagger that can
be used to label new sentences, and use the nltk.chunk.conlltags2tree() function to
convert the tag sequences into a chunk tree.

NLTK provides a classifier that has already been trained to recognize named entities,
accessed with the function nltk.ne_chunk(). If we set the parameter binary=True ,
then named entities are just tagged as NE; otherwise, the classifier adds category labels
such as PERSON, ORGANIZATION, and GPE.

>>> sent = nltk.corpus.treebank.tagged_sents()[22]
>>> print nltk.ne_chunk(sent, binary=True)  
(S
  The/DT
  (NE U.S./NNP)
  is/VBZ
  one/CD
  ...
  according/VBG
  to/TO
  (NE Brooke/NNP T./NNP Mossman/NNP)
  ...)
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>>> print nltk.ne_chunk(sent) 
(S
  The/DT
  (GPE U.S./NNP)
  is/VBZ
  one/CD
  ...
  according/VBG
  to/TO
  (PERSON Brooke/NNP T./NNP Mossman/NNP)
  ...)

7.6  Relation Extraction
Once named entities have been identified in a text, we then want to extract the relations
that exist between them. As indicated earlier, we will typically be looking for relations
between specified types of named entity. One way of approaching this task is to initially
look for all triples of the form (X, α, Y), where X and Y are named entities of the required
types, and α is the string of words that intervenes between X and Y. We can then use
regular expressions to pull out just those instances of α that express the relation that
we are looking for. The following example searches for strings that contain the word
in. The special regular expression (?!\b.+ing\b) is a negative lookahead assertion that
allows us to disregard strings such as success in supervising the transition of, where in
is followed by a gerund.

>>> IN = re.compile(r'.*\bin\b(?!\b.+ing)')
>>> for doc in nltk.corpus.ieer.parsed_docs('NYT_19980315'):
...     for rel in nltk.sem.extract_rels('ORG', 'LOC', doc,
...                                      corpus='ieer', pattern = IN):
...         print nltk.sem.show_raw_rtuple(rel)
[ORG: 'WHYY'] 'in' [LOC: 'Philadelphia']
[ORG: 'McGlashan &AMP; Sarrail'] 'firm in' [LOC: 'San Mateo']
[ORG: 'Freedom Forum'] 'in' [LOC: 'Arlington']
[ORG: 'Brookings Institution'] ', the research group in' [LOC: 'Washington']
[ORG: 'Idealab'] ', a self-described business incubator based in' [LOC: 'Los Angeles']
[ORG: 'Open Text'] ', based in' [LOC: 'Waterloo']
[ORG: 'WGBH'] 'in' [LOC: 'Boston']
[ORG: 'Bastille Opera'] 'in' [LOC: 'Paris']
[ORG: 'Omnicom'] 'in' [LOC: 'New York']
[ORG: 'DDB Needham'] 'in' [LOC: 'New York']
[ORG: 'Kaplan Thaler Group'] 'in' [LOC: 'New York']
[ORG: 'BBDO South'] 'in' [LOC: 'Atlanta']
[ORG: 'Georgia-Pacific'] 'in' [LOC: 'Atlanta']

Searching for the keyword in works reasonably well, though it will also retrieve false
positives such as [ORG: House Transportation Committee] , secured the most money
in the [LOC: New York]; there is unlikely to be a simple string-based method of ex-
cluding filler strings such as this.
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As shown earlier, the Dutch section of the CoNLL 2002 Named Entity Corpus contains
not just named entity annotation, but also part-of-speech tags. This allows us to devise
patterns that are sensitive to these tags, as shown in the next example. The method
show_clause() prints out the relations in a clausal form, where the binary relation sym-
bol is specified as the value of parameter relsym .

>>> from nltk.corpus import conll2002
>>> vnv = """
... (
... is/V|    # 3rd sing present and
... was/V|   # past forms of the verb zijn ('be')
... werd/V|  # and also present
... wordt/V  # past of worden ('become')
... )
... .*       # followed by anything
... van/Prep # followed by van ('of')
... """
>>> VAN = re.compile(vnv, re.VERBOSE)
>>> for doc in conll2002.chunked_sents('ned.train'):
...     for r in nltk.sem.extract_rels('PER', 'ORG', doc,
...                                    corpus='conll2002', pattern=VAN):
...         print  nltk.sem.show_clause(r, relsym="VAN") 
VAN("cornet_d'elzius", 'buitenlandse_handel')
VAN('johan_rottiers', 'kardinaal_van_roey_instituut')
VAN('annie_lennox', 'eurythmics')

Your Turn: Replace the last line  with print show_raw_rtuple(rel,
lcon=True, rcon=True). This will show you the actual words that inter-
vene between the two NEs and also their left and right context, within
a default 10-word window. With the help of a Dutch dictionary, you
might be able to figure out why the result VAN('annie_lennox', 'euryth
mics') is a false hit.

7.7  Summary
• Information extraction systems search large bodies of unrestricted text for specific

types of entities and relations, and use them to populate well-organized databases.
These databases can then be used to find answers for specific questions.

• The typical architecture for an information extraction system begins by segment-
ing, tokenizing, and part-of-speech tagging the text. The resulting data is then
searched for specific types of entity. Finally, the information extraction system
looks at entities that are mentioned near one another in the text, and tries to de-
termine whether specific relationships hold between those entities.

• Entity recognition is often performed using chunkers, which segment multitoken
sequences, and label them with the appropriate entity type. Common entity types
include ORGANIZATION, PERSON, LOCATION, DATE, TIME, MONEY, and
GPE (geo-political entity).
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• Chunkers can be constructed using rule-based systems, such as the RegexpParser
class provided by NLTK; or using machine learning techniques, such as the
ConsecutiveNPChunker presented in this chapter. In either case, part-of-speech tags
are often a very important feature when searching for chunks.

• Although chunkers are specialized to create relatively flat data structures, where
no two chunks are allowed to overlap, they can be cascaded together to build nested
structures.

• Relation extraction can be performed using either rule-based systems, which typ-
ically look for specific patterns in the text that connect entities and the intervening
words; or using machine-learning systems, which typically attempt to learn such
patterns automatically from a training corpus.

7.8  Further Reading
Extra materials for this chapter are posted at http://www.nltk.org/, including links to
freely available resources on the Web. For more examples of chunking with NLTK,
please see the Chunking HOWTO at http://www.nltk.org/howto.

The popularity of chunking is due in great part to pioneering work by Abney, e.g.,
(Abney, 1996a). Abney’s Cass chunker is described in http://www.vinartus.net/spa/97a
.pdf.

The word chink initially meant a sequence of stopwords, according to a 1975 paper
by Ross and Tukey (Abney, 1996a).

The IOB format (or sometimes BIO Format) was developed for NP chunking by (Ram-
shaw & Marcus, 1995), and was used for the shared NP bracketing task run by the
Conference on Natural Language Learning (CoNLL) in 1999. The same format was
adopted by CoNLL 2000 for annotating a section of Wall Street Journal text as part of
a shared task on NP chunking.

Section 13.5 of (Jurafsky & Martin, 2008) contains a discussion of chunking. Chapter
22 covers information extraction, including named entity recognition. For information
about text mining in biology and medicine, see (Ananiadou & McNaught, 2006).

For more information on the Getty and Alexandria gazetteers, see http://en.wikipedia
.org/wiki/Getty_Thesaurus_of_Geographic_Names and http://www.alexandria.ucsb
.edu/gazetteer/.

7.9  Exercises
1. ○ The IOB format categorizes tagged tokens as I, O, and B. Why are three tags

necessary? What problem would be caused if we used I and O tags exclusively?
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2. ○ Write a tag pattern to match noun phrases containing plural head nouns, e.g.,
many/JJ researchers/NNS, two/CD weeks/NNS, both/DT new/JJ positions/NNS. Try
to do this by generalizing the tag pattern that handled singular noun phrases.

3. ○ Pick one of the three chunk types in the CoNLL-2000 Chunking Corpus. Inspect
the data and try to observe any patterns in the POS tag sequences that make up
this kind of chunk. Develop a simple chunker using the regular expression chunker
nltk.RegexpParser. Discuss any tag sequences that are difficult to chunk reliably.

4. ○ An early definition of chunk was the material that occurs between chinks. De-
velop a chunker that starts by putting the whole sentence in a single chunk, and
then does the rest of its work solely by chinking. Determine which tags (or tag
sequences) are most likely to make up chinks with the help of your own utility
program. Compare the performance and simplicity of this approach relative to a
chunker based entirely on chunk rules.

5. ◑ Write a tag pattern to cover noun phrases that contain gerunds, e.g., the/DT
receiving/VBG end/NN, assistant/NN managing/VBG editor/NN. Add these patterns
to the grammar, one per line. Test your work using some tagged sentences of your
own devising.

6. ◑ Write one or more tag patterns to handle coordinated noun phrases, e.g., July/
NNP and/CC August/NNP, all/DT your/PRP$ managers/NNS and/CC supervisors/NNS,
company/NN courts/NNS and/CC adjudicators/NNS.

7. ◑ Carry out the following evaluation tasks for any of the chunkers you have de-
veloped earlier. (Note that most chunking corpora contain some internal incon-
sistencies, such that any reasonable rule-based approach will produce errors.)

a. Evaluate your chunker on 100 sentences from a chunked corpus, and report
the precision, recall, and F-measure.

b. Use the chunkscore.missed() and chunkscore.incorrect() methods to identify
the errors made by your chunker. Discuss.

c. Compare the performance of your chunker to the baseline chunker discussed
in the evaluation section of this chapter.

8. ◑ Develop a chunker for one of the chunk types in the CoNLL Chunking Corpus
using a regular expression–based chunk grammar RegexpChunk. Use any combina-
tion of rules for chunking, chinking, merging, or splitting.

9. ◑ Sometimes a word is incorrectly tagged, e.g., the head noun in 12/CD or/CC so/
RB cases/VBZ. Instead of requiring manual correction of tagger output, good
chunkers are able to work with the erroneous output of taggers. Look for other
examples of correctly chunked noun phrases with incorrect tags.

10. ◑ The bigram chunker scores about 90% accuracy. Study its errors and try to work
out why it doesn’t get 100% accuracy. Experiment with trigram chunking. Are you
able to improve the performance any more?
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11. ● Apply the n-gram and Brill tagging methods to IOB chunk tagging. Instead of
assigning POS tags to words, here we will assign IOB tags to the POS tags. E.g., if
the tag DT (determiner) often occurs at the start of a chunk, it will be tagged B
(begin). Evaluate the performance of these chunking methods relative to the regular
expression chunking methods covered in this chapter.

12. ● We saw in Chapter 5 that it is possible to establish an upper limit to tagging
performance by looking for ambiguous n-grams, which are n-grams that are tagged
in more than one possible way in the training data. Apply the same method to
determine an upper bound on the performance of an n-gram chunker.

13. ● Pick one of the three chunk types in the CoNLL Chunking Corpus. Write func-
tions to do the following tasks for your chosen type:

a. List all the tag sequences that occur with each instance of this chunk type.

b. Count the frequency of each tag sequence, and produce a ranked list in order
of decreasing frequency; each line should consist of an integer (the frequency)
and the tag sequence.

c. Inspect the high-frequency tag sequences. Use these as the basis for developing
a better chunker.

14. ● The baseline chunker presented in the evaluation section tends to create larger
chunks than it should. For example, the phrase [every/DT time/NN] [she/PRP]
sees/VBZ [a/DT newspaper/NN] contains two consecutive chunks, and our baseline
chunker will incorrectly combine the first two: [every/DT time/NN she/PRP]. Write
a program that finds which of these chunk-internal tags typically occur at the start
of a chunk, then devise one or more rules that will split up these chunks. Combine
these with the existing baseline chunker and re-evaluate it, to see if you have dis-
covered an improved baseline.

15. ● Develop an NP chunker that converts POS tagged text into a list of tuples, where
each tuple consists of a verb followed by a sequence of noun phrases and prepo-
sitions, e.g., the little cat sat on the mat becomes ('sat', 'on', 'NP')...

16. ● The Penn Treebank Corpus sample contains a section of tagged Wall Street
Journal text that has been chunked into noun phrases. The format uses square
brackets, and we have encountered it several times in this chapter. The corpus can
be accessed using: for sent in nltk.corpus.treebank_chunk.chunked_sents(fil
eid). These are flat trees, just as we got using nltk.cor
pus.conll2000.chunked_sents().

a. The functions nltk.tree.pprint() and nltk.chunk.tree2conllstr() can be
used to create Treebank and IOB strings from a tree. Write functions
chunk2brackets() and chunk2iob() that take a single chunk tree as their sole
argument, and return the required multiline string representation.

b. Write command-line conversion utilities bracket2iob.py and iob2bracket.py
that take a file in Treebank or CoNLL format (respectively) and convert it to
the other format. (Obtain some raw Treebank or CoNLL data from the NLTK
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Corpora, save it to a file, and then use for line in open(filename) to access
it from Python.)

17. ● An n-gram chunker can use information other than the current part-of-speech
tag and the n-1 previous chunk tags. Investigate other models of the context, such
as the n-1 previous part-of-speech tags, or some combination of previous chunk
tags along with previous and following part-of-speech tags.

18. ● Consider the way an n-gram tagger uses recent tags to inform its tagging choice.
Now observe how a chunker may reuse this sequence information. For example,
both tasks will make use of the information that nouns tend to follow adjectives
(in English). It would appear that the same information is being maintained in two
places. Is this likely to become a problem as the size of the rule sets grows? If so,
speculate about any ways that this problem might be addressed.
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CHAPTER 8

Analyzing Sentence Structure

Earlier chapters focused on words: how to identify them, analyze their structure, assign
them to lexical categories, and access their meanings. We have also seen how to identify
patterns in word sequences or n-grams. However, these methods only scratch the sur-
face of the complex constraints that govern sentences. We need a way to deal with the
ambiguity that natural language is famous for. We also need to be able to cope with
the fact that there are an unlimited number of possible sentences, and we can only write
finite programs to analyze their structures and discover their meanings.

The goal of this chapter is to answer the following questions:

1. How can we use a formal grammar to describe the structure of an unlimited set of
sentences?

2. How do we represent the structure of sentences using syntax trees?

3. How do parsers analyze a sentence and automatically build a syntax tree?

Along the way, we will cover the fundamentals of English syntax, and see that there
are systematic aspects of meaning that are much easier to capture once we have iden-
tified the structure of sentences.
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8.1  Some Grammatical Dilemmas
Linguistic Data and Unlimited Possibilities
Previous chapters have shown you how to process and analyze text corpora, and we
have stressed the challenges for NLP in dealing with the vast amount of electronic
language data that is growing daily. Let’s consider this data more closely, and make the
thought experiment that we have a gigantic corpus consisting of everything that has
been either uttered or written in English over, say, the last 50 years. Would we be
justified in calling this corpus “the language of modern English”? There are a number
of reasons why we might answer no. Recall that in Chapter 3, we asked you to search
the Web for instances of the pattern the of. Although it is easy to find examples on the
Web containing this word sequence, such as New man at the of IMG  (see http://www
.telegraph.co.uk/sport/2387900/New-man-at-the-of-IMG.html), speakers of English
will say that most such examples are errors, and therefore not part of English after all.

Accordingly, we can argue that “modern English” is not equivalent to the very big set
of word sequences in our imaginary corpus. Speakers of English can make judgments
about these sequences, and will reject some of them as being ungrammatical.

Equally, it is easy to compose a new sentence and have speakers agree that it is perfectly
good English. For example, sentences have an interesting property that they can be
embedded inside larger sentences. Consider the following sentences:

(1) a. Usain Bolt broke the 100m record.

b. The Jamaica Observer reported that Usain Bolt broke the 100m record.

c. Andre said The Jamaica Observer reported that Usain Bolt broke the 100m
record.

d. I think Andre said the Jamaica Observer reported that Usain Bolt broke
the 100m record.

If we replaced whole sentences with the symbol S, we would see patterns like Andre
said S and I think S. These are templates for taking a sentence and constructing a bigger
sentence. There are other templates we can use, such as S but S and S when S. With a
bit of ingenuity we can construct some really long sentences using these templates.
Here’s an impressive example from a Winnie the Pooh story by A.A. Milne, In Which
Piglet Is Entirely Surrounded by Water:

[You can imagine Piglet’s joy when at last the ship came in sight of him.] In after-years
he liked to think that he had been in Very Great Danger during the Terrible Flood, but
the only danger he had really been in was the last half-hour of his imprisonment, when
Owl, who had just flown up, sat on a branch of his tree to comfort him, and told him a
very long story about an aunt who had once laid a seagull’s egg by mistake, and the story
went on and on, rather like this sentence, until Piglet who was listening out of his window
without much hope, went to sleep quietly and naturally, slipping slowly out of the win-
dow towards the water until he was only hanging on by his toes, at which moment,
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luckily, a sudden loud squawk from Owl, which was really part of the story, being what
his aunt said, woke the Piglet up and just gave him time to jerk himself back into safety
and say, “How interesting, and did she?” when—well, you can imagine his joy when at
last he saw the good ship, Brain of Pooh (Captain, C. Robin; 1st Mate, P. Bear) coming
over the sea to rescue him…

This long sentence actually has a simple structure that begins S but S when S. We can
see from this example that language provides us with constructions which seem to allow
us to extend sentences indefinitely. It is also striking that we can understand sentences
of arbitrary length that we’ve never heard before: it’s not hard to concoct an entirely
novel sentence, one that has probably never been used before in the history of the
language, yet all speakers of the language will understand it.

The purpose of a grammar is to give an explicit description of a language. But the way
in which we think of a grammar is closely intertwined with what we consider to be a
language. Is it a large but finite set of observed utterances and written texts? Is it some-
thing more abstract like the implicit knowledge that competent speakers have about
grammatical sentences? Or is it some combination of the two? We won’t take a stand
on this issue, but instead will introduce the main approaches.

In this chapter, we will adopt the formal framework of “generative grammar,” in which
a “language” is considered to be nothing more than an enormous collection of all
grammatical sentences, and a grammar is a formal notation that can be used for “gen-
erating” the members of this set. Grammars use recursive productions of the form
S → S and S, as we will explore in Section 8.3. In Chapter 10 we will extend this, to
automatically build up the meaning of a sentence out of the meanings of its parts.

Ubiquitous Ambiguity
A well-known example of ambiguity is shown in (2), from the Groucho Marx movie,
Animal Crackers (1930):

(2) While hunting in Africa, I shot an elephant in my pajamas. How an elephant
got into my pajamas I’ll never know.

Let’s take a closer look at the ambiguity in the phrase: I shot an elephant in my paja-
mas. First we need to define a simple grammar:

>>> groucho_grammar = nltk.parse_cfg("""
... S -> NP VP
... PP -> P NP
... NP -> Det N | Det N PP | 'I'
... VP -> V NP | VP PP
... Det -> 'an' | 'my'
... N -> 'elephant' | 'pajamas'
... V -> 'shot'
... P -> 'in'
... """)
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This grammar permits the sentence to be analyzed in two ways, depending on whether
the prepositional phrase in my pajamas describes the elephant or the shooting event.

>>> sent = ['I', 'shot', 'an', 'elephant', 'in', 'my', 'pajamas']
>>> parser = nltk.ChartParser(groucho_grammar)
>>> trees = parser.nbest_parse(sent)
>>> for tree in trees:
...     print tree
(S
  (NP I)
  (VP
    (V shot)
    (NP (Det an) (N elephant) (PP (P in) (NP (Det my) (N pajamas))))))
(S
  (NP I)
  (VP
    (VP (V shot) (NP (Det an) (N elephant)))
    (PP (P in) (NP (Det my) (N pajamas)))))

The program produces two bracketed structures, which we can depict as trees, as
shown in (3):

(3) a.

b.
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Notice that there’s no ambiguity concerning the meaning of any of the words; e.g., the
word shot doesn’t refer to the act of using a gun in the first sentence and using a camera
in the second sentence.

Your Turn: Consider the following sentences and see if you can think
of two quite different interpretations: Fighting animals could be danger-
ous. Visiting relatives can be tiresome. Is ambiguity of the individual
words to blame? If not, what is the cause of the ambiguity?

This chapter presents grammars and parsing, as the formal and computational methods
for investigating and modeling the linguistic phenomena we have been discussing. As
we shall see, patterns of well-formedness and ill-formedness in a sequence of words
can be understood with respect to the phrase structure and dependencies. We can
develop formal models of these structures using grammars and parsers. As before, a
key motivation is natural language understanding. How much more of the meaning of
a text can we access when we can reliably recognize the linguistic structures it contains?
Having read in a text, can a program “understand” it enough to be able to answer simple
questions about “what happened” or “who did what to whom”? Also as before, we will
develop simple programs to process annotated corpora and perform useful tasks.

8.2  What’s the Use of Syntax?
Beyond n-grams
We gave an example in Chapter 2 of how to use the frequency information in bigrams
to generate text that seems perfectly acceptable for small sequences of words but rapidly
degenerates into nonsense. Here’s another pair of examples that we created by com-
puting the bigrams over the text of a children’s story, The Adventures of Buster
Brown (included in the Project Gutenberg Selection Corpus):

(4) a. He roared with me the pail slip down his back

b. The worst part and clumsy looking for whoever heard light

You intuitively know that these sequences are “word-salad,” but you probably find it
hard to pin down what’s wrong with them. One benefit of studying grammar is that it
provides a conceptual framework and vocabulary for spelling out these intuitions. Let’s
take a closer look at the sequence the worst part and clumsy looking. This looks like a
coordinate structure, where two phrases are joined by a coordinating conjunction
such as and, but, or or. Here’s an informal (and simplified) statement of how coordi-
nation works syntactically:

Coordinate Structure: if v1 and v2 are both phrases of grammatical category X, then v1
and v2 is also a phrase of category X.
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Here are a couple of examples. In the first, two NPs (noun phrases) have been conjoined
to make an NP, while in the second, two APs (adjective phrases) have been conjoined to
make an AP.

(5) a. The book’s ending was (NP the worst part and the best part) for me.

b. On land they are (AP slow and clumsy looking).

What we can’t do is conjoin an NP and an AP, which is why the worst part and clumsy
looking is ungrammatical. Before we can formalize these ideas, we need to understand
the concept of constituent structure.

Constituent structure is based on the observation that words combine with other words
to form units. The evidence that a sequence of words forms such a unit is given by
substitutability—that is, a sequence of words in a well-formed sentence can be replaced
by a shorter sequence without rendering the sentence ill-formed. To clarify this idea,
consider the following sentence:

(6) The little bear saw the fine fat trout in the brook.

The fact that we can substitute He for The little bear indicates that the latter sequence
is a unit. By contrast, we cannot replace little bear saw in the same way. (We use an
asterisk at the start of a sentence to indicate that it is ungrammatical.)

(7) a. He saw the fine fat trout in the brook.

b. *The he the fine fat trout in the brook.

In Figure 8-1, we systematically substitute longer sequences by shorter ones in a way
which preserves grammaticality. Each sequence that forms a unit can in fact be replaced
by a single word, and we end up with just two elements.

Figure 8-1. Substitution of word sequences: Working from the top row, we can replace particular
sequences of words (e.g., the brook) with individual words (e.g., it); repeating this process, we arrive
at a grammatical two-word sentence.
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In Figure 8-2, we have added grammatical category labels to the words we saw in the
earlier figure. The labels NP, VP, and PP stand for noun phrase, verb phrase, and
prepositional phrase, respectively.

If we now strip out the words apart from the topmost row, add an S node, and flip the
figure over, we end up with a standard phrase structure tree, shown in (8). Each node
in this tree (including the words) is called a constituent. The immediate constitu-
ents of S are NP and VP.

(8)

As we saw in Section 8.1, sentences can have arbitrary length. Conse-
quently, phrase structure trees can have arbitrary depth. The cascaded
chunk parsers we saw in Section 7.4 can only produce structures of
bounded depth, so chunking methods aren’t applicable here.

Figure 8-2. Substitution of word sequences plus grammatical categories: This diagram reproduces
Figure 8-1 along with grammatical categories corresponding to noun phrases (NP), verb phrases
(VP), prepositional phrases (PP), and nominals (Nom).
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As we will see in the next section, a grammar specifies how the sentence can be subdi-
vided into its immediate constituents, and how these can be further subdivided until
we reach the level of individual words.

8.3  Context-Free Grammar
A Simple Grammar
Let’s start off by looking at a simple context-free grammar (CFG). By convention,
the lefthand side of the first production is the start-symbol of the grammar, typically
S, and all well-formed trees must have this symbol as their root label. In NLTK, context-
free grammars are defined in the nltk.grammar module. In Example 8-1 we define a
grammar and show how to parse a simple sentence admitted by the grammar.

Example 8-1. A simple context-free grammar.

grammar1 = nltk.parse_cfg("""
  S -> NP VP
  VP -> V NP | V NP PP
  PP -> P NP
  V -> "saw" | "ate" | "walked"
  NP -> "John" | "Mary" | "Bob" | Det N | Det N PP
  Det -> "a" | "an" | "the" | "my"
  N -> "man" | "dog" | "cat" | "telescope" | "park"
  P -> "in" | "on" | "by" | "with"
  """)

>>> sent = "Mary saw Bob".split()
>>> rd_parser = nltk.RecursiveDescentParser(grammar1)
>>> for tree in rd_parser.nbest_parse(sent):
...      print tree
(S (NP Mary) (VP (V saw) (NP Bob)))

The grammar in Example 8-1 contains productions involving various syntactic cate-
gories, as laid out in Table 8-1. The recursive descent parser used here can also be
inspected via a graphical interface, as illustrated in Figure 8-3; we discuss this parser
in more detail in Section 8.4.

Table 8-1. Syntactic categories

Symbol Meaning Example

S sentence the man walked

NP noun phrase a dog

VP verb phrase saw a park

PP prepositional phrase with a telescope

Det determiner the

N noun dog
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Symbol Meaning Example

V verb walked

P preposition in

A production like VP -> V NP | V NP PP has a disjunction on the righthand side, shown
by the |, and is an abbreviation for the two productions VP -> V NP and VP -> V NP PP.

If we parse the sentence The dog saw a man in the park using the grammar shown in
Example 8-1, we end up with two trees, similar to those we saw for (3):

(9) a.

b.

Since our grammar licenses two trees for this sentence, the sentence is said to be struc-
turally ambiguous. The ambiguity in question is called a prepositional phrase at-
tachment ambiguity, as we saw earlier in this chapter. As you may recall, it is an
ambiguity about attachment since the PP in the park needs to be attached to one of two
places in the tree: either as a child of VP or else as a child of NP. When the PP is attached
to VP, the intended interpretation is that the seeing event happened in the park.
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However, if the PP is attached to NP, then it was the man who was in the park, and the
agent of the seeing (the dog) might have been sitting on the balcony of an apartment
overlooking the park.

Writing Your Own Grammars
If you are interested in experimenting with writing CFGs, you will find it helpful to
create and edit your grammar in a text file, say, mygrammar.cfg. You can then load it
into NLTK and parse with it as follows:

>>> grammar1 = nltk.data.load('file:mygrammar.cfg')
>>> sent = "Mary saw Bob".split()
>>> rd_parser = nltk.RecursiveDescentParser(grammar1)
>>> for tree in rd_parser.nbest_parse(sent):
...      print tree

Make sure that you put a .cfg suffix on the filename, and that there are no spaces in the
string 'file:mygrammar.cfg'. If the command print tree produces no output, this is
probably because your sentence sent is not admitted by your grammar. In this case,
call the parser with tracing set to be on: rd_parser = nltk.RecursiveDescent

Figure 8-3. Recursive descent parser demo: This tool allows you to watch the operation of a recursive
descent parser as it grows the parse tree and matches it against the input words.
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Parser(grammar1, trace=2). You can also check what productions are currently in the
grammar with the command for p in grammar1.productions(): print p.

When you write CFGs for parsing in NLTK, you cannot combine grammatical cate-
gories with lexical items on the righthand side of the same production. Thus, a pro-
duction such as PP -> 'of' NP is disallowed. In addition, you are not permitted to place
multiword lexical items on the righthand side of a production. So rather than writing
NP -> 'New York', you have to resort to something like NP -> 'New_York' instead.

Recursion in Syntactic Structure
A grammar is said to be recursive if a category occurring on the lefthand side of a
production also appears on the righthand side of a production, as illustrated in Exam-
ple 8-2. The production Nom -> Adj Nom (where Nom is the category of nominals) involves
direct recursion on the category Nom, whereas indirect recursion on S arises from the
combination of two productions, namely S -> NP VP and VP -> V S.

Example 8-2. A recursive context-free grammar.

grammar2 = nltk.parse_cfg("""
  S  -> NP VP
  NP -> Det Nom | PropN
  Nom -> Adj Nom | N
  VP -> V Adj | V NP | V S | V NP PP
  PP -> P NP
  PropN -> 'Buster' | 'Chatterer' | 'Joe'
  Det -> 'the' | 'a'
  N -> 'bear' | 'squirrel' | 'tree' | 'fish' | 'log'
  Adj  -> 'angry' | 'frightened' |  'little' | 'tall'
  V ->  'chased'  | 'saw' | 'said' | 'thought' | 'was' | 'put'
  P -> 'on'
  """)

To see how recursion arises from this grammar, consider the following trees. (10a)
involves nested nominal phrases, while (10b) contains nested sentences.
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(10) a.

b.

We’ve only illustrated two levels of recursion here, but there’s no upper limit on the
depth. You can experiment with parsing sentences that involve more deeply nested
structures. Beware that the RecursiveDescentParser is unable to handle left-
recursive productions of the form X -> X Y; we will return to this in Section 8.4.

8.4  Parsing with Context-Free Grammar
A parser processes input sentences according to the productions of a grammar, and
builds one or more constituent structures that conform to the grammar. A grammar is
a declarative specification of well-formedness—it is actually just a string, not a pro-
gram. A parser is a procedural interpretation of the grammar. It searches through the
space of trees licensed by a grammar to find one that has the required sentence along
its fringe.
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A parser permits a grammar to be evaluated against a collection of test sentences, help-
ing linguists to discover mistakes in their grammatical analysis. A parser can serve as a
model of psycholinguistic processing, helping to explain the difficulties that humans
have with processing certain syntactic constructions. Many natural language applica-
tions involve parsing at some point; for example, we would expect the natural language
questions submitted to a question-answering system to undergo parsing as an initial
step.

In this section, we see two simple parsing algorithms, a top-down method called re-
cursive descent parsing, and a bottom-up method called shift-reduce parsing. We also
see some more sophisticated algorithms, a top-down method with bottom-up filtering
called left-corner parsing, and a dynamic programming technique called chart parsing.

Recursive Descent Parsing
The simplest kind of parser interprets a grammar as a specification of how to break a
high-level goal into several lower-level subgoals. The top-level goal is to find an S. The
S → NP VP production permits the parser to replace this goal with two subgoals: find an
NP, then find a VP. Each of these subgoals can be replaced in turn by sub-subgoals, using
productions that have NP and VP on their lefthand side. Eventually, this expansion
process leads to subgoals such as: find the word telescope. Such subgoals can be directly
compared against the input sequence, and succeed if the next word is matched. If there
is no match, the parser must back up and try a different alternative.

The recursive descent parser builds a parse tree during this process. With the initial
goal (find an S), the S root node is created. As the process recursively expands its goals
using the productions of the grammar, the parse tree is extended downwards (hence
the name recursive descent). We can see this in action using the graphical demonstration
nltk.app.rdparser(). Six stages of the execution of this parser are shown in Figure 8-4.

During this process, the parser is often forced to choose between several possible pro-
ductions. For example, in going from step 3 to step 4, it tries to find productions with
N on the lefthand side. The first of these is N → man. When this does not work it
backtracks, and tries other N productions in order, until it gets to N → dog, which
matches the next word in the input sentence. Much later, as shown in step 5, it finds
a complete parse. This is a tree that covers the entire sentence, without any dangling
edges. Once a parse has been found, we can get the parser to look for additional parses.
Again it will backtrack and explore other choices of production in case any of them
result in a parse.

NLTK provides a recursive descent parser:

>>> rd_parser = nltk.RecursiveDescentParser(grammar1)
>>> sent = 'Mary saw a dog'.split()
>>> for t in rd_parser.nbest_parse(sent):
...     print t
(S (NP Mary) (VP (V saw) (NP (Det a) (N dog))))

8.4  Parsing with Context-Free Grammar | 303



RecursiveDescentParser() takes an optional parameter trace. If trace
is greater than zero, then the parser will report the steps that it takes as
it parses a text.

Recursive descent parsing has three key shortcomings. First, left-recursive productions
like NP -> NP PP send it into an infinite loop. Second, the parser wastes a lot of time
considering words and structures that do not correspond to the input sentence. Third,
the backtracking process may discard parsed constituents that will need to be rebuilt
again later. For example, backtracking over VP -> V NP will discard the subtree created
for the NP. If the parser then proceeds with VP -> V NP PP, then the NP subtree must be
created all over again.

Recursive descent parsing is a kind of top-down parsing. Top-down parsers use a
grammar to predict what the input will be, before inspecting the input! However, since
the input is available to the parser all along, it would be more sensible to consider the
input sentence from the very beginning. This approach is called bottom-up parsing,
and we will see an example in the next section.

Shift-Reduce Parsing
A simple kind of bottom-up parser is the shift-reduce parser. In common with all
bottom-up parsers, a shift-reduce parser tries to find sequences of words and phrases
that correspond to the righthand side of a grammar production, and replace them with
the lefthand side, until the whole sentence is reduced to an S.

Figure 8-4. Six stages of a recursive descent parser: The parser begins with a tree consisting of the
node S; at each stage it consults the grammar to find a production that can be used to enlarge the tree;
when a lexical production is encountered, its word is compared against the input; after a complete
parse has been found, the parser backtracks to look for more parses.
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The shift-reduce parser repeatedly pushes the next input word onto a stack (Sec-
tion 4.1); this is the shift operation. If the top n items on the stack match the n items
on the righthand side of some production, then they are all popped off the stack, and
the item on the lefthand side of the production is pushed onto the stack. This replace-
ment of the top n items with a single item is the reduce operation. The operation may
be applied only to the top of the stack; reducing items lower in the stack must be done
before later items are pushed onto the stack. The parser finishes when all the input is
consumed and there is only one item remaining on the stack, a parse tree with an S
node as its root. The shift-reduce parser builds a parse tree during the above process.
Each time it pops n items off the stack, it combines them into a partial parse tree, and
pushes this back onto the stack. We can see the shift-reduce parsing algorithm in action
using the graphical demonstration nltk.app.srparser(). Six stages of the execution of
this parser are shown in Figure 8-5.

Figure 8-5. Six stages of a shift-reduce parser: The parser begins by shifting the first input word onto
its stack; once the top items on the stack match the righthand side of a grammar production, they can
be replaced with the lefthand side of that production; the parser succeeds once all input is consumed
and one S item remains on the stack.

NLTK provides ShiftReduceParser(), a simple implementation of a shift-reduce parser.
This parser does not implement any backtracking, so it is not guaranteed to find a parse
for a text, even if one exists. Furthermore, it will only find at most one parse, even if
more parses exist. We can provide an optional trace parameter that controls how ver-
bosely the parser reports the steps that it takes as it parses a text:
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>>> sr_parse = nltk.ShiftReduceParser(grammar1)
>>> sent = 'Mary saw a dog'.split()
>>> print sr_parse.parse(sent)
  (S (NP Mary) (VP (V saw) (NP (Det a) (N dog))))

Your Turn: Run this parser in tracing mode to see the sequence of shift
and reduce operations, using sr_parse = nltk.ShiftReduceParser(gram
mar1, trace=2).

A shift-reduce parser can reach a dead end and fail to find any parse, even if the input
sentence is well-formed according to the grammar. When this happens, no input re-
mains, and the stack contains items that cannot be reduced to an S. The problem arises
because there are choices made earlier that cannot be undone by the parser (although
users of the graphical demonstration can undo their choices). There are two kinds of
choices to be made by the parser: (a) which reduction to do when more than one is
possible and (b) whether to shift or reduce when either action is possible.

A shift-reduce parser may be extended to implement policies for resolving such con-
flicts. For example, it may address shift-reduce conflicts by shifting only when no re-
ductions are possible, and it may address reduce-reduce conflicts by favoring the re-
duction operation that removes the most items from the stack. (A generalization of the
shift-reduce parser, a “lookahead LR parser,” is commonly used in programming lan-
guage compilers.)

The advantages of shift-reduce parsers over recursive descent parsers is that they only
build structure that corresponds to the words in the input. Furthermore, they only build
each substructure once; e.g., NP(Det(the), N(man)) is only built and pushed onto the
stack a single time, regardless of whether it will later be used by the VP -> V NP PP
reduction or the NP -> NP PP reduction.

The Left-Corner Parser
One of the problems with the recursive descent parser is that it goes into an infinite
loop when it encounters a left-recursive production. This is because it applies the
grammar productions blindly, without considering the actual input sentence. A left-
corner parser is a hybrid between the bottom-up and top-down approaches we have
seen.

A left-corner parser is a top-down parser with bottom-up filtering. Unlike an ordinary
recursive descent parser, it does not get trapped in left-recursive productions. Before
starting its work, a left-corner parser preprocesses the context-free grammar to build a
table where each row contains two cells, the first holding a non-terminal, and the sec-
ond holding the collection of possible left corners of that non-terminal. Table 8-2 il-
lustrates this for the grammar from grammar2.
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Table 8-2. Left corners in grammar2

Category Left corners (pre-terminals)

S NP

NP Det, PropN

VP V

PP P

Each time a production is considered by the parser, it checks that the next input word
is compatible with at least one of the pre-terminal categories in the left-corner table.

Well-Formed Substring Tables
The simple parsers discussed in the previous sections suffer from limitations in both
completeness and efficiency. In order to remedy these, we will apply the algorithm
design technique of dynamic programming to the parsing problem. As we saw in
Section 4.7, dynamic programming stores intermediate results and reuses them when
appropriate, achieving significant efficiency gains. This technique can be applied to
syntactic parsing, allowing us to store partial solutions to the parsing task and then
look them up as necessary in order to efficiently arrive at a complete solution. This
approach to parsing is known as chart parsing. We introduce the main idea in this
section; see the online materials available for this chapter for more implementation
details.

Dynamic programming allows us to build the PP in my pajamas just once. The first time
we build it we save it in a table, then we look it up when we need to use it as a sub-
constituent of either the object NP or the higher VP. This table is known as a well-formed
substring table, or WFST for short. (The term “substring” refers to a contiguous se-
quence of words within a sentence.) We will show how to construct the WFST bottom-
up so as to systematically record what syntactic constituents have been found.

Let’s set our input to be the sentence in (2). The numerically specified spans of the
WFST are reminiscent of Python’s slice notation (Section 3.2). Another way to think
about the data structure is shown in Figure 8-6, a data structure known as a chart.

Figure 8-6. The chart data structure: Words are the edge labels of a linear graph structure.

In a WFST, we record the position of the words by filling in cells in a triangular matrix:
the vertical axis will denote the start position of a substring, while the horizontal axis
will denote the end position (thus shot will appear in the cell with coordinates (1, 2)).
To simplify this presentation, we will assume each word has a unique lexical category,
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and we will store this (not the word) in the matrix. So cell (1, 2) will contain the entry
V. More generally, if our input string is a1a2 ... an, and our grammar contains a pro-
duction of the form A → ai, then we add A to the cell (i-1, i).

So, for every word in text, we can look up in our grammar what category it belongs to.

>>> text = ['I', 'shot', 'an', 'elephant', 'in', 'my', 'pajamas']
[V -> 'shot']

For our WFST, we create an (n-1) × (n-1) matrix as a list of lists in Python, and initialize
it with the lexical categories of each token in the init_wfst() function in Exam-
ple 8-3. We also define a utility function display() to pretty-print the WFST for us. As
expected, there is a V in cell (1, 2).

Example 8-3. Acceptor using well-formed substring table.

def init_wfst(tokens, grammar):
    numtokens = len(tokens)
    wfst = [[None for i in range(numtokens+1)] for j in range(numtokens+1)]
    for i in range(numtokens):
        productions = grammar.productions(rhs=tokens[i])
        wfst[i][i+1] = productions[0].lhs()
    return wfst

def complete_wfst(wfst, tokens, grammar, trace=False):
    index = dict((p.rhs(), p.lhs()) for p in grammar.productions())
    numtokens = len(tokens)
    for span in range(2, numtokens+1):
        for start in range(numtokens+1-span):
            end = start + span
            for mid in range(start+1, end):
                nt1, nt2 = wfst[start][mid], wfst[mid][end]
                if nt1 and nt2 and (nt1,nt2) in index:
                    wfst[start][end] = index[(nt1,nt2)]
                    if trace:
                        print "[%s] %3s [%s] %3s [%s] ==> [%s] %3s [%s]" % \
                        (start, nt1, mid, nt2, end, start, index[(nt1,nt2)], end)
    return wfst

def display(wfst, tokens):
    print '\nWFST ' + ' '.join([("%-4d" % i) for i in range(1, len(wfst))])
    for i in range(len(wfst)-1):
        print "%d   " % i,
        for j in range(1, len(wfst)):
            print "%-4s" % (wfst[i][j] or '.'),
        print

>>> tokens = "I shot an elephant in my pajamas".split()
>>> wfst0 = init_wfst(tokens, groucho_grammar)
>>> display(wfst0, tokens)
WFST 1    2    3    4    5    6    7
0    NP   .    .    .    .    .    .
1    .    V    .    .    .    .    .
2    .    .    Det  .    .    .    .
3    .    .    .    N    .    .    .
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4    .    .    .    .    P    .    .
5    .    .    .    .    .    Det  .
6    .    .    .    .    .    .    N
>>> wfst1 = complete_wfst(wfst0, tokens, groucho_grammar)
>>> display(wfst1, tokens)
WFST 1    2    3    4    5    6    7
0    NP   .    .    S    .    .    S
1    .    V    .    VP   .    .    VP
2    .    .    Det  NP   .    .    .
3    .    .    .    N    .    .    .
4    .    .    .    .    P    .    PP
5    .    .    .    .    .    Det  NP
6    .    .    .    .    .    .    N

Returning to our tabular representation, given that we have Det in cell (2, 3) for the
word an, and N in cell (3, 4) for the word elephant, what should we put into cell (2, 4)
for an elephant? We need to find a production of the form A → Det N. Consulting the
grammar, we know that we can enter NP in cell (0, 2).

More generally, we can enter A in (i, j) if there is a production A → B C, and we find
non-terminal B in (i, k) and C in (k, j). The program in Example 8-3 uses this rule to
complete the WFST. By setting trace to True when calling the function
complete_wfst(), we see tracing output that shows the WFST being constructed:

>>> wfst1 = complete_wfst(wfst0, tokens, groucho_grammar, trace=True)
[2] Det [3]   N [4] ==> [2]  NP [4]
[5] Det [6]   N [7] ==> [5]  NP [7]
[1]   V [2]  NP [4] ==> [1]  VP [4]
[4]   P [5]  NP [7] ==> [4]  PP [7]
[0]  NP [1]  VP [4] ==> [0]   S [4]
[1]  VP [4]  PP [7] ==> [1]  VP [7]
[0]  NP [1]  VP [7] ==> [0]   S [7]

For example, this says that since we found Det at wfst[0][1] and N at wfst[1][2], we
can add NP to wfst[0][2].

To help us easily retrieve productions by their righthand sides, we create
an index for the grammar. This is an example of a space-time trade-off:
we do a reverse lookup on the grammar, instead of having to check
through entire list of productions each time we want to look up via the
righthand side.

We conclude that there is a parse for the whole input string once we have constructed
an S node in cell (0, 7), showing that we have found a sentence that covers the whole
input. The final state of the WFST is depicted in Figure 8-7.

Notice that we have not used any built-in parsing functions here. We’ve implemented
a complete primitive chart parser from the ground up!

WFSTs have several shortcomings. First, as you can see, the WFST is not itself a parse
tree, so the technique is strictly speaking recognizing that a sentence is admitted by a
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grammar, rather than parsing it. Second, it requires every non-lexical grammar pro-
duction to be binary. Although it is possible to convert an arbitrary CFG into this form,
we would prefer to use an approach without such a requirement. Third, as a bottom-
up approach it is potentially wasteful, being able to propose constituents in locations
that would not be licensed by the grammar.

Finally, the WFST did not represent the structural ambiguity in the sentence (i.e., the
two verb phrase readings). The VP in cell (2,8) was actually entered twice, once for a V
NP reading, and once for a VP PP reading. These are different hypotheses, and the second
overwrote the first (as it happens, this didn’t matter since the lefthand side was the
same). Chart parsers use a slightly richer data structure and some interesting algorithms
to solve these problems (see Section 8.8).

Your Turn: Try out the interactive chart parser application
nltk.app.chartparser().

8.5  Dependencies and Dependency Grammar
Phrase structure grammar is concerned with how words and sequences of words com-
bine to form constituents. A distinct and complementary approach, dependency
grammar, focuses instead on how words relate to other words. Dependency is a binary
asymmetric relation that holds between a head and its dependents. The head of a
sentence is usually taken to be the tensed verb, and every other word is either dependent
on the sentence head or connects to it through a path of dependencies.

A dependency representation is a labeled directed graph, where the nodes are the lexical
items and the labeled arcs represent dependency relations from heads to dependents.
Figure 8-8 illustrates a dependency graph, where arrows point from heads to their
dependents.

Figure 8-7. The chart data structure: Non-terminals are represented as extra edges in the chart.
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The arcs in Figure 8-8 are labeled with the grammatical function that holds between a
dependent and its head. For example, I is the SBJ (subject) of shot (which is the head
of the whole sentence), and in is an NMOD (noun modifier of elephant). In contrast to
phrase structure grammar, therefore, dependency grammars can be used to directly
express grammatical functions as a type of dependency.

Here’s one way of encoding a dependency grammar in NLTK—note that it only cap-
tures bare dependency information without specifying the type of dependency:

>>> groucho_dep_grammar = nltk.parse_dependency_grammar("""
... 'shot' -> 'I' | 'elephant' | 'in'
... 'elephant' -> 'an' | 'in'
... 'in' -> 'pajamas'
... 'pajamas' -> 'my'
... """)
>>> print groucho_dep_grammar
Dependency grammar with 7 productions
  'shot' -> 'I'
  'shot' -> 'elephant'
  'shot' -> 'in'
  'elephant' -> 'an'
  'elephant' -> 'in'
  'in' -> 'pajamas'
  'pajamas' -> 'my'

A dependency graph is projective if, when all the words are written in linear order, the
edges can be drawn above the words without crossing. This is equivalent to saying that
a word and all its descendants (dependents and dependents of its dependents, etc.)
form a contiguous sequence of words within the sentence. Figure 8-8 is projective, and
we can parse many sentences in English using a projective dependency parser. The next
example shows how groucho_dep_grammar provides an alternative approach to captur-
ing the attachment ambiguity that we examined earlier with phrase structure grammar.

>>> pdp = nltk.ProjectiveDependencyParser(groucho_dep_grammar)
>>> sent = 'I shot an elephant in my pajamas'.split()
>>> trees = pdp.parse(sent)
>>> for tree in trees:
...     print tree
(shot I (elephant an (in (pajamas my))))
(shot I (elephant an) (in (pajamas my)))

Figure 8-8. Dependency structure: Arrows point from heads to their dependents; labels indicate the
grammatical function of the dependent as subject, object, or modifier.
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These bracketed dependency structures can also be displayed as trees, where dep-
endents are shown as children of their heads.

(11)

In languages with more flexible word order than English, non-projective dependencies
are more frequent.

Various criteria have been proposed for deciding what is the head H and what is the
dependent D in a construction C. Some of the most important are the following:

1. H determines the distribution class of C; or alternatively, the external syntactic
properties of C are due to H.

2. H determines the semantic type of C.

3. H is obligatory while D may be optional.

4. H selects D and determines whether it is obligatory or optional.

5. The morphological form of D is determined by H (e.g., agreement or case
government).

When we say in a phrase structure grammar that the immediate constituents of a PP
are P and NP, we are implicitly appealing to the head/dependent distinction. A prepo-
sitional phrase is a phrase whose head is a preposition; moreover, the NP is a dependent
of P. The same distinction carries over to the other types of phrase that we have dis-
cussed. The key point to note here is that although phrase structure grammars seem
very different from dependency grammars, they implicitly embody a recognition of
dependency relations. Although CFGs are not intended to directly capture dependen-
cies, more recent linguistic frameworks have increasingly adopted formalisms which
combine aspects of both approaches.

Valency and the Lexicon
Let us take a closer look at verbs and their dependents. The grammar in Example 8-2
correctly generates examples like (12).
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(12) a. The squirrel was frightened.

b. Chatterer saw the bear.

c. Chatterer thought Buster was angry.

d. Joe put the fish on the log.

These possibilities correspond to the productions in Table 8-3.

Table 8-3. VP productions and their lexical heads

Production Lexical head

VP -> V Adj was

VP -> V NP saw

VP -> V S thought

VP -> V NP PP put

That is, was can occur with a following Adj, saw can occur with a following NP,
thought can occur with a following S, and put can occur with a following NP and PP. The
dependents Adj, NP, S, and PP are often called complements of the respective verbs,
and there are strong constraints on what verbs can occur with what complements. By
contrast with (12), the word sequences in (13) are ill-formed:

(13) a. *The squirrel was Buster was angry.

b. *Chatterer saw frightened.

c. *Chatterer thought the bear.

d. *Joe put on the log.

With a little imagination, it is possible to invent contexts in which un-
usual combinations of verbs and complements are interpretable. How-
ever, we assume that the examples in (13) are to be interpreted in neutral
contexts.

In the tradition of dependency grammar, the verbs in Table 8-3 are said to have different
valencies. Valency restrictions are not just applicable to verbs, but also to the other
classes of heads.

Within frameworks based on phrase structure grammar, various techniques have been
proposed for excluding the ungrammatical examples in (13). In a CFG, we need some
way of constraining grammar productions which expand VP so that verbs co-occur
only with their correct complements. We can do this by dividing the class of verbs into
“subcategories,” each of which is associated with a different set of complements. For
example, transitive verbs such as chased and saw require a following NP object com-
plement; that is, they are subcategorized for NP direct objects. If we introduce a new
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category label for transitive verbs, namely TV (for transitive verb), then we can use it in
the following productions:

VP -> TV NP
TV -> 'chased' | 'saw'

Now *Joe thought the bear is excluded since we haven’t listed thought as a TV, but
Chatterer saw the bear is still allowed. Table 8-4 provides more examples of labels for
verb subcategories.

Table 8-4. Verb subcategories

Symbol Meaning Example

IV Intransitive verb barked

TV Transitive verb saw a man

DatV Dative verb gave a dog to a man

SV Sentential verb said that a dog barked

Valency is a property of lexical items, and we will discuss it further in Chapter 9.

Complements are often contrasted with modifiers (or adjuncts), although both are
kinds of dependents. Prepositional phrases, adjectives, and adverbs typically function
as modifiers. Unlike complements, modifiers are optional, can often be iterated, and
are not selected for by heads in the same way as complements. For example, the adverb
really can be added as a modifier to all the sentences in (14):

(14) a. The squirrel really was frightened.

b. Chatterer really saw the bear.

c. Chatterer really thought Buster was angry.

d. Joe really put the fish on the log.

The structural ambiguity of PP attachment, which we have illustrated in both phrase
structure and dependency grammars, corresponds semantically to an ambiguity in the
scope of the modifier.

Scaling Up
So far, we have only considered “toy grammars,” small grammars that illustrate the key
aspects of parsing. But there is an obvious question as to whether the approach can be
scaled up to cover large corpora of natural languages. How hard would it be to construct
such a set of productions by hand? In general, the answer is: very hard. Even if we allow
ourselves to use various formal devices that give much more succinct representations
of grammar productions, it is still extremely difficult to keep control of the complex
interactions between the many productions required to cover the major constructions
of a language. In other words, it is hard to modularize grammars so that one portion
can be developed independently of the other parts. This in turn means that it is difficult

314 | Chapter 8: Analyzing Sentence Structure



to distribute the task of grammar writing across a team of linguists. Another difficulty
is that as the grammar expands to cover a wider and wider range of constructions, there
is a corresponding increase in the number of analyses that are admitted for any one
sentence. In other words, ambiguity increases with coverage.

Despite these problems, some large collaborative projects have achieved interesting and
impressive results in developing rule-based grammars for several languages. Examples
are the Lexical Functional Grammar (LFG) Pargram project, the Head-Driven Phrase
Structure Grammar (HPSG) LinGO Matrix framework, and the Lexicalized Tree Ad-
joining Grammar XTAG Project.

8.6  Grammar Development
Parsing builds trees over sentences, according to a phrase structure grammar. Now, all
the examples we gave earlier only involved toy grammars containing a handful of pro-
ductions. What happens if we try to scale up this approach to deal with realistic corpora
of language? In this section, we will see how to access treebanks, and look at the chal-
lenge of developing broad-coverage grammars.

Treebanks and Grammars
The corpus module defines the treebank corpus reader, which contains a 10% sample
of the Penn Treebank Corpus.

>>> from nltk.corpus import treebank
>>> t = treebank.parsed_sents('wsj_0001.mrg')[0]
>>> print t
(S
  (NP-SBJ
    (NP (NNP Pierre) (NNP Vinken))
    (, ,)
    (ADJP (NP (CD 61) (NNS years)) (JJ old))
    (, ,))
  (VP
    (MD will)
    (VP
      (VB join)
      (NP (DT the) (NN board))
      (PP-CLR
        (IN as)
        (NP (DT a) (JJ nonexecutive) (NN director)))
      (NP-TMP (NNP Nov.) (CD 29))))
  (. .))

We can use this data to help develop a grammar. For example, the program in Exam-
ple 8-4 uses a simple filter to find verbs that take sentential complements. Assuming
we already have a production of the form VP -> SV S, this information enables us to
identify particular verbs that would be included in the expansion of SV.
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Example 8-4. Searching a treebank to find sentential complements.

def filter(tree):
    child_nodes = [child.node for child in tree
                   if isinstance(child, nltk.Tree)]
    return  (tree.node == 'VP') and ('S' in child_nodes)

>>> from nltk.corpus import treebank
>>> [subtree for tree in treebank.parsed_sents()
...          for subtree in tree.subtrees(filter)]
 [Tree('VP', [Tree('VBN', ['named']), Tree('S', [Tree('NP-SBJ', ...]), ...]), ...]

The PP Attachment Corpus, nltk.corpus.ppattach, is another source of information
about the valency of particular verbs. Here we illustrate a technique for mining this
corpus. It finds pairs of prepositional phrases where the preposition and noun are fixed,
but where the choice of verb determines whether the prepositional phrase is attached
to the VP or to the NP.

>>> entries = nltk.corpus.ppattach.attachments('training')
>>> table = nltk.defaultdict(lambda: nltk.defaultdict(set))
>>> for entry in entries:
...     key = entry.noun1 + '-' + entry.prep + '-' + entry.noun2
...     table[key][entry.attachment].add(entry.verb)
...
>>> for key in sorted(table):
...     if len(table[key]) > 1:
...         print key, 'N:', sorted(table[key]['N']), 'V:', sorted(table[key]['V'])

Among the output lines of this program we find offer-from-group N: ['rejected'] V:
['received'], which indicates that received expects a separate PP complement attached
to the VP, while rejected does not. As before, we can use this information to help con-
struct the grammar.

The NLTK corpus collection includes data from the PE08 Cross-Framework and Cross
Domain Parser Evaluation Shared Task. A collection of larger grammars has been pre-
pared for the purpose of comparing different parsers, which can be obtained by down-
loading the large_grammars package (e.g., python -m nltk.downloader large_grammars).

The NLTK corpus collection also includes a sample from the Sinica Treebank Corpus,
consisting of 10,000 parsed sentences drawn from the Academia Sinica Balanced Corpus
of Modern Chinese. Let’s load and display one of the trees in this corpus.

>>> nltk.corpus.sinica_treebank.parsed_sents()[3450].draw()
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Pernicious Ambiguity
Unfortunately, as the coverage of the grammar increases and the length of the input
sentences grows, the number of parse trees grows rapidly. In fact, it grows at an astro-
nomical rate.

Let’s explore this issue with the help of a simple example. The word fish is both a noun
and a verb. We can make up the sentence fish fish fish, meaning fish like to fish for other
fish. (Try this with police if you prefer something more sensible.) Here is a toy grammar
for the “fish” sentences.

>>> grammar = nltk.parse_cfg("""
... S -> NP V NP
... NP -> NP Sbar
... Sbar -> NP V
... NP -> 'fish'
... V -> 'fish'
... """)

Now we can try parsing a longer sentence, fish fish fish fish fish, which among other
things, means “fish that other fish fish are in the habit of fishing fish themselves.” We
use the NLTK chart parser, which is presented earlier in this chapter. This sentence has
two readings.

>>> tokens = ["fish"] * 5
>>> cp = nltk.ChartParser(grammar)
>>> for tree in cp.nbest_parse(tokens):
...     print tree
(S (NP (NP fish) (Sbar (NP fish) (V fish))) (V fish) (NP fish))
(S (NP fish) (V fish) (NP (NP fish) (Sbar (NP fish) (V fish))))

As the length of this sentence goes up (3, 5, 7, ...) we get the following numbers of parse
trees: 1; 2; 5; 14; 42; 132; 429; 1,430; 4,862; 16,796; 58,786; 208,012; …. (These are
the Catalan numbers, which we saw in an exercise in Chapter 4.) The last of these is
for a sentence of length 23, the average length of sentences in the WSJ section of Penn
Treebank. For a sentence of length 50 there would be over 1012 parses, and this is only
half the length of the Piglet sentence (Section 8.1), which young children process ef-
fortlessly. No practical NLP system could construct millions of trees for a sentence and
choose the appropriate one in the context. It’s clear that humans don’t do this either!

Note that the problem is not with our choice of example. (Church & Patil, 1982) point
out that the syntactic ambiguity of PP attachment in sentences like (15) also grows in
proportion to the Catalan numbers.

(15) Put the block in the box on the table.

So much for structural ambiguity; what about lexical ambiguity? As soon as we try to
construct a broad-coverage grammar, we are forced to make lexical entries highly am-
biguous for their part-of-speech. In a toy grammar, a is only a determiner, dog is only
a noun, and runs is only a verb. However, in a broad-coverage grammar, a is also a
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noun (e.g., part a), dog is also a verb (meaning to follow closely), and runs is also a noun
(e.g., ski runs). In fact, all words can be referred to by name: e.g., the verb ‘ate’ is spelled
with three letters; in speech we do not need to supply quotation marks. Furthermore,
it is possible to verb most nouns. Thus a parser for a broad-coverage grammar will be
overwhelmed with ambiguity. Even complete gibberish will often have a reading, e.g.,
the a are of I. As (Abney, 1996) has pointed out, this is not word salad but a grammatical
noun phrase, in which are is a noun meaning a hundredth of a hectare (or 100 sq m),
and a and I are nouns designating coordinates, as shown in Figure 8-9.

Figure 8-9. The a are of I: A schematic drawing of 27 paddocks, each being one are in size, and each
identified using coordinates; the top-left cell is the a are of column A (after Abney).

Even though this phrase is unlikely, it is still grammatical, and a broad-coverage parser
should be able to construct a parse tree for it. Similarly, sentences that seem to be
unambiguous, such as John saw Mary, turn out to have other readings we would not
have anticipated (as Abney explains). This ambiguity is unavoidable, and leads to hor-
rendous inefficiency in parsing seemingly innocuous sentences. The solution to these
problems is provided by probabilistic parsing, which allows us to rank the parses of an
ambiguous sentence on the basis of evidence from corpora.

Weighted Grammar
As we have just seen, dealing with ambiguity is a key challenge in developing broad-
coverage parsers. Chart parsers improve the efficiency of computing multiple parses of
the same sentences, but they are still overwhelmed by the sheer number of possible
parses. Weighted grammars and probabilistic parsing algorithms have provided an ef-
fective solution to these problems.

Before looking at these, we need to understand why the notion of grammaticality could
be gradient. Considering the verb give. This verb requires both a direct object (the thing
being given) and an indirect object (the recipient). These complements can be given in
either order, as illustrated in (16). In the “prepositional dative” form in (16a), the direct
object appears first, followed by a prepositional phrase containing the indirect object.
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(16) a. Kim gave a bone to the dog.

b. Kim gave the dog a bone.

In the “double object” form in (16b), the indirect object appears first, followed by the
direct object. In this case, either order is acceptable. However, if the indirect object is
a pronoun, there is a strong preference for the double object construction:

(17) a. Kim gives the heebie-jeebies to me (prepositional dative).

b. Kim gives me the heebie-jeebies (double object).

Using the Penn Treebank sample, we can examine all instances of prepositional dative
and double object constructions involving give, as shown in Example 8-5.

Example 8-5. Usage of give and gave in the Penn Treebank sample.

def give(t):
    return t.node == 'VP' and len(t) > 2 and t[1].node == 'NP'\
           and (t[2].node == 'PP-DTV' or t[2].node == 'NP')\
           and ('give' in t[0].leaves() or 'gave' in t[0].leaves())
def sent(t):
    return ' '.join(token for token in t.leaves() if token[0] not in '*-0')
def print_node(t, width):
        output = "%s %s: %s / %s: %s" %\
            (sent(t[0]), t[1].node, sent(t[1]), t[2].node, sent(t[2]))
        if len(output) > width:
            output = output[:width] + "..."
        print output

>>> for tree in nltk.corpus.treebank.parsed_sents():
...     for t in tree.subtrees(give):
...         print_node(t, 72)
gave NP: the chefs / NP: a standing ovation
give NP: advertisers / NP: discounts for maintaining or increasing ad sp...
give NP: it / PP-DTV: to the politicians
gave NP: them / NP: similar help
give NP: them / NP:
give NP: only French history questions / PP-DTV: to students in a Europe...
give NP: federal judges / NP: a raise
give NP: consumers / NP: the straight scoop on the U.S. waste crisis
gave NP: Mitsui / NP: access to a high-tech medical product
give NP: Mitsubishi / NP: a window on the U.S. glass industry
give NP: much thought / PP-DTV: to the rates she was receiving , nor to ...
give NP: your Foster Savings Institution / NP: the gift of hope and free...
give NP: market operators / NP: the authority to suspend trading in futu...
gave NP: quick approval / PP-DTV: to $ 3.18 billion in supplemental appr...
give NP: the Transportation Department / NP: up to 50 days to review any...
give NP: the president / NP: such power
give NP: me / NP: the heebie-jeebies
give NP: holders / NP: the right , but not the obligation , to buy a cal...
gave NP: Mr. Thomas / NP: only a `` qualified '' rating , rather than ``...
give NP: the president / NP: line-item veto power
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We can observe a strong tendency for the shortest complement to appear first. How-
ever, this does not account for a form like give NP: federal judges / NP: a raise,
where animacy may play a role. In fact, there turns out to be a large number of
contributing factors, as surveyed by (Bresnan & Hay, 2008). Such preferences can be
represented in a weighted grammar.

A probabilistic context-free grammar (or PCFG) is a context-free grammar that as-
sociates a probability with each of its productions. It generates the same set of parses
for a text that the corresponding context-free grammar does, and assigns a probability
to each parse. The probability of a parse generated by a PCFG is simply the product of
the probabilities of the productions used to generate it.

The simplest way to define a PCFG is to load it from a specially formatted string con-
sisting of a sequence of weighted productions, where weights appear in brackets, as
shown in Example 8-6.

Example 8-6. Defining a probabilistic context-free grammar (PCFG).

grammar = nltk.parse_pcfg("""
    S    -> NP VP              [1.0]
    VP   -> TV NP              [0.4]
    VP   -> IV                 [0.3]
    VP   -> DatV NP NP         [0.3]
    TV   -> 'saw'              [1.0]
    IV   -> 'ate'              [1.0]
    DatV -> 'gave'             [1.0]
    NP   -> 'telescopes'       [0.8]
    NP   -> 'Jack'             [0.2]
    """)

>>> print grammar
Grammar with 9 productions (start state = S)
    S -> NP VP [1.0]
    VP -> TV NP [0.4]
    VP -> IV [0.3]
    VP -> DatV NP NP [0.3]
    TV -> 'saw' [1.0]
    IV -> 'ate' [1.0]
    DatV -> 'gave' [1.0]
    NP -> 'telescopes' [0.8]
    NP -> 'Jack' [0.2]

It is sometimes convenient to combine multiple productions into a single line, e.g.,
VP -> TV NP [0.4] | IV [0.3] | DatV NP NP [0.3]. In order to ensure that the trees
generated by the grammar form a probability distribution, PCFG grammars impose the
constraint that all productions with a given lefthand side must have probabilities that
sum to one. The grammar in Example 8-6 obeys this constraint: for S, there is only one
production, with a probability of 1.0; for VP, 0.4+0.3+0.3=1.0; and for NP, 0.8+0.2=1.0.
The parse tree returned by parse() includes probabilities:
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>>> viterbi_parser = nltk.ViterbiParser(grammar)
>>> print viterbi_parser.parse(['Jack', 'saw', 'telescopes'])
(S (NP Jack) (VP (TV saw) (NP telescopes))) (p=0.064)

Now that parse trees are assigned probabilities, it no longer matters that there may be
a huge number of possible parses for a given sentence. A parser will be responsible for
finding the most likely parses.

8.7  Summary
• Sentences have internal organization that can be represented using a tree. Notable

features of constituent structure are: recursion, heads, complements, and
modifiers.

• A grammar is a compact characterization of a potentially infinite set of sentences;
we say that a tree is well-formed according to a grammar, or that a grammar licenses
a tree.

• A grammar is a formal model for describing whether a given phrase can be assigned
a particular constituent or dependency structure.

• Given a set of syntactic categories, a context-free grammar uses a set of productions
to say how a phrase of some category A can be analyzed into a sequence of smaller
parts α1 ... αn.

• A dependency grammar uses productions to specify what the dependents are of a
given lexical head.

• Syntactic ambiguity arises when one sentence has more than one syntactic analysis
(e.g., prepositional phrase attachment ambiguity).

• A parser is a procedure for finding one or more trees corresponding to a grammat-
ically well-formed sentence.

• A simple top-down parser is the recursive descent parser, which recursively ex-
pands the start symbol (usually S) with the help of the grammar productions, and
tries to match the input sentence. This parser cannot handle left-recursive pro-
ductions (e.g., productions such as NP -> NP PP). It is inefficient in the way it blindly
expands categories without checking whether they are compatible with the input
string, and in repeatedly expanding the same non-terminals and discarding the
results.

• A simple bottom-up parser is the shift-reduce parser, which shifts input onto a
stack and tries to match the items at the top of the stack with the righthand side
of grammar productions. This parser is not guaranteed to find a valid parse for the
input, even if one exists, and builds substructures without checking whether it is
globally consistent with the grammar.
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8.8  Further Reading
Extra materials for this chapter are posted at http://www.nltk.org/, including links to
freely available resources on the Web. For more examples of parsing with NLTK, please
see the Parsing HOWTO at http://www.nltk.org/howto.

There are many introductory books on syntax. (O’Grady et al., 2004) is a general in-
troduction to linguistics, while (Radford, 1988) provides a gentle introduction to trans-
formational grammar, and can be recommended for its coverage of transformational
approaches to unbounded dependency constructions. The most widely used term in
linguistics for formal grammar is generative grammar, though it has nothing to do
with generation (Chomsky, 1965).

(Burton-Roberts, 1997) is a practically oriented textbook on how to analyze constitu-
ency in English, with extensive exemplification and exercises. (Huddleston & Pullum,
2002) provides an up-to-date and comprehensive analysis of syntactic phenomena in
English.

Chapter 12 of (Jurafsky & Martin, 2008) covers formal grammars of English; Sections
13.1–3 cover simple parsing algorithms and techniques for dealing with ambiguity;
Chapter 14 covers statistical parsing; and Chapter 16 covers the Chomsky hierarchy
and the formal complexity of natural language. (Levin, 1993) has categorized English
verbs into fine-grained classes, according to their syntactic properties.

There are several ongoing efforts to build large-scale rule-based grammars, e.g., the
LFG Pargram project (http://www2.parc.com/istl/groups/nltt/pargram/), the HPSG Lin-
GO Matrix framework (http://www.delph-in.net/matrix/), and the XTAG Project (http:
//www.cis.upenn.edu/~xtag/).

8.9  Exercises
1. ○ Can you come up with grammatical sentences that probably have never been

uttered before? (Take turns with a partner.) What does this tell you about human
language?

2. ○ Recall Strunk and White’s prohibition against using a sentence-initial however
to mean “although.” Do a web search for however used at the start of the sentence.
How widely used is this construction?

3. ○ Consider the sentence Kim arrived or Dana left and everyone cheered. Write down
the parenthesized forms to show the relative scope of and and or. Generate tree
structures corresponding to both of these interpretations.

4. ○ The Tree class implements a variety of other useful methods. See the Tree help
documentation for more details (i.e., import the Tree class and then type
help(Tree)).

5. ○ In this exercise you will manually construct some parse trees.

322 | Chapter 8: Analyzing Sentence Structure

http://www.nltk.org/
http://www.nltk.org/howto
http://www2.parc.com/istl/groups/nltt/pargram/
http://www.delph-in.net/matrix/
http://www.cis.upenn.edu/~xtag/
http://www.cis.upenn.edu/~xtag/


a. Write code to produce two trees, one for each reading of the phrase old men
and women.

b. Encode any of the trees presented in this chapter as a labeled bracketing, and
use nltk.Tree() to check that it is well-formed. Now use draw() to display the
tree.

c. As in (a), draw a tree for The woman saw a man last Thursday.

6. ○ Write a recursive function to traverse a tree and return the depth of the tree, such
that a tree with a single node would have depth zero. (Hint: the depth of a subtree
is the maximum depth of its children, plus one.)

7. ○ Analyze the A.A. Milne sentence about Piglet, by underlining all of the sentences
it contains then replacing these with S (e.g., the first sentence becomes S when S).
Draw a tree structure for this “compressed” sentence. What are the main syntactic
constructions used for building such a long sentence?

8. ○ In the recursive descent parser demo, experiment with changing the sentence to
be parsed by selecting Edit Text in the Edit menu.

9. ○ Can the grammar in grammar1 (Example 8-1) be used to describe sentences that
are more than 20 words in length?

10. ○ Use the graphical chart-parser interface to experiment with different rule invo-
cation strategies. Come up with your own strategy that you can execute manually
using the graphical interface. Describe the steps, and report any efficiency im-
provements it has (e.g., in terms of the size of the resulting chart). Do these im-
provements depend on the structure of the grammar? What do you think of the
prospects for significant performance boosts from cleverer rule invocation
strategies?

11. ○ With pen and paper, manually trace the execution of a recursive descent parser
and a shift-reduce parser, for a CFG you have already seen, or one of your own
devising.

12. ○ We have seen that a chart parser adds but never removes edges from a chart.
Why?

13. ○ Consider the sequence of words: Buffalo buffalo Buffalo buffalo buffalo buffalo
Buffalo buffalo. This is a grammatically correct sentence, as explained at http://en
.wikipedia.org/wiki/Buffalo_buffalo_Buffalo_buffalo_buffalo_buffalo_Buffalo_buf
falo. Consider the tree diagram presented on this Wikipedia page, and write down
a suitable grammar. Normalize case to lowercase, to simulate the problem that a
listener has when hearing this sentence. Can you find other parses for this sentence?
How does the number of parse trees grow as the sentence gets longer? (More ex-
amples of these sentences can be found at http://en.wikipedia.org/wiki/List_of_ho
mophonous_phrases.)

14. ◑ You can modify the grammar in the recursive descent parser demo by selecting
Edit Grammar in the Edit menu. Change the first expansion production, namely
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NP -> Det N PP, to NP -> NP PP. Using the Step button, try to build a parse tree.
What happens?

15. ◑ Extend the grammar in grammar2 with productions that expand prepositions as
intransitive, transitive, and requiring a PP complement. Based on these produc-
tions, use the method of the preceding exercise to draw a tree for the sentence Lee
ran away home.

16. ◑ Pick some common verbs and complete the following tasks:

a. Write a program to find those verbs in the PP Attachment Corpus nltk.cor
pus.ppattach. Find any cases where the same verb exhibits two different at-
tachments, but where the first noun, or second noun, or preposition stays
unchanged (as we saw in our discussion of syntactic ambiguity in Section 8.2).

b. Devise CFG grammar productions to cover some of these cases.

17. ◑ Write a program to compare the efficiency of a top-down chart parser compared
with a recursive descent parser (Section 8.4). Use the same grammar and input
sentences for both. Compare their performance using the timeit module (see Sec-
tion 4.7 for an example of how to do this).

18. ◑ Compare the performance of the top-down, bottom-up, and left-corner parsers
using the same grammar and three grammatical test sentences. Use timeit to log
the amount of time each parser takes on the same sentence. Write a function that
runs all three parsers on all three sentences, and prints a 3-by-3 grid of times, as
well as row and column totals. Discuss your findings.

19. ◑ Read up on “garden path” sentences. How might the computational work of a
parser relate to the difficulty humans have with processing these sentences? (See
http://en.wikipedia.org/wiki/Garden_path_sentence.)

20. ◑ To compare multiple trees in a single window, we can use the draw_trees()
method. Define some trees and try it out:

>>> from nltk.draw.tree import draw_trees
>>> draw_trees(tree1, tree2, tree3)

21. ◑ Using tree positions, list the subjects of the first 100 sentences in the Penn tree-
bank; to make the results easier to view, limit the extracted subjects to subtrees
whose height is at most 2.

22. ◑ Inspect the PP Attachment Corpus and try to suggest some factors that influence
PP attachment.

23. ◑ In Section 8.2, we claimed that there are linguistic regularities that cannot be
described simply in terms of n-grams. Consider the following sentence, particularly
the position of the phrase in his turn. Does this illustrate a problem for an approach
based on n-grams?

What was more, the in his turn somewhat youngish Nikolay Parfenovich also turned
out to be the only person in the entire world to acquire a sincere liking to our “dis-
criminated-against” public procurator. (Dostoevsky: The Brothers Karamazov)
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24. ◑ Write a recursive function that produces a nested bracketing for a tree, leaving
out the leaf nodes and displaying the non-terminal labels after their subtrees. So
the example in Section 8.6 about Pierre Vinken would produce: [[[NNP NNP]NP ,
[ADJP [CD NNS]NP JJ]ADJP ,]NP-SBJ MD [VB [DT NN]NP [IN [DT JJ NN]NP]PP-CLR
[NNP CD]NP-TMP]VP .]S. Consecutive categories should be separated by space.

25. ◑ Download several electronic books from Project Gutenberg. Write a program to
scan these texts for any extremely long sentences. What is the longest sentence you
can find? What syntactic construction(s) are responsible for such long sentences?

26. ◑ Modify the functions init_wfst() and complete_wfst() so that the contents of
each cell in the WFST is a set of non-terminal symbols rather than a single non-
terminal.

27. ◑ Consider the algorithm in Example 8-3. Can you explain why parsing context-
free grammar is proportional to n3, where n is the length of the input sentence?

28. ◑ Process each tree of the Penn Treebank Corpus sample nltk.corpus.treebank
and extract the productions with the help of Tree.productions(). Discard the pro-
ductions that occur only once. Productions with the same lefthand side and similar
righthand sides can be collapsed, resulting in an equivalent but more compact set
of rules. Write code to output a compact grammar.

29. ● One common way of defining the subject of a sentence S in English is as the noun
phrase that is the child of S and the sibling of VP. Write a function that takes the tree
for a sentence and returns the subtree corresponding to the subject of the sentence.
What should it do if the root node of the tree passed to this function is not S, or if
it lacks a subject?

30. ● Write a function that takes a grammar (such as the one defined in Exam-
ple 8-1) and returns a random sentence generated by the grammar. (Use gram
mar.start() to find the start symbol of the grammar; grammar.productions(lhs) to
get the list of productions from the grammar that have the specified lefthand side;
and production.rhs() to get the righthand side of a production.)

31. ● Implement a version of the shift-reduce parser using backtracking, so that it finds
all possible parses for a sentence, what might be called a “recursive ascent parser.”
Consult the Wikipedia entry for backtracking at http://en.wikipedia.org/wiki/Back
tracking.

32. ● As we saw in Chapter 7, it is possible to collapse chunks down to their chunk
label. When we do this for sentences involving the word gave, we find patterns
such as the following:

gave NP
gave up NP in NP
gave NP up
gave NP NP
gave NP to NP
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a. Use this method to study the complementation patterns of a verb of interest,
and write suitable grammar productions. (This task is sometimes called lexical
acquisition.)

b. Identify some English verbs that are near-synonyms, such as the dumped/filled/
loaded example from (64) in Chapter 9. Use the chunking method to study the
complementation patterns of these verbs. Create a grammar to cover these
cases. Can the verbs be freely substituted for each other, or are there con-
straints? Discuss your findings.

33. ● Develop a left-corner parser based on the recursive descent parser, and inheriting
from ParseI.

34. ● Extend NLTK’s shift-reduce parser to incorporate backtracking, so that it is
guaranteed to find all parses that exist (i.e., it is complete).

35. ● Modify the functions init_wfst() and complete_wfst() so that when a non-
terminal symbol is added to a cell in the WFST, it includes a record of the cells
from which it was derived. Implement a function that will convert a WFST in this
form to a parse tree.
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CHAPTER 9

Building Feature-Based Grammars

Natural languages have an extensive range of grammatical constructions which are hard
to handle with the simple methods described in Chapter 8. In order to gain more flex-
ibility, we change our treatment of grammatical categories like S, NP, and V. In place of
atomic labels, we decompose them into structures like dictionaries, where features can
take on a range of values.

The goal of this chapter is to answer the following questions:

1. How can we extend the framework of context-free grammars with features so as
to gain more fine-grained control over grammatical categories and productions?

2. What are the main formal properties of feature structures, and how do we use them
computationally?

3. What kinds of linguistic patterns and grammatical constructions can we now cap-
ture with feature-based grammars?

Along the way, we will cover more topics in English syntax, including phenomena such
as agreement, subcategorization, and unbounded dependency constructions.

9.1  Grammatical Features
In Chapter 6, we described how to build classifiers that rely on detecting features of
text. Such features may be quite simple, such as extracting the last letter of a word, or
more complex, such as a part-of-speech tag that has itself been predicted by the clas-
sifier. In this chapter, we will investigate the role of features in building rule-based
grammars. In contrast to feature extractors, which record features that have been au-
tomatically detected, we are now going to declare the features of words and phrases.
We start off with a very simple example, using dictionaries to store features and their
values.

>>> kim = {'CAT': 'NP', 'ORTH': 'Kim', 'REF': 'k'}
>>> chase = {'CAT': 'V', 'ORTH': 'chased', 'REL': 'chase'}

327



The objects kim and chase both have a couple of shared features, CAT (grammatical
category) and ORTH (orthography, i.e., spelling). In addition, each has a more semanti-
cally oriented feature: kim['REF'] is intended to give the referent of kim, while
chase['REL'] gives the relation expressed by chase. In the context of rule-based gram-
mars, such pairings of features and values are known as feature structures, and we
will shortly see alternative notations for them.

Feature structures contain various kinds of information about grammatical entities.
The information need not be exhaustive, and we might want to add further properties.
For example, in the case of a verb, it is often useful to know what “semantic role” is
played by the arguments of the verb. In the case of chase, the subject plays the role of
“agent,” whereas the object has the role of “patient.” Let’s add this information, using
'sbj' (subject) and 'obj' (object) as placeholders which will get filled once the verb
combines with its grammatical arguments:

>>> chase['AGT'] = 'sbj'
>>> chase['PAT'] = 'obj'

If we now process a sentence Kim chased Lee, we want to “bind” the verb’s agent role
to the subject and the patient role to the object. We do this by linking to the REF feature
of the relevant NP. In the following example, we make the simple-minded assumption
that the NPs immediately to the left and right of the verb are the subject and object,
respectively. We also add a feature structure for Lee to complete the example.

>>> sent = "Kim chased Lee"
>>> tokens = sent.split()
>>> lee = {'CAT': 'NP', 'ORTH': 'Lee', 'REF': 'l'}
>>> def lex2fs(word):
...     for fs in [kim, lee, chase]:
...         if fs['ORTH'] == word:
...             return fs
>>> subj, verb, obj = lex2fs(tokens[0]), lex2fs(tokens[1]), lex2fs(tokens[2])
 >>> verb['AGT'] = subj['REF'] # agent of 'chase' is Kim
 >>> verb['PAT'] = obj['REF']  # patient of 'chase' is Lee
 >>> for k in ['ORTH', 'REL', 'AGT', 'PAT']: # check featstruct of 'chase'
...     print "%-5s => %s" % (k, verb[k])
ORTH  => chased
REL   => chase
AGT   => k
PAT   => l

The same approach could be adopted for a different verb—say, surprise—though in
this case, the subject would play the role of “source” (SRC), and the object plays the role
of “experiencer” (EXP):

>>> surprise = {'CAT': 'V', 'ORTH': 'surprised', 'REL': 'surprise',
...             'SRC': 'sbj', 'EXP': 'obj'}

Feature structures are pretty powerful, but the way in which we have manipulated them
is extremely ad hoc. Our next task in this chapter is to show how the framework of
context-free grammar and parsing can be expanded to accommodate feature structures,
so that we can build analyses like this in a more generic and principled way. We will
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start off by looking at the phenomenon of syntactic agreement; we will show how
agreement constraints can be expressed elegantly using features, and illustrate their use
in a simple grammar.

Since feature structures are a general data structure for representing information of any
kind, we will briefly look at them from a more formal point of view, and illustrate the
support for feature structures offered by NLTK. In the final part of the chapter, we
demonstrate that the additional expressiveness of features opens up a wide spectrum
of possibilities for describing sophisticated aspects of linguistic structure.

Syntactic Agreement
The following examples show pairs of word sequences, the first of which is grammatical
and the second not. (We use an asterisk at the start of a word sequence to signal that
it is ungrammatical.)

(1) a. this dog

b. *these dog

(2) a. these dogs

b. *this dogs

In English, nouns are usually marked as being singular or plural. The form of the de-
monstrative also varies: this (singular) and these (plural). Examples (1) and (2) show
that there are constraints on the use of demonstratives and nouns within a noun phrase:
either both are singular or both are plural. A similar constraint holds between subjects
and predicates:

(3) a. the dog runs

b. *the dog run

(4) a. the dogs run

b. *the dogs runs

Here we can see that morphological properties of the verb co-vary with syntactic prop-
erties of the subject noun phrase. This co-variance is called agreement. If we look
further at verb agreement in English, we will see that present tense verbs typically have
two inflected forms: one for third person singular, and another for every other combi-
nation of person and number, as shown in Table 9-1.
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Table 9-1. Agreement paradigm for English regular verbs

 Singular Plural

1st person I run we run

2nd person you run you run

3rd person he/she/it runs they run

We can make the role of morphological properties a bit more explicit, as illustrated in
(5) and (6). These representations indicate that the verb agrees with its subject in person
and number. (We use 3 as an abbreviation for 3rd person, SG for singular, and PL for
plural.)

(5) the dog run-s
 dog.3.SG run-3.SG

(6) the dog-s run
 dog.3.PL run-3.PL

Let’s see what happens when we encode these agreement constraints in a context-free
grammar. We will begin with the simple CFG in (7).

(7) S   ->   NP VP
NP  ->   Det N
VP  ->   V

Det  ->  'this'
N    ->  'dog'
V    ->  'runs'

Grammar (7) allows us to generate the sentence this dog runs; however, what we really
want to do is also generate these dogs run while blocking unwanted sequences like *this
dogs run and *these dog runs. The most straightforward approach is to add new non-
terminals and productions to the grammar:

(8) S -> NP_SG VP_SG
S -> NP_PL VP_PL
NP_SG -> Det_SG N_SG
NP_PL -> Det_PL N_PL
VP_SG -> V_SG
VP_PL -> V_PL

Det_SG -> 'this'
Det_PL -> 'these'
N_SG -> 'dog'
N_PL -> 'dogs'
V_SG -> 'runs'
V_PL -> 'run'

In place of a single production expanding S, we now have two productions, one covering
the sentences involving singular subject NPs and VPs, the other covering sentences with
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plural subject NPs and VPs. In fact, every production in (7) has two counterparts in
(8). With a small grammar, this is not really such a problem, although it is aesthetically
unappealing. However, with a larger grammar that covers a reasonable subset of Eng-
lish constructions, the prospect of doubling the grammar size is very unattractive. Let’s
suppose now that we used the same approach to deal with first, second, and third
person agreement, for both singular and plural. This would lead to the original grammar
being multiplied by a factor of 6, which we definitely want to avoid. Can we do better
than this? In the next section, we will show that capturing number and person agree-
ment need not come at the cost of “blowing up” the number of productions.

Using Attributes and Constraints
We spoke informally of linguistic categories having properties, for example, that a noun
has the property of being plural. Let’s make this explicit:

(9) N[NUM=pl]

In (9), we have introduced some new notation which says that the category N has a
(grammatical) feature called NUM (short for “number”) and that the value of this feature
is pl (short for “plural”). We can add similar annotations to other categories, and use
them in lexical entries:

(10) Det[NUM=sg] -> 'this'
Det[NUM=pl] -> 'these'

N[NUM=sg] -> 'dog'
N[NUM=pl] -> 'dogs'
V[NUM=sg] -> 'runs'
V[NUM=pl] -> 'run'

Does this help at all? So far, it looks just like a slightly more verbose alternative to what
was specified in (8). Things become more interesting when we allow variables over
feature values, and use these to state constraints:

(11) S -> NP[NUM=?n] VP[NUM=?n]
NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]
VP[NUM=?n] -> V[NUM=?n]

We are using ?n as a variable over values of NUM; it can be instantiated either to sg or
pl, within a given production. We can read the first production as saying that whatever
value NP takes for the feature NUM, VP must take the same value.

In order to understand how these feature constraints work, it’s helpful to think about
how one would go about building a tree. Lexical productions will admit the following
local trees (trees of depth one):
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(12) a.

b.

(13) a.

b.

Now NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n] says that whatever the NUM values of N and
Det are, they have to be the same. Consequently, this production will permit (12a) and
(13a) to be combined into an NP, as shown in (14a), and it will also allow (12b) and
(13b) to be combined, as in (14b). By contrast, (15a) and (15b) are prohibited because
the roots of their subtrees differ in their values for the NUM feature; this incompatibility
of values is indicated informally with a FAIL value at the top node.

(14) a.

b.
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(15) a.

b.

Production VP[NUM=?n] -> V[NUM=?n] says that the NUM value of the head verb has to be
the same as the NUM value of the VP parent. Combined with the production for expanding
S, we derive the consequence that if the NUM value of the subject head noun is pl, then
so is the NUM value of the VP’s head verb.

(16)

Grammar (10) illustrated lexical productions for determiners like this and these, which
require a singular or plural head noun respectively. However, other determiners in
English are not choosy about the grammatical number of the noun they combine with.
One way of describing this would be to add two lexical entries to the grammar, one
each for the singular and plural versions of a determiner such as the:

Det[NUM=sg] -> 'the' | 'some' | 'several'
Det[NUM=pl] -> 'the' | 'some' | 'several'

However, a more elegant solution is to leave the NUM value underspecified and let it
agree in number with whatever noun it combines with. Assigning a variable value to
NUM is one way of achieving this result:

Det[NUM=?n] -> 'the' | 'some' | 'several'

But in fact we can be even more economical, and just omit any specification for NUM in
such productions. We only need to explicitly enter a variable value when this constrains
another value elsewhere in the same production.

The grammar in Example 9-1 illustrates most of the ideas we have introduced so far in
this chapter, plus a couple of new ones.
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Example 9-1. Example feature-based grammar.

>>> nltk.data.show_cfg('grammars/book_grammars/feat0.fcfg')
% start S
# ###################
# Grammar Productions
# ###################
# S expansion productions
S -> NP[NUM=?n] VP[NUM=?n]
# NP expansion productions
NP[NUM=?n] -> N[NUM=?n]
NP[NUM=?n] -> PropN[NUM=?n]
NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]
NP[NUM=pl] -> N[NUM=pl]
# VP expansion productions
VP[TENSE=?t, NUM=?n] -> IV[TENSE=?t, NUM=?n]
VP[TENSE=?t, NUM=?n] -> TV[TENSE=?t, NUM=?n] NP
# ###################
# Lexical Productions
# ###################
Det[NUM=sg] -> 'this' | 'every'
Det[NUM=pl] -> 'these' | 'all'
Det -> 'the' | 'some' | 'several'
PropN[NUM=sg]-> 'Kim' | 'Jody'
N[NUM=sg] -> 'dog' | 'girl' | 'car' | 'child'
N[NUM=pl] -> 'dogs' | 'girls' | 'cars' | 'children'
IV[TENSE=pres,  NUM=sg] -> 'disappears' | 'walks'
TV[TENSE=pres, NUM=sg] -> 'sees' | 'likes'
IV[TENSE=pres,  NUM=pl] -> 'disappear' | 'walk'
TV[TENSE=pres, NUM=pl] -> 'see' | 'like'
IV[TENSE=past] -> 'disappeared' | 'walked'
TV[TENSE=past] -> 'saw' | 'liked'

Notice that a syntactic category can have more than one feature: for example,
V[TENSE=pres, NUM=pl]. In general, we can add as many features as we like.

A final detail about Example 9-1 is the statement %start S. This “directive” tells the
parser to take S as the start symbol for the grammar.

In general, when we are trying to develop even a very small grammar, it is convenient
to put the productions in a file where they can be edited, tested, and revised. We have
saved Example 9-1 as a file named feat0.fcfg in the NLTK data distribution. You can
make your own copy of this for further experimentation using nltk.data.load().

Feature-based grammars are parsed in NLTK using an Earley chart parser (see Sec-
tion 9.5 for more information about this) and Example 9-2 illustrates how this is carried
out. After tokenizing the input, we import the load_parser function , which takes a
grammar filename as input and returns a chart parser cp . Calling the parser’s
nbest_parse() method will return a list trees of parse trees; trees will be empty if the
grammar fails to parse the input and otherwise will contain one or more parse trees,
depending on whether the input is syntactically ambiguous.
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Example 9-2. Trace of feature-based chart parser.

>>> tokens = 'Kim likes children'.split()
>>> from nltk import load_parser 
>>> cp = load_parser('grammars/book_grammars/feat0.fcfg', trace=2)  
>>> trees = cp.nbest_parse(tokens)
|.Kim .like.chil.|
|[----]    .    .| PropN[NUM='sg'] -> 'Kim' *
|[----]    .    .| NP[NUM='sg'] -> PropN[NUM='sg'] *
|[---->    .    .| S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: 'sg'}
|.    [----]    .| TV[NUM='sg', TENSE='pres'] -> 'likes' *
|.    [---->    .| VP[NUM=?n, TENSE=?t] -> TV[NUM=?n, TENSE=?t] * NP[]
                {?n: 'sg', ?t: 'pres'}
|.    .    [----]| N[NUM='pl'] -> 'children' *
|.    .    [----]| NP[NUM='pl'] -> N[NUM='pl'] *
|.    .    [---->| S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: 'pl'}
|.    [---------]| VP[NUM='sg', TENSE='pres']
                -> TV[NUM='sg', TENSE='pres'] NP[] *
|[==============]| S[] -> NP[NUM='sg'] VP[NUM='sg'] *

The details of the parsing procedure are not that important for present purposes. How-
ever, there is an implementation issue which bears on our earlier discussion of grammar
size. One possible approach to parsing productions containing feature constraints is to
compile out all admissible values of the features in question so that we end up with a
large, fully specified CFG along the lines of (8). By contrast, the parser process illus-
trated in the previous examples works directly with the underspecified productions
given by the grammar. Feature values “flow upwards” from lexical entries, and variable
values are then associated with those values via bindings (i.e., dictionaries) such as
{?n: 'sg', ?t: 'pres'}. As the parser assembles information about the nodes of the
tree it is building, these variable bindings are used to instantiate values in these nodes;
thus the underspecified VP[NUM=?n, TENSE=?t] -> TV[NUM=?n, TENSE=?t] NP[] becomes
instantiated as VP[NUM='sg', TENSE='pres'] -> TV[NUM='sg', TENSE='pres'] NP[] by
looking up the values of ?n and ?t in the bindings.

Finally, we can inspect the resulting parse trees (in this case, a single one).

>>> for tree in trees: print tree
(S[]
  (NP[NUM='sg'] (PropN[NUM='sg'] Kim))
  (VP[NUM='sg', TENSE='pres']
    (TV[NUM='sg', TENSE='pres'] likes)
    (NP[NUM='pl'] (N[NUM='pl'] children))))

Terminology
So far, we have only seen feature values like sg and pl. These simple values are usually
called atomic—that is, they can’t be decomposed into subparts. A special case of
atomic values are Boolean values, that is, values that just specify whether a property
is true or false. For example, we might want to distinguish auxiliary verbs such as can,
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may, will, and do with the Boolean feature AUX. Then the production V[TENSE=pres,
aux=+] -> 'can' means that can receives the value pres for TENSE and + or true for
AUX. There is a widely adopted convention that abbreviates the representation of Boo-
lean features f; instead of aux=+ or aux=-, we use +aux and -aux respectively. These are
just abbreviations, however, and the parser interprets them as though + and - are like
any other atomic value. (17) shows some representative productions:

(17) V[TENSE=pres, +aux] -> 'can'
V[TENSE=pres, +aux] -> 'may'

V[TENSE=pres, -aux] -> 'walks'
V[TENSE=pres, -aux] -> 'likes'

We have spoken of attaching “feature annotations” to syntactic categories. A more
radical approach represents the whole category—that is, the non-terminal symbol plus
the annotation—as a bundle of features. For example, N[NUM=sg] contains part-of-
speech information which can be represented as POS=N. An alternative notation for this
category, therefore, is [POS=N, NUM=sg].

In addition to atomic-valued features, features may take values that are themselves
feature structures. For example, we can group together agreement features (e.g., per-
son, number, and gender) as a distinguished part of a category, serving as the value of
AGR. In this case, we say that AGR has a complex value. (18) depicts the structure, in a
format known as an attribute value matrix (AVM).

(18) [POS = N           ]
[                  ]
[AGR = [PER = 3   ]]
[      [NUM = pl  ]]
[      [GND = fem ]]

In passing, we should point out that there are alternative approaches for displaying
AVMs; Figure 9-1 shows an example. Although feature structures rendered in the style
of (18) are less visually pleasing, we will stick with this format, since it corresponds to
the output we will be getting from NLTK.

Figure 9-1. Rendering a feature structure as an attribute value matrix.
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On the topic of representation, we also note that feature structures, like dictionaries,
assign no particular significance to the order of features. So (18) is equivalent to:

(19) [AGR = [NUM = pl  ]]
[      [PER = 3   ]]
[      [GND = fem ]]
[                  ]
[POS = N           ]

Once we have the possibility of using features like AGR, we can refactor a grammar like
Example 9-1 so that agreement features are bundled together. A tiny grammar illus-
trating this idea is shown in (20).

(20) S -> NP[AGR=?n] VP[AGR=?n]
NP[AGR=?n] -> PropN[AGR=?n]
VP[TENSE=?t, AGR=?n] -> Cop[TENSE=?t, AGR=?n] Adj

Cop[TENSE=pres,  AGR=[NUM=sg, PER=3]] -> 'is'
PropN[AGR=[NUM=sg, PER=3]] -> 'Kim'
Adj -> 'happy'

9.2  Processing Feature Structures
In this section, we will show how feature structures can be constructed and manipulated
in NLTK. We will also discuss the fundamental operation of unification, which allows
us to combine the information contained in two different feature structures.

Feature structures in NLTK are declared with the FeatStruct() constructor. Atomic
feature values can be strings or integers.

>>> fs1 = nltk.FeatStruct(TENSE='past', NUM='sg')
>>> print fs1
[ NUM   = 'sg'   ]
[ TENSE = 'past' ]

A feature structure is actually just a kind of dictionary, and so we access its values by
indexing in the usual way. We can use our familiar syntax to assign values to features:

>>> fs1 = nltk.FeatStruct(PER=3, NUM='pl', GND='fem')
>>> print fs1['GND']
fem
>>> fs1['CASE'] = 'acc'

We can also define feature structures that have complex values, as discussed earlier.

>>> fs2 = nltk.FeatStruct(POS='N', AGR=fs1)
>>> print fs2
[       [ CASE = 'acc' ] ]
[ AGR = [ GND  = 'fem' ] ]
[       [ NUM  = 'pl'  ] ]
[       [ PER  = 3     ] ]
[                        ]
[ POS = 'N'              ]
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>>> print fs2['AGR']
[ CASE = 'acc' ]
[ GND  = 'fem' ]
[ NUM  = 'pl'  ]
[ PER  = 3     ]
>>> print fs2['AGR']['PER']
3

An alternative method of specifying feature structures is to use a bracketed string con-
sisting of feature-value pairs in the format feature=value, where values may themselves
be feature structures:

>>> print nltk.FeatStruct("[POS='N', AGR=[PER=3, NUM='pl', GND='fem']]")
[       [ PER = 3     ] ]
[ AGR = [ GND = 'fem' ] ]
[       [ NUM = 'pl'  ] ]
[                       ]
[ POS = 'N'             ]

Feature structures are not inherently tied to linguistic objects; they are general-purpose
structures for representing knowledge. For example, we could encode information
about a person in a feature structure:

>>> print nltk.FeatStruct(name='Lee', telno='01 27 86 42 96', age=33)
[ age   = 33               ]
[ name  = 'Lee'            ]
[ telno = '01 27 86 42 96' ]

In the next couple of pages, we are going to use examples like this to explore standard
operations over feature structures. This will briefly divert us from processing natural
language, but we need to lay the groundwork before we can get back to talking about
grammars. Hang on tight!

It is often helpful to view feature structures as graphs, more specifically, as directed
acyclic graphs (DAGs). (21) is equivalent to the preceding AVM.

(21)

The feature names appear as labels on the directed arcs, and feature values appear as
labels on the nodes that are pointed to by the arcs.

Just as before, feature values can be complex:
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(22)

When we look at such graphs, it is natural to think in terms of paths through the graph.
A feature path is a sequence of arcs that can be followed from the root node. We will
represent paths as tuples of arc labels. Thus, ('ADDRESS', 'STREET') is a feature path
whose value in (22) is the node labeled 'rue Pascal'.

Now let’s consider a situation where Lee has a spouse named Kim, and Kim’s address
is the same as Lee’s. We might represent this as (23).

(23)

However, rather than repeating the address information in the feature structure, we
can “share” the same sub-graph between different arcs:
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(24)

In other words, the value of the path ('ADDRESS') in (24) is identical to the value of the
path ('SPOUSE', 'ADDRESS'). DAGs such as (24) are said to involve structure shar-
ing or reentrancy. When two paths have the same value, they are said to be
equivalent.

In order to indicate reentrancy in our matrix-style representations, we will prefix the
first occurrence of a shared feature structure with an integer in parentheses, such as
(1). Any later reference to that structure will use the notation ->(1), as shown here.

>>> print nltk.FeatStruct("""[NAME='Lee', ADDRESS=(1)[NUMBER=74, STREET='rue Pascal'],
...                          SPOUSE=[NAME='Kim', ADDRESS->(1)]]""")
[ ADDRESS = (1) [ NUMBER = 74           ] ]
[               [ STREET = 'rue Pascal' ] ]
[                                         ]
[ NAME    = 'Lee'                         ]
[                                         ]
[ SPOUSE  = [ ADDRESS -> (1)  ]           ]
[           [ NAME    = 'Kim' ]           ]

The bracketed integer is sometimes called a tag or a coindex. The choice of integer is
not significant. There can be any number of tags within a single feature structure.

>>> print nltk.FeatStruct("[A='a', B=(1)[C='c'], D->(1), E->(1)]")
[ A = 'a'             ]
[                     ]
[ B = (1) [ C = 'c' ] ]
[                     ]
[ D -> (1)            ]
[ E -> (1)            ]
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Subsumption and Unification
It is standard to think of feature structures as providing partial information about
some object, in the sense that we can order feature structures according to how general
they are. For example, (25a) is more general (less specific) than (25b), which in turn is
more general than (25c).

(25) a. [NUMBER = 74]

b. [NUMBER = 74          ]
[STREET = 'rue Pascal']

c. [NUMBER = 74          ]
[STREET = 'rue Pascal']
[CITY = 'Paris'       ]

This ordering is called subsumption; a more general feature structure subsumes a less
general one. If FS0 subsumes FS1 (formally, we write FS0 ⊑ FS1), then FS1 must have
all the paths and path equivalences of FS0, and may have additional paths and equiv-
alences as well. Thus, (23) subsumes (24) since the latter has additional path equiva-
lences. It should be obvious that subsumption provides only a partial ordering on fea-
ture structures, since some feature structures are incommensurable. For example,
(26) neither subsumes nor is subsumed by (25a).

(26) [TELNO = 01 27 86 42 96]

So we have seen that some feature structures are more specific than others. How do we
go about specializing a given feature structure? For example, we might decide that
addresses should consist of not just a street number and a street name, but also a city.
That is, we might want to merge graph (27a) with (27b) to yield (27c).
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(27) a.

b.

c.

Merging information from two feature structures is called unification and is supported
by the unify() method.

>>> fs1 = nltk.FeatStruct(NUMBER=74, STREET='rue Pascal')
>>> fs2 = nltk.FeatStruct(CITY='Paris')
>>> print fs1.unify(fs2)
[ CITY   = 'Paris'      ]
[ NUMBER = 74           ]
[ STREET = 'rue Pascal' ]
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Unification is formally defined as a binary operation: FS0 ⊔ FS1. Unification is sym-
metric, so FS0 ⊔ FS1 = FS1 ⊔ FS0. The same is true in Python:

>>> print fs2.unify(fs1)
[ CITY   = 'Paris'      ]
[ NUMBER = 74           ]
[ STREET = 'rue Pascal' ]

If we unify two feature structures that stand in the subsumption relationship, then the
result of unification is the most specific of the two:

(28) If FS0 ⊑ FS1, then FS0 ⊔ FS1 = FS1

For example, the result of unifying (25b) with (25c) is (25c).

Unification between FS0 and FS1 will fail if the two feature structures share a path π
where the value of π in FS0 is a distinct atom from the value of π in FS1. This is imple-
mented by setting the result of unification to be None.

>>> fs0 = nltk.FeatStruct(A='a')
>>> fs1 = nltk.FeatStruct(A='b')
>>> fs2 = fs0.unify(fs1)
>>> print fs2
None

Now, if we look at how unification interacts with structure-sharing, things become
really interesting. First, let’s define (23) in Python:

>>> fs0 = nltk.FeatStruct("""[NAME=Lee,
...                           ADDRESS=[NUMBER=74,
...                                    STREET='rue Pascal'],
...                           SPOUSE= [NAME=Kim,
...                                    ADDRESS=[NUMBER=74,
...                                             STREET='rue Pascal']]]""")
>>> print fs0
[ ADDRESS = [ NUMBER = 74           ]               ]
[           [ STREET = 'rue Pascal' ]               ]
[                                                   ]
[ NAME    = 'Lee'                                   ]
[                                                   ]
[           [ ADDRESS = [ NUMBER = 74           ] ] ]
[ SPOUSE  = [           [ STREET = 'rue Pascal' ] ] ]
[           [                                     ] ]
[           [ NAME    = 'Kim'                     ] ]

What happens when we augment Kim’s address with a specification for CITY? Notice
that fs1 needs to include the whole path from the root of the feature structure down
to CITY.

>>> fs1 = nltk.FeatStruct("[SPOUSE = [ADDRESS = [CITY = Paris]]]")
>>> print fs1.unify(fs0)
[ ADDRESS = [ NUMBER = 74           ]               ]
[           [ STREET = 'rue Pascal' ]               ]
[                                                   ]
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[ NAME    = 'Lee'                                   ]
[                                                   ]
[           [           [ CITY   = 'Paris'      ] ] ]
[           [ ADDRESS = [ NUMBER = 74           ] ] ]
[ SPOUSE  = [           [ STREET = 'rue Pascal' ] ] ]
[           [                                     ] ]
[           [ NAME    = 'Kim'                     ] ]

By contrast, the result is very different if fs1 is unified with the structure sharing version
fs2 (also shown earlier as the graph (24)):

>>> fs2 = nltk.FeatStruct("""[NAME=Lee, ADDRESS=(1)[NUMBER=74, STREET='rue Pascal'],
...                           SPOUSE=[NAME=Kim, ADDRESS->(1)]]""")
>>> print fs1.unify(fs2)
[               [ CITY   = 'Paris'      ] ]
[ ADDRESS = (1) [ NUMBER = 74           ] ]
[               [ STREET = 'rue Pascal' ] ]
[                                         ]
[ NAME    = 'Lee'                         ]
[                                         ]
[ SPOUSE  = [ ADDRESS -> (1)  ]           ]
[           [ NAME    = 'Kim' ]           ]

Rather than just updating what was in effect Kim’s “copy” of Lee’s address, we have
now updated both their addresses at the same time. More generally, if a unification
involves specializing the value of some path π, that unification simultaneously spe-
cializes the value of any path that is equivalent to π.

As we have already seen, structure sharing can also be stated using variables such as
?x.

>>> fs1 = nltk.FeatStruct("[ADDRESS1=[NUMBER=74, STREET='rue Pascal']]")
>>> fs2 = nltk.FeatStruct("[ADDRESS1=?x, ADDRESS2=?x]")
>>> print fs2
[ ADDRESS1 = ?x ]
[ ADDRESS2 = ?x ]
>>> print fs2.unify(fs1)
[ ADDRESS1 = (1) [ NUMBER = 74           ] ]
[                [ STREET = 'rue Pascal' ] ]
[                                          ]
[ ADDRESS2 -> (1)                          ]

9.3  Extending a Feature-Based Grammar
In this section, we return to feature-based grammar and explore a variety of linguistic
issues, and demonstrate the benefits of incorporating features into the grammar.

Subcategorization
In Chapter 8, we augmented our category labels to represent different kinds of verbs,
and used the labels IV and TV for intransitive and transitive verbs respectively. This
allowed us to write productions like the following:
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(29) VP -> IV
VP -> TV NP

Although we know that IV and TV are two kinds of V, they are just atomic non-terminal
symbols in a CFG and are as distinct from each other as any other pair of symbols. This
notation doesn’t let us say anything about verbs in general; e.g., we cannot say “All
lexical items of category V can be marked for tense,” since walk, say, is an item of
category IV, not V. So, can we replace category labels such as TV and IV by V along with
a feature that tells us whether the verb combines with a following NP object or whether
it can occur without any complement?

A simple approach, originally developed for a grammar framework called Generalized
Phrase Structure Grammar (GPSG), tries to solve this problem by allowing lexical cat-
egories to bear a SUBCAT feature, which tells us what subcategorization class the item
belongs to. In contrast to the integer values for SUBCAT used by GPSG, the example here
adopts more mnemonic values, namely intrans, trans, and clause:

(30) VP[TENSE=?t, NUM=?n] -> V[SUBCAT=intrans, TENSE=?t, NUM=?n]
VP[TENSE=?t, NUM=?n] -> V[SUBCAT=trans, TENSE=?t, NUM=?n] NP
VP[TENSE=?t, NUM=?n] -> V[SUBCAT=clause, TENSE=?t, NUM=?n] SBar

V[SUBCAT=intrans, TENSE=pres, NUM=sg] -> 'disappears' | 'walks'
V[SUBCAT=trans, TENSE=pres, NUM=sg] -> 'sees' | 'likes'
V[SUBCAT=clause, TENSE=pres, NUM=sg] -> 'says' | 'claims'

V[SUBCAT=intrans, TENSE=pres, NUM=pl] -> 'disappear' | 'walk'
V[SUBCAT=trans, TENSE=pres, NUM=pl] -> 'see' | 'like'
V[SUBCAT=clause, TENSE=pres, NUM=pl] -> 'say' | 'claim'

V[SUBCAT=intrans, TENSE=past] -> 'disappeared' | 'walked'
V[SUBCAT=trans, TENSE=past] -> 'saw' | 'liked'
V[SUBCAT=clause, TENSE=past] -> 'said' | 'claimed'

When we see a lexical category like V[SUBCAT=trans], we can interpret the SUBCAT spec-
ification as a pointer to a production in which V[SUBCAT=trans] is introduced as the
head child in a VP production. By convention, there is a correspondence between the
values of SUBCAT and the productions that introduce lexical heads. On this approach,
SUBCAT can appear only on lexical categories; it makes no sense, for example, to specify
a SUBCAT value on VP. As required, walk and like both belong to the category V. Never-
theless, walk will occur only in VPs expanded by a production with the feature
SUBCAT=intrans on the righthand side, as opposed to like, which requires a
SUBCAT=trans.

In our third class of verbs in (30), we have specified a category SBar. This is a label for
subordinate clauses, such as the complement of claim in the example You claim that
you like children. We require two further productions to analyze such sentences:

(31) SBar -> Comp S
Comp -> 'that'
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The resulting structure is the following.

(32)

An alternative treatment of subcategorization, due originally to a framework known as
categorial grammar, is represented in feature-based frameworks such as PATR and
Head-driven Phrase Structure Grammar. Rather than using SUBCAT values as a way of
indexing productions, the SUBCAT value directly encodes the valency of a head (the list
of arguments that it can combine with). For example, a verb like put that takes NP and
PP complements (put the book on the table) might be represented as (33):

(33) V[SUBCAT=<NP, NP, PP>]

This says that the verb can combine with three arguments. The leftmost element in the
list is the subject NP, while everything else—an NP followed by a PP in this case—com-
prises the subcategorized-for complements. When a verb like put is combined with
appropriate complements, the requirements which are specified in the SUBCAT are dis-
charged, and only a subject NP is needed. This category, which corresponds to what is
traditionally thought of as VP, might be represented as follows:

(34) V[SUBCAT=<NP>]

Finally, a sentence is a kind of verbal category that has no requirements for further
arguments, and hence has a SUBCAT whose value is the empty list. The tree (35) shows
how these category assignments combine in a parse of Kim put the book on the table.

(35)
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Heads Revisited
We noted in the previous section that by factoring subcategorization information out
of the main category label, we could express more generalizations about properties of
verbs. Another property of this kind is the following: expressions of category V are heads
of phrases of category VP. Similarly, Ns are heads of NPs, As (i.e., adjectives) are heads of
APs, and Ps (i.e., prepositions) are heads of PPs. Not all phrases have heads—for exam-
ple, it is standard to say that coordinate phrases (e.g., the book and the bell) lack heads.
Nevertheless, we would like our grammar formalism to express the parent/head-child
relation where it holds. At present, V and VP are just atomic symbols, and we need to
find a way to relate them using features (as we did earlier to relate IV and TV).

X-bar syntax addresses this issue by abstracting out the notion of phrasal level. It is
usual to recognize three such levels. If N represents the lexical level, then N' represents
the next level up, corresponding to the more traditional category Nom, and N'' represents
the phrasal level, corresponding to the category NP. (36a) illustrates a representative
structure, while (36b) is the more conventional counterpart.

(36) a.

b.

The head of the structure (36a) is N, and N' and N'' are called (phrasal) projections of
N. N'' is the maximal projection, and N is sometimes called the zero projection. One
of the central claims of X-bar syntax is that all constituents share a structural similarity.
Using X as a variable over N, V, A, and P, we say that directly subcategorized comple-
ments of a lexical head X are always placed as siblings of the head, whereas adjuncts are
placed as siblings of the intermediate category, X'. Thus, the configuration of the two
P'' adjuncts in (37) contrasts with that of the complement P'' in (36a).
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(37)

The productions in (38) illustrate how bar levels can be encoded using feature struc-
tures. The nested structure in (37) is achieved by two applications of the recursive rule
expanding N[BAR=1].

(38) S -> N[BAR=2] V[BAR=2]
N[BAR=2] -> Det N[BAR=1]
N[BAR=1] -> N[BAR=1] P[BAR=2]
N[BAR=1] -> N[BAR=0] P[BAR=2]

Auxiliary Verbs and Inversion
Inverted clauses—where the order of subject and verb is switched—occur in English
interrogatives and also after “negative” adverbs:

(39) a. Do you like children?

b. Can Jody walk?

(40) a. Rarely do you see Kim.

b. Never have I seen this dog.

However, we cannot place just any verb in pre-subject position:

(41) a. *Like you children?

b. *Walks Jody?

(42) a. *Rarely see you Kim.

b. *Never saw I this dog.

Verbs that can be positioned initially in inverted clauses belong to the class known as
auxiliaries, and as well as do, can, and have include be, will, and shall. One way of
capturing such structures is with the following production:

(43) S[+INV] -> V[+AUX] NP VP
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That is, a clause marked as [+inv] consists of an auxiliary verb followed by a VP. (In a
more detailed grammar, we would need to place some constraints on the form of the
VP, depending on the choice of auxiliary.) (44) illustrates the structure of an inverted
clause:

(44)

Unbounded Dependency Constructions
Consider the following contrasts:

(45) a. You like Jody.

b. *You like.

(46) a. You put the card into the slot.

b. *You put into the slot.

c. *You put the card.

d. *You put.

The verb like requires an NP complement, while put requires both a following NP and
PP. (45) and (46) show that these complements are obligatory: omitting them leads to
ungrammaticality. Yet there are contexts in which obligatory complements can be
omitted, as (47) and (48) illustrate.

(47) a. Kim knows who you like.

b. This music, you really like.

(48) a. Which card do you put into the slot?

b. Which slot do you put the card into?

That is, an obligatory complement can be omitted if there is an appropriate filler in
the sentence, such as the question word who in (47a), the preposed topic this music in
(47b), or the wh phrases which card/slot in (48). It is common to say that sentences like
those in (47) and (48) contain gaps where the obligatory complements have been
omitted, and these gaps are sometimes made explicit using an underscore:

(49) a. Which card do you put __ into the slot?

b. Which slot do you put the card into __?
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So, a gap can occur if it is licensed by a filler. Conversely, fillers can occur only if there
is an appropriate gap elsewhere in the sentence, as shown by the following examples:

(50) a. *Kim knows who you like Jody.

b. *This music, you really like hip-hop.

(51) a. *Which card do you put this into the slot?

b. *Which slot do you put the card into this one?

The mutual co-occurrence between filler and gap is sometimes termed a “dependency.”
One issue of considerable importance in theoretical linguistics has been the nature of
the material that can intervene between a filler and the gap that it licenses; in particular,
can we simply list a finite set of sequences that separate the two? The answer is no:
there is no upper bound on the distance between filler and gap. This fact can be easily
illustrated with constructions involving sentential complements, as shown in (52).

(52) a. Who do you like __?

b. Who do you claim that you like __?

c. Who do you claim that Jody says that you like __?

Since we can have indefinitely deep recursion of sentential complements, the gap can
be embedded indefinitely far inside the whole sentence. This constellation of properties
leads to the notion of an unbounded dependency construction, that is, a filler-gap
dependency where there is no upper bound on the distance between filler and gap.

A variety of mechanisms have been suggested for handling unbounded dependencies
in formal grammars; here we illustrate the approach due to Generalized Phrase Struc-
ture Grammar that involves slash categories. A slash category has the form Y/XP; we
interpret this as a phrase of category Y that is missing a subconstituent of category XP.
For example, S/NP is an S that is missing an NP. The use of slash categories is illustrated
in (53).

(53)

The top part of the tree introduces the filler who (treated as an expression of category
NP[+wh]) together with a corresponding gap-containing constituent S/NP. The gap
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information is then “percolated” down the tree via the VP/NP category, until it reaches
the category NP/NP. At this point, the dependency is discharged by realizing the gap
information as the empty string, immediately dominated by NP/NP.

Do we need to think of slash categories as a completely new kind of object? Fortunately,
we can accommodate them within our existing feature-based framework, by treating
slash as a feature and the category to its right as a value; that is, S/NP is reducible to
S[SLASH=NP]. In practice, this is also how the parser interprets slash categories.

The grammar shown in Example 9-3 illustrates the main principles of slash categories,
and also includes productions for inverted clauses. To simplify presentation, we have
omitted any specification of tense on the verbs.

Example 9-3. Grammar with productions for inverted clauses and long-distance dependencies,
making use of slash categories.

>>> nltk.data.show_cfg('grammars/book_grammars/feat1.fcfg')
% start S
# ###################
# Grammar Productions
# ###################
S[-INV] -> NP VP
S[-INV]/?x -> NP VP/?x
S[-INV] -> NP S/NP
S[-INV] -> Adv[+NEG] S[+INV]
S[+INV] -> V[+AUX] NP VP
S[+INV]/?x -> V[+AUX] NP VP/?x
SBar -> Comp S[-INV]
SBar/?x -> Comp S[-INV]/?x
VP -> V[SUBCAT=intrans, -AUX]
VP -> V[SUBCAT=trans, -AUX] NP
VP/?x -> V[SUBCAT=trans, -AUX] NP/?x
VP -> V[SUBCAT=clause, -AUX] SBar
VP/?x -> V[SUBCAT=clause, -AUX] SBar/?x
VP -> V[+AUX] VP
VP/?x -> V[+AUX] VP/?x
# ###################
# Lexical Productions
# ###################
V[SUBCAT=intrans, -AUX] -> 'walk' | 'sing'
V[SUBCAT=trans, -AUX] -> 'see' | 'like'
V[SUBCAT=clause, -AUX] -> 'say' | 'claim'
V[+AUX] -> 'do' | 'can'
NP[-WH] -> 'you' | 'cats'
NP[+WH] -> 'who'
Adv[+NEG] -> 'rarely' | 'never'
NP/NP ->
Comp -> 'that'

The grammar in Example 9-3 contains one “gap-introduction” production, namely S[-
INV] -> NP S/NP. In order to percolate the slash feature correctly, we need to add slashes
with variable values to both sides of the arrow in productions that expand S, VP, and
NP. For example, VP/?x -> V SBar/?x is the slashed version of VP -> V SBar and says
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that a slash value can be specified on the VP parent of a constituent if the same value is
also specified on the SBar child. Finally, NP/NP -> allows the slash information on NP to
be discharged as the empty string. Using the grammar in Example 9-3, we can parse
the sequence who do you claim that you like:

>>> tokens = 'who do you claim that you like'.split()
>>> from nltk import load_parser
>>> cp = load_parser('grammars/book_grammars/feat1.fcfg')
>>> for tree in cp.nbest_parse(tokens):
...     print tree
(S[-INV]
  (NP[+WH] who)
  (S[+INV]/NP[]
    (V[+AUX] do)
    (NP[-WH] you)
    (VP[]/NP[]
      (V[-AUX, SUBCAT='clause'] claim)
      (SBar[]/NP[]
        (Comp[] that)
        (S[-INV]/NP[]
          (NP[-WH] you)
          (VP[]/NP[] (V[-AUX, SUBCAT='trans'] like) (NP[]/NP[] )))))))

A more readable version of this tree is shown in (54).

(54)

The grammar in Example 9-3 will also allow us to parse sentences without gaps:

>>> tokens = 'you claim that you like cats'.split()
>>> for tree in cp.nbest_parse(tokens):
...     print tree
(S[-INV]
  (NP[-WH] you)
  (VP[]
    (V[-AUX, SUBCAT='clause'] claim)
    (SBar[]
      (Comp[] that)
      (S[-INV]
        (NP[-WH] you)
        (VP[] (V[-AUX, SUBCAT='trans'] like) (NP[-WH] cats))))))
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In addition, it admits inverted sentences that do not involve wh constructions:

>>> tokens = 'rarely do you sing'.split()
>>> for tree in cp.nbest_parse(tokens):
...     print tree
(S[-INV]
  (Adv[+NEG] rarely)
  (S[+INV]
    (V[+AUX] do)
    (NP[-WH] you)
    (VP[] (V[-AUX, SUBCAT='intrans'] sing))))

Case and Gender in German
Compared with English, German has a relatively rich morphology for agreement. For
example, the definite article in German varies with case, gender, and number, as shown
in Table 9-2.

Table 9-2. Morphological paradigm for the German definite article

Case Masculine Feminine Neutral Plural

Nominative der die das die

Genitive des der des der

Dative dem der dem den

Accusative den die das die

Subjects in German take the nominative case, and most verbs govern their objects in
the accusative case. However, there are exceptions, such as helfen, that govern the
dative case:

(55) a. Die Katze sieht den Hund
the.NOM.FEM.SG cat.3.FEM.SG see.3.SG the.ACC.MASC.SG dog.3.MASC.SG
‘the cat sees the dog’

b. *Die Katze sieht dem Hund
the.NOM.FEM.SG cat.3.FEM.SG see.3.SG the.DAT.MASC.SG dog.3.MASC.SG

c. Die Katze hilft dem Hund
the.NOM.FEM.SG cat.3.FEM.SG help.3.SG the.DAT.MASC.SG dog.3.MASC.SG
‘the cat helps the dog’

d. *Die Katze hilft den Hund
the.NOM.FEM.SG cat.3.FEM.SG help.3.SG the.ACC.MASC.SG dog.3.MASC.SG

The grammar in Example 9-4 illustrates the interaction of agreement (comprising per-
son, number, and gender) with case.

9.3  Extending a Feature-Based Grammar | 353



Example 9-4. Example feature-based grammar.

>>> nltk.data.show_cfg('grammars/book_grammars/german.fcfg')
% start S
 # Grammar Productions
 S -> NP[CASE=nom, AGR=?a] VP[AGR=?a]
 NP[CASE=?c, AGR=?a] -> PRO[CASE=?c, AGR=?a]
 NP[CASE=?c, AGR=?a] -> Det[CASE=?c, AGR=?a] N[CASE=?c, AGR=?a]
 VP[AGR=?a] -> IV[AGR=?a]
 VP[AGR=?a] -> TV[OBJCASE=?c, AGR=?a] NP[CASE=?c]
 # Lexical Productions
 # Singular determiners
 # masc
 Det[CASE=nom, AGR=[GND=masc,PER=3,NUM=sg]] -> 'der'
 Det[CASE=dat, AGR=[GND=masc,PER=3,NUM=sg]] -> 'dem'
 Det[CASE=acc, AGR=[GND=masc,PER=3,NUM=sg]] -> 'den'
 # fem
 Det[CASE=nom, AGR=[GND=fem,PER=3,NUM=sg]] -> 'die'
 Det[CASE=dat, AGR=[GND=fem,PER=3,NUM=sg]] -> 'der'
 Det[CASE=acc, AGR=[GND=fem,PER=3,NUM=sg]] -> 'die'
 # Plural determiners
 Det[CASE=nom, AGR=[PER=3,NUM=pl]] -> 'die'
 Det[CASE=dat, AGR=[PER=3,NUM=pl]] -> 'den'
 Det[CASE=acc, AGR=[PER=3,NUM=pl]] -> 'die'
 # Nouns
 N[AGR=[GND=masc,PER=3,NUM=sg]] -> 'Hund'
 N[CASE=nom, AGR=[GND=masc,PER=3,NUM=pl]] -> 'Hunde'
 N[CASE=dat, AGR=[GND=masc,PER=3,NUM=pl]] -> 'Hunden'
 N[CASE=acc, AGR=[GND=masc,PER=3,NUM=pl]] -> 'Hunde'
 N[AGR=[GND=fem,PER=3,NUM=sg]] -> 'Katze'
 N[AGR=[GND=fem,PER=3,NUM=pl]] -> 'Katzen'
 # Pronouns
 PRO[CASE=nom, AGR=[PER=1,NUM=sg]] -> 'ich'
 PRO[CASE=acc, AGR=[PER=1,NUM=sg]] -> 'mich'
 PRO[CASE=dat, AGR=[PER=1,NUM=sg]] -> 'mir'
 PRO[CASE=nom, AGR=[PER=2,NUM=sg]] -> 'du'
 PRO[CASE=nom, AGR=[PER=3,NUM=sg]] -> 'er' | 'sie' | 'es'
 PRO[CASE=nom, AGR=[PER=1,NUM=pl]] -> 'wir'
 PRO[CASE=acc, AGR=[PER=1,NUM=pl]] -> 'uns'
 PRO[CASE=dat, AGR=[PER=1,NUM=pl]] -> 'uns'
 PRO[CASE=nom, AGR=[PER=2,NUM=pl]] -> 'ihr'
 PRO[CASE=nom, AGR=[PER=3,NUM=pl]] -> 'sie'
 # Verbs
 IV[AGR=[NUM=sg,PER=1]] -> 'komme'
 IV[AGR=[NUM=sg,PER=2]] -> 'kommst'
 IV[AGR=[NUM=sg,PER=3]] -> 'kommt'
 IV[AGR=[NUM=pl, PER=1]] -> 'kommen'
 IV[AGR=[NUM=pl, PER=2]] -> 'kommt'
 IV[AGR=[NUM=pl, PER=3]] -> 'kommen'
 TV[OBJCASE=acc, AGR=[NUM=sg,PER=1]] -> 'sehe' | 'mag'
 TV[OBJCASE=acc, AGR=[NUM=sg,PER=2]] -> 'siehst' | 'magst'
 TV[OBJCASE=acc, AGR=[NUM=sg,PER=3]] -> 'sieht' | 'mag'
 TV[OBJCASE=dat, AGR=[NUM=sg,PER=1]] -> 'folge' | 'helfe'
 TV[OBJCASE=dat, AGR=[NUM=sg,PER=2]] -> 'folgst' | 'hilfst'
 TV[OBJCASE=dat, AGR=[NUM=sg,PER=3]] -> 'folgt' | 'hilft'
 TV[OBJCASE=acc, AGR=[NUM=pl,PER=1]] -> 'sehen' | 'moegen'
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 TV[OBJCASE=acc, AGR=[NUM=pl,PER=2]] -> 'sieht' | 'moegt'
 TV[OBJCASE=acc, AGR=[NUM=pl,PER=3]] -> 'sehen' | 'moegen'
 TV[OBJCASE=dat, AGR=[NUM=pl,PER=1]] -> 'folgen' | 'helfen'
 TV[OBJCASE=dat, AGR=[NUM=pl,PER=2]] -> 'folgt' | 'helft'
 TV[OBJCASE=dat, AGR=[NUM=pl,PER=3]] -> 'folgen' | 'helfen'

As you can see, the feature objcase is used to specify the case that a verb governs on its
object. The next example illustrates the parse tree for a sentence containing a verb that
governs the dative case:

>>> tokens = 'ich folge den Katzen'.split()
>>> cp = load_parser('grammars/book_grammars/german.fcfg')
>>> for tree in cp.nbest_parse(tokens):
...     print tree
(S[]
  (NP[AGR=[NUM='sg', PER=1], CASE='nom']
    (PRO[AGR=[NUM='sg', PER=1], CASE='nom'] ich))
  (VP[AGR=[NUM='sg', PER=1]]
    (TV[AGR=[NUM='sg', PER=1], OBJCASE='dat'] folge)
    (NP[AGR=[GND='fem', NUM='pl', PER=3], CASE='dat']
      (Det[AGR=[NUM='pl', PER=3], CASE='dat'] den)
      (N[AGR=[GND='fem', NUM='pl', PER=3]] Katzen))))

In developing grammars, excluding ungrammatical word sequences is often as chal-
lenging as parsing grammatical ones. In order to get an idea where and why a sequence
fails to parse, setting the trace parameter of the load_parser() method can be crucial.
Consider the following parse failure:

>>> tokens = 'ich folge den Katze'.split()
>>> cp = load_parser('grammars/book_grammars/german.fcfg', trace=2)
>>> for tree in cp.nbest_parse(tokens):
...     print tree
|.ich.fol.den.Kat.|
|[---]   .   .   .| PRO[AGR=[NUM='sg', PER=1], CASE='nom'] -> 'ich' *
|[---]   .   .   .| NP[AGR=[NUM='sg', PER=1], CASE='nom']
                  -> PRO[AGR=[NUM='sg', PER=1], CASE='nom'] *
|[--->   .   .   .| S[] -> NP[AGR=?a, CASE='nom'] * VP[AGR=?a]
                        {?a: [NUM='sg', PER=1]}
|.   [---]   .   .| TV[AGR=[NUM='sg', PER=1], OBJCASE='dat'] -> 'folge' *
|.   [--->   .   .| VP[AGR=?a] -> TV[AGR=?a, OBJCASE=?c]
                        * NP[CASE=?c] {?a: [NUM='sg', PER=1], ?c: 'dat'}
|.   .   [---]   .| Det[AGR=[GND='masc', NUM='sg', PER=3], CASE='acc'] -> 'den' *
|.   .   [---]   .| Det[AGR=[NUM='pl', PER=3], CASE='dat'] -> 'den' *
|.   .   [--->   .| NP[AGR=?a, CASE=?c] -> Det[AGR=?a, CASE=?c]
                  * N[AGR=?a, CASE=?c] {?a: [NUM='pl', PER=3], ?c: 'dat'}
|.   .   [--->   .| NP[AGR=?a, CASE=?c] -> Det[AGR=?a, CASE=?c] * N[AGR=?a, CASE=?c]
                 {?a: [GND='masc', NUM='sg', PER=3], ?c: 'acc'}
|.   .   .   [---]| N[AGR=[GND='fem', NUM='sg', PER=3]] -> 'Katze' *
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The last two Scanner lines in the trace show that den is recognized as admitting two
possible categories: Det[AGR=[GND='masc', NUM='sg', PER=3], CASE='acc'] and
Det[AGR=[NUM='pl', PER=3], CASE='dat']. We know from the grammar in Exam-
ple 9-4 that Katze has category N[AGR=[GND=fem, NUM=sg, PER=3]]. Thus there is no
binding for the variable ?a in production:

NP[CASE=?c, AGR=?a] -> Det[CASE=?c, AGR=? a] N[CASE=?c, AGR=?a] 

that will satisfy these constraints, since the AGR value of Katze will not unify with either
of the AGR values of den, that is, with either [GND='masc', NUM='sg', PER=3] or
[NUM='pl', PER=3].

9.4  Summary
• The traditional categories of context-free grammar are atomic symbols. An impor-

tant motivation for feature structures is to capture fine-grained distinctions that
would otherwise require a massive multiplication of atomic categories.

• By using variables over feature values, we can express constraints in grammar pro-
ductions that allow the realization of different feature specifications to be inter-
dependent.

• Typically we specify fixed values of features at the lexical level and constrain the
values of features in phrases to unify with the corresponding values in their
children.

• Feature values are either atomic or complex. A particular subcase of atomic value
is the Boolean value, represented by convention as [+/- feat].

• Two features can share a value (either atomic or complex). Structures with shared
values are said to be re-entrant. Shared values are represented by numerical indexes
(or tags) in AVMs.

• A path in a feature structure is a tuple of features corresponding to the labels on a
sequence of arcs from the root of the graph representation.

• Two paths are equivalent if they share a value.

• Feature structures are partially ordered by subsumption. FS0 subsumes FS1 when
FS0 is more general (less informative) than FS1.

• The unification of two structures FS0 and FS1, if successful, is the feature structure
FS2 that contains the combined information of both FS0 and FS1.

• If unification specializes a path π in FS, then it also specializes every path π' equiv-
alent to π.

• We can use feature structures to build succinct analyses of a wide variety of lin-
guistic phenomena, including verb subcategorization, inversion constructions,
unbounded dependency constructions, and case government.

356 | Chapter 9: Building Feature-Based Grammars



9.5  Further Reading
Please consult http://www.nltk.org/ for further materials on this chapter, including
HOWTOs feature structures, feature grammars, Earley parsing, and grammar test
suites.

For an excellent introduction to the phenomenon of agreement, see (Corbett, 2006).

The earliest use of features in theoretical linguistics was designed to capture phono-
logical properties of phonemes. For example, a sound like /b/ might be decomposed
into the structure [+labial, +voice]. An important motivation was to capture gener-
alizations across classes of segments, for example, that /n/ gets realized as /m/ preceding
any +labial consonant. Within Chomskyan grammar, it was standard to use atomic
features for phenomena such as agreement, and also to capture generalizations across
syntactic categories, by analogy with phonology. A radical expansion of the use of
features in theoretical syntax was advocated by Generalized Phrase Structure Grammar
(GPSG; [Gazdar et al., 1985]), particularly in the use of features with complex values.

Coming more from the perspective of computational linguistics, (Kay, 1985) proposed
that functional aspects of language could be captured by unification of attribute-value
structures, and a similar approach was elaborated by (Grosz & Stickel, 1983) within
the PATR-II formalism. Early work in Lexical-Functional grammar (LFG; [Kaplan &
Bresnan, 1982]) introduced the notion of an f-structure that was primarily intended
to represent the grammatical relations and predicate-argument structure associated
with a constituent structure parse. (Shieber, 1986) provides an excellent introduction
to this phase of research into feature-based grammars.

One conceptual difficulty with algebraic approaches to feature structures arose when
researchers attempted to model negation. An alternative perspective, pioneered by
(Kasper & Rounds, 1986) and (Johnson, 1988), argues that grammars involve descrip-
tions of feature structures rather than the structures themselves. These descriptions are
combined using logical operations such as conjunction, and negation is just the usual
logical operation over feature descriptions. This description-oriented perspective was
integral to LFG from the outset (Kaplan, 1989), and was also adopted by later versions
of Head-Driven Phrase Structure Grammar (HPSG; [Sag & Wasow, 1999]). A com-
prehensive bibliography of HPSG literature can be found at http://www.cl.uni-bremen
.de/HPSG-Bib/.

Feature structures, as presented in this chapter, are unable to capture important con-
straints on linguistic information. For example, there is no way of saying that the only
permissible values for NUM are sg and pl, while a specification such as [NUM=masc] is
anomalous. Similarly, we cannot say that the complex value of AGR must contain spec-
ifications for the features PER, NUM, and GND, but cannot contain a specification such as
[SUBCAT=trans]. Typed feature structures were developed to remedy this deficiency. 
A good early review of work on typed feature structures is (Emele & Zajac, 1990). A
more comprehensive examination of the formal foundations can be found in
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(Carpenter, 1992), while (Copestake, 2002) focuses on implementing an HPSG-orien-
ted approach to typed feature structures.

There is a copious literature on the analysis of German within feature-based grammar
frameworks. (Nerbonne, Netter & Pollard, 1994) is a good starting point for the HPSG
literature on this topic, while (Müller, 2002) gives a very extensive and detailed analysis
of German syntax in HPSG.

Chapter 15 of (Jurafsky & Martin, 2008) discusses feature structures, the unification
algorithm, and the integration of unification into parsing algorithms.

9.6  Exercises
1. ○ What constraints are required to correctly parse word sequences like I am hap-

py and she is happy but not *you is happy or *they am happy? Implement two sol-
utions for the present tense paradigm of the verb be in English, first taking Gram-
mar (8) as your starting point, and then taking Grammar (20) as the starting point.

2. ○ Develop a variant of grammar in Example 9-1 that uses a feature COUNT to make
the distinctions shown here:

(56) a. The boy sings.

b. *Boy sings.

(57) a. The boys sing.

b. Boys sing.

(58) a. The water is precious.

b. Water is precious.

3. ○ Write a function subsumes() that holds of two feature structures fs1 and fs2 just
in case fs1 subsumes fs2.

4. ○ Modify the grammar illustrated in (30) to incorporate a BAR feature for dealing
with phrasal projections.

5. ○ Modify the German grammar in Example 9-4 to incorporate the treatment of
subcategorization presented in Section 9.3.

6. ◑ Develop a feature-based grammar that will correctly describe the following
Spanish noun phrases:

(59) un cuadro hermos-o
INDEF.SG.MASC picture beautiful-SG.MASC
‘a beautiful picture’

(60) un-os cuadro-s hermos-os
INDEF-PL.MASC picture-PL beautiful-PL.MASC
‘beautiful pictures’
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(61) un-a cortina hermos-a
INDEF-SG.FEM curtain beautiful-SG.FEM
‘a beautiful curtain’

(62) un-as cortina-s hermos-as
INDEF-PL.FEM curtain beautiful-PL.FEM
‘beautiful curtains’

7. ◑ Develop a wrapper for the earley_parser so that a trace is only printed if the
input sequence fails to parse.

8. ◑ Consider the feature structures shown in Example 9-5.

Example 9-5. Exploring feature structures.

fs1 = nltk.FeatStruct("[A = ?x, B= [C = ?x]]")
fs2 = nltk.FeatStruct("[B = [D = d]]")
fs3 = nltk.FeatStruct("[B = [C = d]]")
fs4 = nltk.FeatStruct("[A = (1)[B = b], C->(1)]")
fs5 = nltk.FeatStruct("[A = (1)[D = ?x], C = [E -> (1), F = ?x] ]")
fs6 = nltk.FeatStruct("[A = [D = d]]")
fs7 = nltk.FeatStruct("[A = [D = d], C = [F = [D = d]]]")
fs8 = nltk.FeatStruct("[A = (1)[D = ?x, G = ?x], C = [B = ?x, E -> (1)] ]")
fs9 = nltk.FeatStruct("[A = [B = b], C = [E = [G = e]]]")
fs10 = nltk.FeatStruct("[A = (1)[B = b], C -> (1)]")

Work out on paper what the result is of the following unifications. (Hint: you might
find it useful to draw the graph structures.)

a. fs1 and fs2

b. fs1 and fs3

c. fs4 and fs5

d. fs5 and fs6

e. fs5 and fs7

f. fs8 and fs9

g. fs8 and fs10

Check your answers using NLTK.

9. ◑ List two feature structures that subsume [A=?x, B=?x].

10. ◑ Ignoring structure sharing, give an informal algorithm for unifying two feature
structures.

11. ◑ Extend the German grammar in Example 9-4 so that it can handle so-called verb-
second structures like the following:

(63) Heute sieht der Hund die Katze.

12. ◑ Seemingly synonymous verbs have slightly different syntactic properties (Levin,
1993). Consider the following patterns of grammaticality for the verbs loaded,
filled, and dumped. Can you write grammar productions to handle such data?
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(64) a. The farmer loaded the cart with sand

b. The farmer loaded sand into the cart

c. The farmer filled the cart with sand

d. *The farmer filled sand into the cart

e. *The farmer dumped the cart with sand

f. The farmer dumped sand into the cart

13. ● Morphological paradigms are rarely completely regular, in the sense of every cell
in the matrix having a different realization. For example, the present tense conju-
gation of the lexeme walk has only two distinct forms: walks for the third-person
singular, and walk for all other combinations of person and number. A successful
analysis should not require redundantly specifying that five out of the six possible
morphological combinations have the same realization. Propose and implement a
method for dealing with this.

14. ● So-called head features are shared between the parent node and head child. For
example, TENSE is a head feature that is shared between a VP and its head V child.
See (Gazdar et al., 1985) for more details. Most of the features we have looked at
are head features—exceptions are SUBCAT and SLASH. Since the sharing of head fea-
tures is predictable, it should not need to be stated explicitly in the grammar
productions. Develop an approach that automatically accounts for this regular
behavior of head features.

15. ● Extend NLTK’s treatment of feature structures to allow unification into list-
valued features, and use this to implement an HPSG-style analysis of subcategori-
zation, whereby the SUBCAT of a head category is the concatenation of its
complements’ categories with the SUBCAT value of its immediate parent.

16. ● Extend NLTK’s treatment of feature structures to allow productions with un-
derspecified categories, such as S[-INV] -> ?x S/?x.

17. ● Extend NLTK’s treatment of feature structures to allow typed feature structures.

18. ● Pick some grammatical constructions described in (Huddleston & Pullum,
2002), and develop a feature-based grammar to account for them.
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CHAPTER 10

Analyzing the Meaning of Sentences

We have seen how useful it is to harness the power of a computer to process text on a
large scale. However, now that we have the machinery of parsers and feature-based
grammars, can we do anything similarly useful by analyzing the meaning of sentences?
The goal of this chapter is to answer the following questions:

1. How can we represent natural language meaning so that a computer can process
these representations?

2. How can we associate meaning representations with an unlimited set of sentences?

3. How can we use programs that connect the meaning representations of sentences
to stores of knowledge?

Along the way we will learn some formal techniques in the field of logical semantics,
and see how these can be used for interrogating databases that store facts about the
world.

10.1  Natural Language Understanding
Querying a Database
Suppose we have a program that lets us type in a natural language question and gives
us back the right answer:

(1) a. Which country is Athens in?

b. Greece.

How hard is it to write such a program? And can we just use the same techniques that
we’ve encountered so far in this book, or does it involve something new? In this section,
we will show that solving the task in a restricted domain is pretty straightforward. But
we will also see that to address the problem in a more general way, we have to open up
a whole new box of ideas and techniques, involving the representation of meaning.
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So let’s start off by assuming that we have data about cities and countries in a structured
form. To be concrete, we will use a database table whose first few rows are shown in
Table 10-1.

The data illustrated in Table 10-1 is drawn from the Chat-80 system
(Warren & Pereira, 1982). Population figures are given in thousands,
but note that the data used in these examples dates back at least to the
1980s, and was already somewhat out of date at the point when (Warren
& Pereira, 1982) was published.

Table 10-1. city_table: A table of cities, countries, and populations

City Country Population

athens greece 1368

bangkok thailand 1178

barcelona spain 1280

berlin east_germany 3481

birmingham united_kingdom 1112

The obvious way to retrieve answers from this tabular data involves writing queries in
a database query language such as SQL.

SQL (Structured Query Language) is a language designed for retrieving
and managing data in relational databases. If you want to find out more
about SQL, http://www.w3schools.com/sql/ is a convenient online
reference.

For example, executing the query (2) will pull out the value 'greece':

(2) SELECT Country FROM city_table WHERE City = 'athens'

This specifies a result set consisting of all values for the column Country in data rows
where the value of the City column is 'athens'.

How can we get the same effect using English as our input to the query system? The
feature-based grammar formalism described in Chapter 9 makes it easy to translate
from English to SQL. The grammar sql0.fcfg illustrates how to assemble a meaning
representation for a sentence in tandem with parsing the sentence. Each phrase struc-
ture rule is supplemented with a recipe for constructing a value for the feature SEM. You
can see that these recipes are extremely simple; in each case, we use the string concat-
enation operation + to splice the values for the child constituents to make a value for
the parent constituent.
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>>> nltk.data.show_cfg('grammars/book_grammars/sql0.fcfg')
% start S
S[SEM=(?np + WHERE + ?vp)] -> NP[SEM=?np] VP[SEM=?vp]
VP[SEM=(?v + ?pp)] -> IV[SEM=?v] PP[SEM=?pp]
VP[SEM=(?v + ?ap)] -> IV[SEM=?v] AP[SEM=?ap]
NP[SEM=(?det + ?n)] -> Det[SEM=?det] N[SEM=?n]
PP[SEM=(?p + ?np)] -> P[SEM=?p] NP[SEM=?np]
AP[SEM=?pp] -> A[SEM=?a] PP[SEM=?pp]
NP[SEM='Country="greece"'] -> 'Greece'
NP[SEM='Country="china"'] -> 'China'
Det[SEM='SELECT'] -> 'Which' | 'What'
N[SEM='City FROM city_table'] -> 'cities'
IV[SEM=''] -> 'are'
A[SEM=''] -> 'located'
P[SEM=''] -> 'in'

This allows us to parse a query into SQL:

>>> from nltk import load_parser
>>> cp = load_parser('grammars/book_grammars/sql0.fcfg')
>>> query = 'What cities are located in China'
>>> trees = cp.nbest_parse(query.split())
>>> answer = trees[0].node['sem']
>>> q = ' '.join(answer)
>>> print q
SELECT City FROM city_table WHERE Country="china"

Your Turn: Run the parser with maximum tracing on, i.e., cp =
load_parser('grammars/book_grammars/sql0.fcfg', trace=3), and ex-
amine how the values of SEM are built up as complete edges are added
to the chart.

Finally, we execute the query over the database city.db and retrieve some results:

>>> from nltk.sem import chat80
>>> rows = chat80.sql_query('corpora/city_database/city.db', q)
>>> for r in rows: print r[0], 
canton chungking dairen harbin kowloon mukden peking shanghai sian tientsin

Since each row r is a one-element tuple, we print out the member of the tuple rather
than the tuple itself .

To summarize, we have defined a task where the computer returns useful data in re-
sponse to a natural language query, and we implemented this by translating a small
subset of English into SQL. We can say that our NLTK code already “understands”
SQL, given that Python is able to execute SQL queries against a database, and by ex-
tension it also “understands” queries such as What cities are located in China. This
parallels being able to translate from Dutch into English as an example of natural lan-
guage understanding. Suppose that you are a native speaker of English, and have started
to learn Dutch. Your teacher asks if you understand what (3) means:

(3) Margrietje houdt van Brunoke.
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If you know the meanings of the individual words in (3), and know how these meanings
are combined to make up the meaning of the whole sentence, you might say that (3)
means the same as Margrietje loves Brunoke.

An observer—let’s call her Olga—might well take this as evidence that you do grasp
the meaning of (3). But this would depend on Olga herself understanding English. If
she doesn’t, then your translation from Dutch to English is not going to convince her
of your ability to understand Dutch. We will return to this issue shortly.

The grammar sql0.fcfg, together with the NLTK Earley parser, is instrumental in car-
rying out the translation from English to SQL. How adequate is this grammar? You saw
that the SQL translation for the whole sentence was built up from the translations of
the components. However, there does not seem to be a lot of justification for these
component meaning representations. For example, if we look at the analysis of the
noun phrase Which cities, the determiner and noun correspond respectively to the SQL
fragments SELECT and City FROM city_table. But neither of these has a well-defined
meaning in isolation from the other.

There is another criticism we can level at the grammar: we have “hard-wired” an em-
barrassing amount of detail about the database into it. We need to know the name of
the relevant table (e.g., city_table) and the names of the fields. But our database could
have contained exactly the same rows of data yet used a different table name and dif-
ferent field names, in which case the SQL queries would not be executable. Equally,
we could have stored our data in a different format, such as XML, in which case re-
trieving the same results would require us to translate our English queries into an XML
query language rather than SQL. These considerations suggest that we should be trans-
lating English into something that is more abstract and generic than SQL.

In order to sharpen the point, let’s consider another English query and its translation:

(4) a. What cities are in China and have populations above 1,000,000?

b. SELECT City FROM city_table WHERE Country = 'china' AND Population >
1000

Your Turn: Extend the grammar sql0.fcfg so that it will translate (4a)
into (4b), and check the values returned by the query. Remember that
figures in the Chat-80 database are given in thousands, hence 1000 in
(4b) represents one million inhabitants.

You will probably find it easiest to first extend the grammar to handle
queries like What cities have populations above 1,000,000 before tack-
ling conjunction. After you have had a go at this task, you can compare
your solution to grammars/book_grammars/sql1.fcfg in the NLTK data
distribution.
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Observe that the and conjunction in (4a) is translated into an AND in the SQL counter-
part, (4b). The latter tells us to select results from rows where two conditions are true
together: the value of the Country column is 'china' and the value of the Population
column is greater than 1000. This interpretation for and involves a new idea: it talks
about what is true in some particular situation, and tells us that Cond1 AND Cond2 is true
in situation s if and only if condition Cond1 is true in s and condition Cond2 is true in s.
Although this doesn’t account for the full range of meanings of and in English, it has
the nice property that it is independent of any query language. In fact, we have given
it the standard interpretation from classical logic. In the following sections, we will
explore an approach in which sentences of natural language are translated into logic
instead of an executable query language such as SQL. One advantage of logical for-
malisms is that they are more abstract and therefore more generic. If we wanted to,
once we had our translation into logic, we could then translate it into various other
special-purpose languages. In fact, most serious attempts to query databases via natural
language have used this methodology.

Natural Language, Semantics, and Logic
We started out trying to capture the meaning of (1a) by translating it into a query in
another language, SQL, which the computer could interpret and execute. But this still
begged the question whether the translation was correct. Stepping back from database
query, we noted that the meaning of and seems to depend on being able to specify when
statements are true or not in a particular situation. Instead of translating a sentence S
from one language to another, we try to say what S is about by relating it to a situation
in the world. Let’s pursue this further. Imagine there is a situation s where there are
two entities, Margrietje and her favorite doll, Brunoke. In addition, there is a relation
holding between the two entities, which we will call the love relation. If you understand
the meaning of (3), then you know that it is true in situation s. In part, you know this
because you know that Margrietje refers to Margrietje, Brunoke refers to Brunoke, and
houdt van refers to the love relation.

We have introduced two fundamental notions in semantics. The first is that declarative
sentences are true or false in certain situations. The second is that definite noun phrases
and proper nouns refer to things in the world. So (3) is true in a situation where Mar-
grietje loves the doll Brunoke, here illustrated in Figure 10-1.

Once we have adopted the notion of truth in a situation, we have a powerful tool for
reasoning. In particular, we can look at sets of sentences, and ask whether they could
be true together in some situation. For example, the sentences in (5) can be both true,
whereas those in (6) and (7) cannot be. In other words, the sentences in (5) are con-
sistent, whereas those in (6) and (7) are inconsistent.

(5) a. Sylvania is to the north of Freedonia.

b. Freedonia is a republic.
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(6) a. The capital of Freedonia has a population of 9,000.

b. No city in Freedonia has a population of 9,000.

(7) a. Sylvania is to the north of Freedonia.

b. Freedonia is to the north of Sylvania.

We have chosen sentences about fictional countries (featured in the Marx Brothers’
1933 movie Duck Soup) to emphasize that your ability to reason about these examples
does not depend on what is true or false in the actual world. If you know the meaning
of the word no, and also know that the capital of a country is a city in that country,
then you should be able to conclude that the two sentences in (6) are inconsistent,
regardless of where Freedonia is or what the population of its capital is. That is, there’s
no possible situation in which both sentences could be true. Similarly, if you know that
the relation expressed by to the north of is asymmetric, then you should be able to
conclude that the two sentences in (7) are inconsistent.

Broadly speaking, logic-based approaches to natural language semantics focus on those
aspects of natural language that guide our judgments of consistency and inconsistency.
The syntax of a logical language is designed to make these features formally explicit.
As a result, determining properties like consistency can often be reduced to symbolic
manipulation, that is, to a task that can be carried out by a computer. In order to pursue
this approach, we first want to develop a technique for representing a possible situation.
We do this in terms of something that logicians call a “model.”

Figure 10-1. Depiction of a situation in which Margrietje loves Brunoke.
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A model for a set W of sentences is a formal representation of a situation in which all
the sentences in W are true. The usual way of representing models involves set theory.
The domain D of discourse (all the entities we currently care about) is a set of individ-
uals, while relations are treated as sets built up from D. Let’s look at a concrete example.
Our domain D will consist of three children, Stefan, Klaus, and Evi, represented re-
spectively as s, k, and e. We write this as D = {s, k, e}. The expression boy denotes
the set consisting of Stefan and Klaus, the expression girl denotes the set consisting of
Evi, and the expression is running denotes the set consisting of Stefan and Evi. Fig-
ure 10-2 is a graphical rendering of the model.

Figure 10-2. Diagram of a model containing a domain D and subsets of D corresponding to the
predicates boy, girl, and is running.

Later in this chapter we will use models to help evaluate the truth or falsity of English
sentences, and in this way to illustrate some methods for representing meaning. How-
ever, before going into more detail, let’s put the discussion into a broader perspective,
and link back to a topic that we briefly raised in Section 1.5. Can a computer understand
the meaning of a sentence? And how could we tell if it did? This is similar to asking
“Can a computer think?” Alan Turing famously proposed to answer this by examining
the ability of a computer to hold sensible conversations with a human (Turing, 1950).
Suppose you are having a chat session with a person and a computer, but you are not
told at the outset which is which. If you cannot identify which of your partners is the
computer after chatting with each of them, then the computer has successfully imitated
a human. If a computer succeeds in passing itself off as human in this “imitation game”
(or “Turing Test” as it is popularly known), then according to Turing, we should be
prepared to say that the computer can think and can be said to be intelligent. So Turing
side-stepped the question of somehow examining the internal states of a computer by
instead using its behavior as evidence of intelligence. By the same reasoning, we have
assumed that in order to say that a computer understands English, it just needs to
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behave as though it did. What is important here is not so much the specifics of Turing’s
imitation game, but rather the proposal to judge a capacity for natural language un-
derstanding in terms of observable behavior.

10.2  Propositional Logic
A logical language is designed to make reasoning formally explicit. As a result, it can
capture aspects of natural language which determine whether a set of sentences is con-
sistent. As part of this approach, we need to develop logical representations of a sen-
tence φ that formally capture the truth-conditions of φ. We’ll start off with a simple
example:

(8) [Klaus chased Evi] and [Evi ran away].

Let’s replace the two sub-sentences in (8) by φ and ψ respectively, and put & for the
logical operator corresponding to the English word and: φ & ψ. This structure is the
logical form of (8).

Propositional logic allows us to represent just those parts of linguistic structure that
correspond to certain sentential connectives. We have just looked at and. Other such
connectives are not, or, and if..., then.... In the formalization of propositional logic, the
counterparts of such connectives are sometimes called Boolean operators. The basic
expressions of propositional logic are propositional symbols, often written as P, Q,
R, etc. There are varying conventions for representing Boolean operators. Since we will
be focusing on ways of exploring logic within NLTK, we will stick to the following
ASCII versions of the operators:

>>> nltk.boolean_ops()
negation            -
conjunction         &
disjunction         |
implication         ->
equivalence         <->

From the propositional symbols and the Boolean operators we can build an infinite set
of well-formed formulas (or just formulas, for short) of propositional logic. First,
every propositional letter is a formula. Then if φ is a formula, so is -φ. And if φ and
ψ are formulas, then so are (φ & ψ), (φ | ψ), (φ -> ψ), and(φ <-> ψ).

Table 10-2 specifies the truth-conditions for formulas containing these operators. As
before we use φ and ψ as variables over sentences, and abbreviate if and only if as iff.

Table 10-2. Truth conditions for the Boolean operators in propositional logic

Boolean operator Truth conditions

negation (it is not the case that ...) -φ is true in s iff φ is false in s

conjunction (and) (φ & ψ) is true in s iff φ is true in s and ψ is true in s
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Boolean operator Truth conditions

disjunction (or) (φ | ψ) is true in s iff φ is true in s or ψ is true in s

implication (if ..., then ...) (φ -> ψ) is true in s iff φ is false in s or ψ is true in s

equivalence (if and only if) (φ <-> ψ) is true in s iff φ and ψ are both true in s or both false in s

These rules are generally straightforward, though the truth conditions for implication
depart in many cases from our usual intuitions about the conditional in English. A
formula of the form (P -> Q) is false only when P is true and Q is false. If P is false (say,
P corresponds to The moon is made of green cheese) and Q is true (say, Q corresponds to
Two plus two equals four), then P -> Q will come out true.

NLTK’s LogicParser() parses logical expressions into various subclasses of Expression:

>>> lp = nltk.LogicParser()
>>> lp.parse('-(P & Q)')
<NegatedExpression -(P & Q)>
>>> lp.parse('P & Q')
<AndExpression (P & Q)>
>>> lp.parse('P | (R -> Q)')
<OrExpression (P | (R -> Q))>
>>> lp.parse('P <-> -- P')
<IffExpression (P <-> --P)>

From a computational perspective, logics give us an important tool for performing
inference. Suppose you state that Freedonia is not to the north of Sylvania, and you
give as your reasons that Sylvania is to the north of Freedonia. In this case, you have
produced an argument. The sentence Sylvania is to the north of Freedonia is the
assumption of the argument, while Freedonia is not to the north of Sylvania is the
conclusion. The step of moving from one or more assumptions to a conclusion is called
inference. Informally, it is common to write arguments in a format where the conclu-
sion is preceded by therefore.

(9) Sylvania is to the north of Freedonia.

Therefore, Freedonia is not to the north of Sylvania.

An argument is valid if there is no possible situation in which its premises are all true
and its conclusion is not true.

Now, the validity of (9) crucially depends on the meaning of the phrase to the north
of, in particular, the fact that it is an asymmetric relation:

(10) if x is to the north of y then y is not to the north of x.

Unfortunately, we can’t express such rules in propositional logic: the smallest elements
we have to play with are atomic propositions, and we cannot “look inside” these to
talk about relations between individuals x and y. The best we can do in this case is
capture a particular case of the asymmetry. Let’s use the propositional symbol SnF to
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stand for Sylvania is to the north of Freedonia and FnS for Freedonia is to the north of
Sylvania. To say that Freedonia is not to the north of Sylvania, we write -FnS. That is,
we treat not as equivalent to the phrase it is not the case that ..., and translate this as the
one-place Boolean operator -. Replacing x and y in (10) by Sylvania and Freedonia
respectively gives us an implication that can be written as:

(11) SnF -> -FnS

How about giving a version of the complete argument? We will replace the first sentence
of (9) by two formulas of propositional logic: SnF, and also the implication in (11),
which expresses (rather poorly) our background knowledge of the meaning of to the
north of. We’ll write [A1, ..., An] / C to represent the argument that conclusion C
follows from assumptions [A1, ..., An]. This leads to the following as a representation
of argument (9):

(12) [SnF, SnF -> -FnS] / -FnS

This is a valid argument: if SnF and SnF -> -FnS are both true in a situation s, then
-FnS must also be true in s. By contrast, if FnS were true, this would conflict with our
understanding that two objects cannot both be to the north of each other in any possible
situation. Equivalently, the list [SnF, SnF -> -FnS, FnS] is inconsistent—these sen-
tences cannot all be true together.

Arguments can be tested for “syntactic validity” by using a proof system. We will say
a little bit more about this later on in Section 10.3. Logical proofs can be carried out
with NLTK’s inference module, for example, via an interface to the third-party theo-
rem prover Prover9. The inputs to the inference mechanism first have to be parsed into
logical expressions by LogicParser().

>>> lp = nltk.LogicParser()
>>> SnF = lp.parse('SnF')
>>> NotFnS = lp.parse('-FnS')
>>> R = lp.parse('SnF -> -FnS')
>>> prover = nltk.Prover9()
>>> prover.prove(NotFnS, [SnF, R])
True

Here’s another way of seeing why the conclusion follows. SnF -> -FnS is semantically
equivalent to -SnF | -FnS, where | is the two-place operator corresponding to or. In
general, φ | ψ is true in a situation s if either φ is true in s or φ is true in s. Now, suppose
both SnF and -SnF | -FnS are true in situation s. If SnF is true, then -SnF cannot also be
true; a fundamental assumption of classical logic is that a sentence cannot be both true
and false in a situation. Consequently, -FnS must be true.

Recall that we interpret sentences of a logical language relative to a model, which is a
very simplified version of the world. A model for propositional logic needs to assign
the values True or False to every possible formula. We do this inductively: first, every
propositional symbol is assigned a value, and then we compute the value of complex
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formulas by consulting the meanings of the Boolean operators (i.e., Table 10-2) and
applying them to the values of the formula’s components. A Valuation is a mapping
from basic symbols of the logic to their values. Here’s an example:

>>> val = nltk.Valuation([('P', True), ('Q', True), ('R', False)])

We initialize a Valuation with a list of pairs, each of which consists of a semantic symbol
and a semantic value. The resulting object is essentially just a dictionary that maps
logical symbols (treated as strings) to appropriate values.

>>> val['P']
True

As we will see later, our models need to be somewhat more complicated in order to
handle the more complex logical forms discussed in the next section; for the time being,
just ignore the dom and g parameters in the following declarations.

>>> dom = set([])
>>> g = nltk.Assignment(dom)

Now let’s initialize a model m that uses val:

>>> m = nltk.Model(dom, val)

Every model comes with an evaluate() method, which will determine the semantic
value of logical expressions, such as formulas of propositional logic; of course, these
values depend on the initial truth values we assigned to propositional symbols such as P,
Q, and R.

>>> print m.evaluate('(P & Q)', g)
True
>>> print m.evaluate('-(P & Q)', g)
False
>>> print m.evaluate('(P & R)', g)
False
>>> print m.evaluate('(P | R)', g)
True

Your Turn: Experiment with evaluating different formulas of proposi-
tional logic. Does the model give the values that you expected?

Up until now, we have been translating our English sentences into propositional logic.
Because we are confined to representing atomic sentences with letters such as P and
Q, we cannot dig into their internal structure. In effect, we are saying that there is no
semantic benefit in dividing atomic sentences into subjects, objects, and predicates.
However, this seems wrong: if we want to formalize arguments such as (9), we have to
be able to “look inside” basic sentences. As a result, we will move beyond propositional
logic to something more expressive, namely first-order logic. This is what we turn to
in the next section.
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10.3  First-Order Logic
In the remainder of this chapter, we will represent the meaning of natural language
expressions by translating them into first-order logic. Not all of natural language se-
mantics can be expressed in first-order logic. But it is a good choice for computational
semantics because it is expressive enough to represent many aspects of semantics, and
on the other hand, there are excellent systems available off the shelf for carrying out
automated inference in first-order logic.

Our next step will be to describe how formulas of first-order logic are constructed, and
then how such formulas can be evaluated in a model.

Syntax
First-order logic keeps all the Boolean operators of propositional logic, but it adds some
important new mechanisms. To start with, propositions are analyzed into predicates
and arguments, which takes us a step closer to the structure of natural languages. The
standard construction rules for first-order logic recognize terms such as individual
variables and individual constants, and predicates that take differing numbers of ar-
guments. For example, Angus walks might be formalized as walk(angus) and Angus
sees Bertie as see(angus, bertie). We will call walk a unary predicate, and see a binary
predicate. The symbols used as predicates do not have intrinsic meaning, although it
is hard to remember this. Returning to one of our earlier examples, there is no logical
difference between (13a) and (13b).

(13) a. love(margrietje, brunoke)

b. houden_van(margrietje, brunoke)

By itself, first-order logic has nothing substantive to say about lexical semantics—the
meaning of individual words—although some theories of lexical semantics can be en-
coded in first-order logic. Whether an atomic predication like see(angus, bertie) is true
or false in a situation is not a matter of logic, but depends on the particular valuation
that we have chosen for the constants see, angus, and bertie. For this reason, such
expressions are called non-logical constants. By contrast, logical constants (such
as the Boolean operators) always receive the same interpretation in every model for
first-order logic.

We should mention here that one binary predicate has special status, namely equality,
as in formulas such as angus = aj. Equality is regarded as a logical constant, since for
individual terms t1 and t2, the formula t1 = t2 is true if and only if t1 and t2 refer to one
and the same entity.

It is often helpful to inspect the syntactic structure of expressions of first-order logic,
and the usual way of doing this is to assign types to expressions. Following the tradition
of Montague grammar, we will use two basic types: e is the type of entities, while t is
the type of formulas, i.e., expressions that have truth values. Given these two basic
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types, we can form complex types for function expressions. That is, given any types
σ and τ, 〈σ, τ〉 is a complex type corresponding to functions from 'σ things’ to 'τ things’.
For example, 〈e, t〉 is the type of expressions from entities to truth values, namely unary
predicates. The LogicParser can be invoked so that it carries out type checking.

>>> tlp = nltk.LogicParser(type_check=True)
>>> parsed = tlp.parse('walk(angus)')
>>> parsed.argument
<ConstantExpression angus>
>>> parsed.argument.type
e
>>> parsed.function
<ConstantExpression walk>
>>> parsed.function.type
<e,?>

Why do we see <e,?> at the end of this example? Although the type-checker will try to
infer as many types as possible, in this case it has not managed to fully specify the type
of walk, since its result type is unknown. Although we are intending walk to receive type
<e, t>, as far as the type-checker knows, in this context it could be of some other type,
such as <e, e> or <e, <e, t>. To help the type-checker, we need to specify a signa-
ture, implemented as a dictionary that explicitly associates types with non-logical con-
stants:

>>> sig = {'walk': '<e, t>'}
>>> parsed = tlp.parse('walk(angus)', sig)
>>> parsed.function.type
<e,t>

A binary predicate has type 〈e, 〈e, t〉〉. Although this is the type of something which
combines first with an argument of type e to make a unary predicate, we represent
binary predicates as combining directly with their two arguments. For example, the
predicate see in the translation of Angus sees Cyril will combine with its arguments to
give the result see(angus, cyril).

In first-order logic, arguments of predicates can also be individual variables such as x,
y, and z. In NLTK, we adopt the convention that variables of type e are all lowercase.
Individual variables are similar to personal pronouns like he, she, and it, in that we need
to know about the context of use in order to figure out their denotation. One way of
interpreting the pronoun in (14) is by pointing to a relevant individual in the local
context.

(14) He disappeared.

Another way is to supply a textual antecedent for the pronoun he, for example, by
uttering (15a) prior to (14). Here, we say that he is coreferential with the noun phrase
Cyril. In such a context, (14) is semantically equivalent to (15b).

(15) a. Cyril is Angus’s dog.

b. Cyril disappeared.
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Consider by contrast the occurrence of he in (16a). In this case, it is bound by the
indefinite NP a dog, and this is a different relationship than coreference. If we replace
the pronoun he by a dog, the result (16b) is not semantically equivalent to (16a).

(16) a. Angus had a dog but he disappeared.

b. Angus had a dog but a dog disappeared.

Corresponding to (17a), we can construct an open formula (17b) with two occurrences
of the variable x. (We ignore tense to simplify exposition.)

(17) a. He is a dog and he disappeared.

b. dog(x) & disappear(x)

By placing an existential quantifier ∃x (“for some x”) in front of (17b), we can
bind these variables, as in (18a), which means (18b) or, more idiomatically, (18c).

(18) a. ∃x.(dog(x) & disappear(x))

b. At least one entity is a dog and disappeared.

c. A dog disappeared.

Here is the NLTK counterpart of (18a):

(19) exists x.(dog(x) & disappear(x))

In addition to the existential quantifier, first-order logic offers us the universal quan-
tifier ∀x (“for all x”), illustrated in (20).

(20) a. ∀x.(dog(x) → disappear(x))

b. Everything has the property that if it is a dog, it disappears.

c. Every dog disappeared.

Here is the NLTK counterpart of (20a):

(21) all x.(dog(x) -> disappear(x))

Although (20a) is the standard first-order logic translation of (20c), the truth conditions
aren’t necessarily what you expect. The formula says that if some x is a dog, then x
disappears—but it doesn’t say that there are any dogs. So in a situation where there are
no dogs, (20a) will still come out true. (Remember that (P -> Q) is true when P is false.)
Now you might argue that every dog disappeared does presuppose the existence of dogs,
and that the logic formalization is simply wrong. But it is possible to find other examples
that lack such a presupposition. For instance, we might explain that the value of the
Python expression astring.replace('ate', '8') is the result of replacing every occur-
rence of 'ate' in astring by '8', even though there may in fact be no such occurrences
(Table 3-2).
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We have seen a number of examples where variables are bound by quantifiers. What
happens in formulas such as the following?

((exists x. dog(x)) -> bark(x))

The scope of the exists x quantifier is dog(x), so the occurrence of x in bark(x) is
unbound. Consequently it can become bound by some other quantifier, for example,
all x in the next formula:

all x.((exists x. dog(x)) -> bark(x))

In general, an occurrence of a variable x in a formula φ is free in φ if that occurrence
doesn’t fall within the scope of all x or some x in φ. Conversely, if x is free in formula
φ, then it is bound in all x.φ and exists x.φ. If all variable occurrences in a formula
are bound, the formula is said to be closed.

We mentioned before that the parse() method of NLTK’s LogicParser returns objects
of class Expression. Each instance expr of this class comes with a method free(), which
returns the set of variables that are free in expr.

>>> lp = nltk.LogicParser()
>>> lp.parse('dog(cyril)').free()
set([])
>>> lp.parse('dog(x)').free()
set([Variable('x')])
>>> lp.parse('own(angus, cyril)').free()
set([])
>>> lp.parse('exists x.dog(x)').free()
set([])
>>> lp.parse('((some x. walk(x)) -> sing(x))').free()
set([Variable('x')])
>>> lp.parse('exists x.own(y, x)').free()
set([Variable('y')])

First-Order Theorem Proving
Recall the constraint on to the north of, which we proposed earlier as (10):

(22) if x is to the north of y then y is not to the north of x.

We observed that propositional logic is not expressive enough to represent generali-
zations about binary predicates, and as a result we did not properly capture the argu-
ment Sylvania is to the north of Freedonia. Therefore, Freedonia is not to the north of
Sylvania.

You have no doubt realized that first-order logic, by contrast, is ideal for formalizing
such rules:

all x. all y.(north_of(x, y) -> -north_of(y, x))

Even better, we can perform automated inference to show the validity of the argument.
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The general case in theorem proving is to determine whether a formula that we want
to prove (a proof goal) can be derived by a finite sequence of inference steps from a
list of assumed formulas. We write this as A ⊢ g, where A is a (possibly empty) list of
assumptions, and g is a proof goal. We will illustrate this with NLTK’s interface to the
theorem prover Prover9. First, we parse the required proof goal  and the two as-
sumptions  . Then we create a Prover9 instance , and call its prove() method on
the goal, given the list of assumptions .

>>> NotFnS = lp.parse('-north_of(f, s)')  
>>> SnF = lp.parse('north_of(s, f)')    
>>> R = lp.parse('all x. all y. (north_of(x, y) -> -north_of(y, x))')  
>>> prover = nltk.Prover9()   
>>> prover.prove(NotFnS, [SnF, R])  
True

Happily, the theorem prover agrees with us that the argument is valid. By contrast, it
concludes that it is not possible to infer north_of(f, s) from our assumptions:

>>> FnS = lp.parse('north_of(f, s)')
>>> prover.prove(FnS, [SnF, R])
False

Summarizing the Language of First-Order Logic
We’ll take this opportunity to restate our earlier syntactic rules for propositional logic
and add the formation rules for quantifiers; together, these give us the syntax of first-
order logic. In addition, we make explicit the types of the expressions involved. We’ll
adopt the convention that 〈en, t〉 is the type of a predicate that combines with n argu-
ments of type e to yield an expression of type t. In this case, we say that n is the arity
of the predicate.

1. If P is a predicate of type 〈en, t〉 , and α1, ... αn are terms of type e, then
P(α1, ... αn) is of type t.

2. If α and β are both of type e, then (α = β) and (α != β) are of type t.

3. If φ is of type t, then so is -φ.

4. If φ and ψ are of type t, then so are (φ & ψ), (φ | ψ), (φ -> ψ), and (φ <-> ψ).

5. If φ is of type t, and x is a variable of type e, then exists x.φ and all x.φ are of
type t.

Table 10-3 summarizes the new logical constants of the logic module, and two of the
methods of Expressions.
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Table 10-3. Summary of new logical relations and operators required for first-order logic

Example Description

= Equality

!= Inequality

exists Existential quantifier

all Universal quantifier

Truth in Model
We have looked at the syntax of first-order logic, and in Section 10.4 we will examine
the task of translating English into first-order logic. Yet as we argued in Section 10.1,
this gets us further forward only if we can give a meaning to sentences of first-order
logic. In other words, we need to give a truth-conditional semantics to first-order logic.
From the point of view of computational semantics, there are obvious limits to how far
one can push this approach. Although we want to talk about sentences being true or
false in situations, we only have the means of representing situations in the computer
in a symbolic manner. Despite this limitation, it is still possible to gain a clearer picture
of truth-conditional semantics by encoding models in NLTK.

Given a first-order logic language L, a model M for L is a pair 〈D, Val〉, where D is an
non-empty set called the domain of the model, and Val is a function called the valu-
ation function, which assigns values from D to expressions of L as follows:

1. For every individual constant c in L, Val(c) is an element of D.

2. For every predicate symbol P of arity n ≥ 0, Val(P) is a function from Dn to
{True, False}. (If the arity of P is 0, then Val(P) is simply a truth value, and P is
regarded as a propositional symbol.)

According to 2, if P is of arity 2, then Val(P) will be a function f from pairs of elements
of D to {True, False}. In the models we shall build in NLTK, we’ll adopt a more con-
venient alternative, in which Val(P) is a set S of pairs, defined as follows:

(23) S = {s | f(s) = True}

Such an f is called the characteristic function of S (as discussed in the further
readings).

Relations are represented semantically in NLTK in the standard set-theoretic way: as
sets of tuples. For example, let’s suppose we have a domain of discourse consisting of
the individuals Bertie, Olive, and Cyril, where Bertie is a boy, Olive is a girl, and Cyril
is a dog. For mnemonic reasons, we use b, o, and c as the corresponding labels in the
model. We can declare the domain as follows:

>>> dom = set(['b', 'o', 'c'])
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We will use the utility function parse_valuation() to convert a sequence of strings of
the form symbol => value into a Valuation object.

>>> v = """
... bertie => b
... olive => o
... cyril => c
... boy => {b}
... girl => {o}
... dog => {c}
... walk => {o, c}
... see => {(b, o), (c, b), (o, c)}
... """
>>> val = nltk.parse_valuation(v)
>>> print val
{'bertie': 'b',
 'boy': set([('b',)]),
 'cyril': 'c',
 'dog': set([('c',)]),
 'girl': set([('o',)]),
 'olive': 'o',
 'see': set([('o', 'c'), ('c', 'b'), ('b', 'o')]),
 'walk': set([('c',), ('o',)])}

So according to this valuation, the value of see is a set of tuples such that Bertie sees
Olive, Cyril sees Bertie, and Olive sees Cyril.

Your Turn: Draw a picture of the domain dom and the sets correspond-
ing to each of the unary predicates, by analogy with the diagram shown
in Figure 10-2.

You may have noticed that our unary predicates (i.e, boy, girl, dog) also come out as
sets of singleton tuples, rather than just sets of individuals. This is a convenience which
allows us to have a uniform treatment of relations of any arity. A predication of the
form P(τ1, ... τn), where P is of arity n, comes out true just in case the tuple of values
corresponding to (τ1, ... τn) belongs to the set of tuples in the value of P.

>>> ('o', 'c') in val['see']
True
>>> ('b',) in val['boy']
True

Individual Variables and Assignments
In our models, the counterpart of a context of use is a variable assignment. This is a
mapping from individual variables to entities in the domain. Assignments are created
using the Assignment constructor, which also takes the model’s domain of discourse as
a parameter. We are not required to actually enter any bindings, but if we do, they are
in a (variable, value) format similar to what we saw earlier for valuations.
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>>> g = nltk.Assignment(dom, [('x', 'o'), ('y', 'c')])
>>> g
{'y': 'c', 'x': 'o'}

In addition, there is a print() format for assignments which uses a notation closer to
that often found in logic textbooks:

>>> print g
g[c/y][o/x]

Let’s now look at how we can evaluate an atomic formula of first-order logic. First, we
create a model, and then we call the evaluate() method to compute the truth value:

>>> m = nltk.Model(dom, val)
>>> m.evaluate('see(olive, y)', g)
True

What’s happening here? We are evaluating a formula which is similar to our earlier
example, see(olive, cyril). However, when the interpretation function encounters
the variable y, rather than checking for a value in val, it asks the variable assignment
g to come up with a value:

>>> g['y']
'c'

Since we already know that individuals o and c stand in the see relation, the value
True is what we expected. In this case, we can say that assignment g satisfies the for-
mula see(olive, y). By contrast, the following formula evaluates to False relative to
g (check that you see why this is).

>>> m.evaluate('see(y, x)', g)
False

In our approach (though not in standard first-order logic), variable assignments are
partial. For example, g says nothing about any variables apart from x and y. The method
purge() clears all bindings from an assignment.

>>> g.purge()
>>> g
{}

If we now try to evaluate a formula such as see(olive, y) relative to g, it is like trying
to interpret a sentence containing a him when we don’t know what him refers to. In
this case, the evaluation function fails to deliver a truth value.

>>> m.evaluate('see(olive, y)', g)
'Undefined'

Since our models already contain rules for interpreting Boolean operators, arbitrarily
complex formulas can be composed and evaluated.

>>> m.evaluate('see(bertie, olive) & boy(bertie) & -walk(bertie)', g)
True

The general process of determining truth or falsity of a formula in a model is called
model checking.
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Quantification
One of the crucial insights of modern logic is that the notion of variable satisfaction
can be used to provide an interpretation for quantified formulas. Let’s use (24) as an
example.

(24) exists x.(girl(x) & walk(x))

When is it true? Let’s think about all the individuals in our domain, i.e., in dom. We
want to check whether any of these individuals has the property of being a girl and
walking. In other words, we want to know if there is some u in dom such that g[u/x]
satisfies the open formula (25).

(25) girl(x) & walk(x)

Consider the following:

>>> m.evaluate('exists x.(girl(x) & walk(x))', g)
True

evaluate() returns True here because there is some u in dom such that (25) is satisfied
by an assignment which binds x to u. In fact, o is such a u:

>>> m.evaluate('girl(x) & walk(x)', g.add('x', 'o'))
True

One useful tool offered by NLTK is the satisfiers() method. This returns a set of all
the individuals that satisfy an open formula. The method parameters are a parsed for-
mula, a variable, and an assignment. Here are a few examples:

>>> fmla1 = lp.parse('girl(x) | boy(x)')
>>> m.satisfiers(fmla1, 'x', g)
set(['b', 'o'])
>>> fmla2 = lp.parse('girl(x) -> walk(x)')
>>> m.satisfiers(fmla2, 'x', g)
set(['c', 'b', 'o'])
>>> fmla3 = lp.parse('walk(x) -> girl(x)')
>>> m.satisfiers(fmla3, 'x', g)
set(['b', 'o'])

It’s useful to think about why fmla2 and fmla3 receive the values they do. The truth
conditions for -> mean that fmla2 is equivalent to -girl(x) | walk(x), which is satisfied
by something that either isn’t a girl or walks. Since neither b (Bertie) nor c (Cyril) are
girls, according to model m, they both satisfy the whole formula. And of course o satisfies
the formula because o satisfies both disjuncts. Now, since every member of the domain
of discourse satisfies fmla2, the corresponding universally quantified formula is also
true.

>>> m.evaluate('all x.(girl(x) -> walk(x))', g)
True
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In other words, a universally quantified formula ∀x.φ is true with respect to g just in
case for every u, φ is true with respect to g[u/x].

Your Turn: Try to figure out, first with pencil and paper, and then using
m.evaluate(), what the truth values are for all x.(girl(x) &
walk(x)) and exists x.(boy(x) -> walk(x)). Make sure you understand
why they receive these values.

Quantifier Scope Ambiguity
What happens when we want to give a formal representation of a sentence with two
quantifiers, such as the following?

(26) Everybody admires someone.

There are (at least) two ways of expressing (26) in first-order logic:

(27) a. all x.(person(x) -> exists y.(person(y) & admire(x,y)))

b. exists y.(person(y) & all x.(person(x) -> admire(x,y)))

Can we use both of these? The answer is yes, but they have different meanings. (27b)
is logically stronger than (27a): it claims that there is a unique person, say, Bruce, who
is admired by everyone. (27a), on the other hand, just requires that for every person
u, we can find some person u' whom u admires; but this could be a different person
u' in each case. We distinguish between (27a) and (27b) in terms of the scope of the
quantifiers. In the first, ∀ has wider scope than ∃, whereas in (27b), the scope ordering
is reversed. So now we have two ways of representing the meaning of (26), and they
are both quite legitimate. In other words, we are claiming that (26) is ambiguous with
respect to quantifier scope, and the formulas in (27) give us a way to make the two
readings explicit. However, we are not just interested in associating two distinct rep-
resentations with (26); we also want to show in detail how the two representations lead
to different conditions for truth in a model.

In order to examine the ambiguity more closely, let’s fix our valuation as follows:

>>> v2 = """
... bruce => b
... cyril => c
... elspeth => e
... julia => j
... matthew => m
... person => {b, e, j, m}
... admire => {(j, b), (b, b), (m, e), (e, m), (c, a)}
... """
>>> val2 = nltk.parse_valuation(v2)

The admire relation can be visualized using the mapping diagram shown in (28).
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(28)

In (28), an arrow between two individuals x and y indicates that x admires y. So j and
b both admire b (Bruce is very vain), while e admires m and m admires e. In this model,
formula (27a) is true but (27b) is false. One way of exploring these results is by using
the satisfiers() method of Model objects.

>>> dom2 = val2.domain
>>> m2 = nltk.Model(dom2, val2)
>>> g2 = nltk.Assignment(dom2)
>>> fmla4 = lp.parse('(person(x) -> exists y.(person(y) & admire(x, y)))')
>>> m2.satisfiers(fmla4, 'x', g2)
set(['a', 'c', 'b', 'e', 'j', 'm'])

This shows that fmla4 holds of every individual in the domain. By contrast, consider
the formula fmla5; this has no satisfiers for the variable y.

>>> fmla5 = lp.parse('(person(y) & all x.(person(x) -> admire(x, y)))')
>>> m2.satisfiers(fmla5, 'y', g2)
set([])

That is, there is no person that is admired by everybody. Taking a different open for-
mula, fmla6, we can verify that there is a person, namely Bruce, who is admired by both
Julia and Bruce.

>>> fmla6 = lp.parse('(person(y) & all x.((x = bruce | x = julia) -> admire(x, y)))')
>>> m2.satisfiers(fmla6, 'y', g2)
set(['b'])

Your Turn: Devise a new model based on m2 such that (27a) comes out
false in your model; similarly, devise a new model such that (27b) comes
out true.
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Model Building
We have been assuming that we already had a model, and wanted to check the truth
of a sentence in the model. By contrast, model building tries to create a new model,
given some set of sentences. If it succeeds, then we know that the set is consistent, since
we have an existence proof of the model.

We invoke the Mace4 model builder by creating an instance of Mace() and calling its
build_model() method, in an analogous way to calling the Prover9 theorem prover. One
option is to treat our candidate set of sentences as assumptions, while leaving the goal
unspecified. The following interaction shows how both [a, c1] and [a, c2] are con-
sistent lists, since Mace succeeds in building a model for each of them, whereas [c1,
c2] is inconsistent.

>>> a3 = lp.parse('exists x.(man(x) & walks(x))')
>>> c1 = lp.parse('mortal(socrates)')
>>> c2 = lp.parse('-mortal(socrates)')
>>> mb = nltk.Mace(5)
>>> print mb.build_model(None, [a3, c1])
True
>>> print mb.build_model(None, [a3, c2])
True
>>> print mb.build_model(None, [c1, c2])
False

We can also use the model builder as an adjunct to the theorem prover. Let’s suppose
we are trying to prove A ⊢ g, i.e., that g is logically derivable from assumptions A = [a1,
a2, ..., an]. We can feed this same input to Mace4, and the model builder will try to
find a counterexample, that is, to show that g does not follow from A. So, given this
input, Mace4 will try to find a model for the assumptions A together with the negation
of g, namely the list A' = [a1, a2, ..., an, -g]. If g fails to follow from S, then Mace4
may well return with a counterexample faster than Prover9 concludes that it cannot
find the required proof. Conversely, if g is provable from S, Mace4 may take a long time
unsuccessfully trying to find a countermodel, and will eventually give up.

Let’s consider a concrete scenario. Our assumptions are the list [There is a woman that
every man loves, Adam is a man, Eve is a woman]. Our conclusion is Adam loves Eve.
Can Mace4 find a model in which the premises are true but the conclusion is false? In
the following code, we use MaceCommand(), which will let us inspect the model that has
been built.

>>> a4 = lp.parse('exists y. (woman(y) & all x. (man(x) -> love(x,y)))')
>>> a5 = lp.parse('man(adam)')
>>> a6 = lp.parse('woman(eve)')
>>> g = lp.parse('love(adam,eve)')
>>> mc = nltk.MaceCommand(g, assumptions=[a4, a5, a6])
>>> mc.build_model()
True

10.3  First-Order Logic | 383



So the answer is yes: Mace4 found a countermodel in which there is some woman other
than Eve that Adam loves. But let’s have a closer look at Mace4’s model, converted to
the format we use for valuations:

>>> print mc.valuation
{'C1': 'b',
 'adam': 'a',
 'eve': 'a',
 'love': set([('a', 'b')]),
 'man': set([('a',)]),
 'woman': set([('a',), ('b',)])}

The general form of this valuation should be familiar to you: it contains some individual
constants and predicates, each with an appropriate kind of value. What might be puz-
zling is the C1. This is a “Skolem constant” that the model builder introduces as a
representative of the existential quantifier. That is, when the model builder encoun-
tered the exists y part of a4, it knew that there is some individual b in the domain
which satisfies the open formula in the body of a4. However, it doesn’t know whether
b is also the denotation of an individual constant anywhere else in its input, so it makes
up a new name for b on the fly, namely C1. Now, since our premises said nothing about
the individual constants adam and eve, the model builder has decided there is no reason
to treat them as denoting different entities, and they both get mapped to a. Moreover,
we didn’t specify that man and woman denote disjoint sets, so the model builder lets their
denotations overlap. This illustrates quite dramatically the implicit knowledge that we
bring to bear in interpreting our scenario, but which the model builder knows nothing
about. So let's add a new assumption which makes the sets of men and women disjoint.
The model builder still produces a countermodel, but this time it is more in accord with
our intuitions about the situation:

>>> a7 = lp.parse('all x. (man(x) -> -woman(x))')
>>> g = lp.parse('love(adam,eve)')
>>> mc = nltk.MaceCommand(g, assumptions=[a4, a5, a6, a7])
>>> mc.build_model()
True
>>> print mc.valuation
{'C1': 'c',
 'adam': 'a',
 'eve': 'b',
 'love': set([('a', 'c')]),
 'man': set([('a',)]),
 'woman': set([('b',), ('c',)])}

On reflection, we can see that there is nothing in our premises which says that Eve is
the only woman in the domain of discourse, so the countermodel in fact is acceptable.
If we wanted to rule it out, we would have to add a further assumption such as exists
y. all x. (woman(x) -> (x = y)) to ensure that there is only one woman in the model.

384 | Chapter 10: Analyzing the Meaning of Sentences



10.4  The Semantics of English Sentences
Compositional Semantics in Feature-Based Grammar
At the beginning of the chapter we briefly illustrated a method of building semantic
representations on the basis of a syntactic parse, using the grammar framework devel-
oped in Chapter 9. This time, rather than constructing an SQL query, we will build a
logical form. One of our guiding ideas for designing such grammars is the Principle of
Compositionality. (Also known as Frege’s Principle; see [Partee, 1995] for the for-
mulation given.)

Principle of Compositionality: the meaning of a whole is a function of the meanings
of the parts and of the way they are syntactically combined.

We will assume that the semantically relevant parts of a complex expression are given
by a theory of syntactic analysis. Within this chapter, we will take it for granted that
expressions are parsed against a context-free grammar. However, this is not entailed
by the Principle of Compositionality.

Our goal now is to integrate the construction of a semantic representation in a manner
that can be smoothly with the process of parsing. (29) illustrates a first approximation
to the kind of analyses we would like to build.

(29)

In (29), the SEM value at the root node shows a semantic representation for the whole
sentence, while the SEM values at lower nodes show semantic representations for con-
stituents of the sentence. Since the values of SEM have to be treated in a special manner,
they are distinguished from other feature values by being enclosed in angle brackets.

So far, so good, but how do we write grammar rules that will give us this kind of result?
Our approach will be similar to that adopted for the grammar sql0.fcfg at the start of
this chapter, in that we will assign semantic representations to lexical nodes, and then
compose the semantic representations for each phrase from those of its child nodes.
However, in the present case we will use function application rather than string con-
catenation as the mode of composition. To be more specific, suppose we have NP and
VP constituents with appropriate values for their SEM nodes. Then the SEM value of an
S is handled by a rule like (30). (Observe that in the case where the value of SEM is a
variable, we omit the angle brackets.)
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(30) S[SEM=<?vp(?np)>] -> NP[SEM=?subj] VP[SEM=?vp]

(30) tells us that given some SEM value ?subj for the subject NP and some SEM value ?vp
for the VP, the SEM value of the S parent is constructed by applying ?vp as a function
expression to ?np. From this, we can conclude that ?vp has to denote a function which
has the denotation of ?np in its domain. (30) is a nice example of building semantics
using the principle of compositionality.

To complete the grammar is very straightforward; all we require are the rules shown
here:

VP[SEM=?v] -> IV[SEM=?v]
NP[SEM=<cyril>] -> 'Cyril'
IV[SEM=<\x.bark(x)>] -> 'barks'

The VP rule says that the parent’s semantics is the same as the head child’s semantics.
The two lexical rules provide non-logical constants to serve as the semantic values of
Cyril and barks respectively. There is an additional piece of notation in the entry for
barks which we will explain shortly.

Before launching into compositional semantic rules in more detail, we need to add a
new tool to our kit, namely the λ-calculus. This provides us with an invaluable tool for
combining expressions of first-order logic as we assemble a meaning representation for
an English sentence.

The λ-Calculus
In Section 1.3, we pointed out that mathematical set notation was a helpful method of
specifying properties P of words that we wanted to select from a document. We illus-
trated this with (31), which we glossed as “the set of all w such that w is an element of
V (the vocabulary) and w has property P”.

(31) {w | w ∈ V & P(w)}

It turns out to be extremely useful to add something to first-order logic that will achieve
the same effect. We do this with the λ-operator (pronounced “lambda”). The λ coun-
terpart to (31) is (32). (Since we are not trying to do set theory here, we just treat V as
a unary predicate.)

(32) λw. (V(w) & P(w))

λ expressions were originally designed by Alonzo Church to represent
computable functions and to provide a foundation for mathematics and
logic. The theory in which λ expressions are studied is known as the
λ-calculus. Note that the λ-calculus is not part of first-order logic—both
can be used independently of the other.
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λ is a binding operator, just as the first-order logic quantifiers are. If we have an open
formula, such as (33a), then we can bind the variable x with the λ operator, as shown
in (33b). The corresponding NLTK representation is given in (33c).

(33) a. (walk(x) & chew_gum(x))

b. λx.(walk(x) & chew_gum(x))

c. \x.(walk(x) & chew_gum(x))

Remember that \ is a special character in Python strings. We must either escape it (with
another \), or else use “raw strings” (Section 3.4) as shown here:

>>> lp = nltk.LogicParser()
>>> e = lp.parse(r'\x.(walk(x) & chew_gum(x))')
>>> e
<LambdaExpression \x.(walk(x) & chew_gum(x))>
>>> e.free()
set([])
>>> print lp.parse(r'\x.(walk(x) & chew_gum(y))')
\x.(walk(x) & chew_gum(y))

We have a special name for the result of binding the variables in an expression:
λ-abstraction. When you first encounter λ-abstracts, it can be hard to get an intuitive
sense of their meaning. A couple of English glosses for (33b) are: “be an x such that x
walks and x chews gum” or “have the property of walking and chewing gum.” It has
often been suggested that λ-abstracts are good representations for verb phrases (or
subjectless clauses), particularly when these occur as arguments in their own right. This
is illustrated in (34a) and its translation, (34b).

(34) a. To walk and chew gum is hard

b. hard(\x.(walk(x) & chew_gum(x))

So the general picture is this: given an open formula φ with free variable x, abstracting
over x yields a property expression λx.φ—the property of being an x such that φ. Here’s
a more official version of how abstracts are built:

(35) If α is of type τ, and x is a variable of type e, then \x.α is of type 〈e, τ〉.

(34b) illustrated a case where we say something about a property, namely that it is hard.
But what we usually do with properties is attribute them to individuals. And in fact, if
φ is an open formula, then the abstract λx.φ can be used as a unary predicate. In (36),
(33b) is predicated of the term gerald.

(36) \x.(walk(x) & chew_gum(x)) (gerald)

Now (36) says that Gerald has the property of walking and chewing gum, which has
the same meaning as (37).

(37) (walk(gerald) & chew_gum(gerald))
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What we have done here is remove the \x from the beginning of \x.(walk(x) &
chew_gum(x)) and replaced all occurrences of x in (walk(x) & chew_gum(x)) by gerald.
We’ll use α[β/x] as notation for the operation of replacing all free occurrences of x in
α by the expression β. So

(walk(x) & chew_gum(x))[gerald/x]

represents the same expression as (37). The “reduction” of (36) to (37) is an extremely
useful operation in simplifying semantic representations, and we shall use it a lot in the
rest of this chapter. The operation is often called β-reduction. In order for it to be
semantically justified, we want it to hold that λx. α(β) has the same semantic value as
α[β/x]. This is indeed true, subject to a slight complication that we will come to shortly.
In order to carry out β-reduction of expressions in NLTK, we can call the simplify()
method .

>>> e = lp.parse(r'\x.(walk(x) & chew_gum(x))(gerald)')
>>> print e
\x.(walk(x) & chew_gum(x))(gerald)
>>> print e.simplify() 
(walk(gerald) & chew_gum(gerald))

Although we have so far only considered cases where the body of the λ-abstract is an
open formula, i.e., of type t, this is not a necessary restriction; the body can be any well-
formed expression. Here’s an example with two λs:

(38) \x.\y.(dog(x) & own(y, x))

Just as (33b) plays the role of a unary predicate, (38) works like a binary predicate: it
can be applied directly to two arguments . The LogicParser allows nested λs such as
\x.\y. to be written in the abbreviated form \x y. .

>>> print lp.parse(r'\x.\y.(dog(x) & own(y, x))(cyril)').simplify()
\y.(dog(cyril) & own(y,cyril))
>>> print lp.parse(r'\x y.(dog(x) & own(y, x))(cyril, angus)').simplify() 
(dog(cyril) & own(angus,cyril))

All our λ-abstracts so far have involved the familiar first-order variables: x, y, and so on
—variables of type e. But suppose we want to treat one abstract, say, \x.walk(x), as
the argument of another λ-abstract? We might try this:

\y.y(angus)(\x.walk(x))

But since the variable y is stipulated to be of type e, \y.y(angus) only applies to argu-
ments of type e while \x.walk(x) is of type 〈e, t〉! Instead, we need to allow abstraction
over variables of higher type. Let’s use P and Q as variables of type 〈e, t〉, and then we
can have an abstract such as \P.P(angus). Since P is of type 〈e, t〉, the whole abstract is
of type 〈〈e, t〉, t〉. Then \P.P(angus)(\x.walk(x)) is legal, and can be simplified via β-
reduction to \x.walk(x)(angus) and then again to walk(angus).
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When carrying out β-reduction, some care has to be taken with variables. Consider,
for example, the λ-terms (39a) and (39b), which differ only in the identity of a free
variable.

(39) a. \y.see(y, x)

b. \y.see(y, z)

Suppose now that we apply the λ-term \P.exists x.P(x) to each of these terms:

(40) a. \P.exists x.P(x)(\y.see(y, x))

b. \P.exists x.P(x)(\y.see(y, z))

We pointed out earlier that the results of the application should be semantically equiv-
alent. But if we let the free variable x in (39a) fall inside the scope of the existential
quantifier in (40a), then after reduction, the results will be different:

(41) a. exists x.see(x, x)

b. exists x.see(x, z)

(41a) means there is some x that sees him/herself, whereas (41b) means that there is
some x that sees an unspecified individual z. What has gone wrong here? Clearly, we
want to forbid the kind of variable “capture” shown in (41a).

In order to deal with this problem, let’s step back a moment. Does it matter what
particular name we use for the variable bound by the existential quantifier in the func-
tion expression of (40a)? The answer is no. In fact, given any variable-binding expres-
sion (involving ∀, ∃, or λ), the name chosen for the bound variable is completely arbi-
trary. For example, exists x.P(x) and exists y.P(y) are equivalent; they are called
α-equivalents, or alphabetic variants. The process of relabeling bound variables is
known as α-conversion. When we test for equality of VariableBinderExpressions in
the logic module (i.e., using ==), we are in fact testing for α-equivalence:

>>> e1 = lp.parse('exists x.P(x)')
>>> print e1
exists x.P(x)
>>> e2 = e1.alpha_convert(nltk.Variable('z'))
>>> print e2
exists z.P(z)
>>> e1 == e2
True

When β-reduction is carried out on an application f(a), we check whether there are
free variables in a that also occur as bound variables in any subterms of f. Suppose, as
in the example just discussed, that x is free in a, and that f contains the subterm exists
x.P(x). In this case, we produce an alphabetic variant of exists x.P(x), say, exists
z1.P(z1), and then carry on with the reduction. This relabeling is carried out automat-
ically by the β-reduction code in logic, and the results can be seen in the following
example:
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>>> e3 = lp.parse('\P.exists x.P(x)(\y.see(y, x))')
>>> print e3
(\P.exists x.P(x))(\y.see(y,x))
>>> print e3.simplify()
exists z1.see(z1,x)

As you work through examples like these in the following sections, you
may find that the logical expressions which are returned have different
variable names; for example, you might see z14 in place of z1 in the
preceding formula. This change in labeling is innocuous—in fact, it is
just an illustration of alphabetic variants.

After this excursus, let’s return to the task of building logical forms for English
sentences.

Quantified NPs
At the start of this section, we briefly described how to build a semantic representation
for Cyril barks. You would be forgiven for thinking this was all too easy—surely there
is a bit more to building compositional semantics. What about quantifiers, for instance?
Right, this is a crucial issue. For example, we want (42a) to be given the logical form
in (42b). How can this be accomplished?

(42) a. A dog barks.

b. exists x.(dog(x) & bark(x))

Let’s make the assumption that our only operation for building complex semantic rep-
resentations is function application. Then our problem is this: how do we give a se-
mantic representation to the quantified NPs a dog so that it can be combined with
bark to give the result in (42b)? As a first step, let’s make the subject’s SEM value act as
the function expression rather than the argument. (This is sometimes called type-
raising.) Now we are looking for a way of instantiating ?np so that
[SEM=<?np(\x.bark(x))>] is equivalent to [SEM=<exists x.(dog(x) & bark(x))>].
Doesn’t this look a bit reminiscent of carrying out β-reduction in the λ-calculus? In
other words, we want a λ-term M to replace ?np so that applying M to \x.bark(x) yields
(42b). To do this, we replace the occurrence of \x.bark(x) in (42b) by a predicate
variable P, and bind the variable with λ, as shown in (43).

(43) \P.exists x.(dog(x) & P(x))

We have used a different style of variable in (43)—that is, 'P' rather than 'x' or 'y'—
to signal that we are abstracting over a different kind of object—not an individual, but
a function expression of type 〈e, t〉. So the type of (43) as a whole is 〈〈e, t〉, t〉. We will
take this to be the type of NPs in general. To illustrate further, a universally quantified
NP will look like (44).
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(44) \P.all x.(dog(x) -> P(x))

We are pretty much done now, except that we also want to carry out a further abstrac-
tion plus application for the process of combining the semantics of the determiner a,
namely (45), with the semantics of dog.

(45) \Q P.exists x.(Q(x) & P(x))

Applying (45) as a function expression to \x.dog(x)yields (43), and applying that to
\x.bark(x) gives us \P.exists x.(dog(x) & P(x))(\x.bark(x)). Finally, carrying out β-
reduction yields just what we wanted, namely (42b).

Transitive Verbs
Our next challenge is to deal with sentences containing transitive verbs, such as (46).

(46) Angus chases a dog.

The output semantics that we want to build is exists x.(dog(x) & chase(angus, x)).
Let’s look at how we can use λ-abstraction to get this result. A significant constraint
on possible solutions is to require that the semantic representation of a dog be inde-
pendent of whether the NP acts as subject or object of the sentence. In other words, we
want to get the formula just shown as our output while sticking to (43) as the NP se-
mantics. A second constraint is that VPs should have a uniform type of interpretation,
regardless of whether they consist of just an intransitive verb or a transitive verb plus
object. More specifically, we stipulate that VPs are always of type 〈e, t〉. Given these
constraints, here’s a semantic representation for chases a dog that does the trick.

(47) \y.exists x.(dog(x) & chase(y, x))

Think of (47) as the property of being a y such that for some dog x, y chases x; or more
colloquially, being a y who chases a dog. Our task now resolves to designing a semantic
representation for chases which can combine with (43) so as to allow (47) to be derived.

Let’s carry out the inverse of β-reduction on (47), giving rise to (48).

(48) \P.exists x.(dog(x) & P(x))(\z.chase(y, z))

(48) may be slightly hard to read at first; you need to see that it involves applying the
quantified NP representation from (43) to \z.chase(y,z). (48) is equivalent via β-
reduction to exists x.(dog(x) & chase(y, x)).

Now let’s replace the function expression in (48) by a variable X of the same type as an
NP, that is, of type 〈〈e, t〉, t〉.

(49) X(\z.chase(y, z))
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The representation of a transitive verb will have to apply to an argument of the type of
X to yield a function expression of the type of VPs, that is, of type 〈e, t〉. We can ensure
this by abstracting over both the X variable in (49) and also the subject variable y. So
the full solution is reached by giving chases the semantic representation shown in (50).

(50) \X y.X(\x.chase(y, x))

If (50) is applied to (43), the result after β-reduction is equivalent to (47), which is what
we wanted all along:

>>> lp = nltk.LogicParser()
>>> tvp = lp.parse(r'\X x.X(\y.chase(x,y))')
>>> np = lp.parse(r'(\P.exists x.(dog(x) & P(x)))')
>>> vp = nltk.ApplicationExpression(tvp, np)
>>> print vp
(\X x.X(\y.chase(x,y)))(\P.exists x.(dog(x) & P(x)))
>>> print vp.simplify()
\x.exists z2.(dog(z2) & chase(x,z2))

In order to build a semantic representation for a sentence, we also need to combine in
the semantics of the subject NP. If the latter is a quantified expression, such as every
girl, everything proceeds in the same way as we showed for a dog barks earlier on; the
subject is translated as a function expression which is applied to the semantic repre-
sentation of the VP. However, we now seem to have created another problem for our-
selves with proper names. So far, these have been treated semantically as individual
constants, and these cannot be applied as functions to expressions like (47). Conse-
quently, we need to come up with a different semantic representation for them. What
we do in this case is reinterpret proper names so that they too are function expressions,
like quantified NPs. Here is the required λ-expression for Angus:

(51) \P.P(angus)

(51) denotes the characteristic function corresponding to the set of all properties which
are true of Angus. Converting from an individual constant angus to \P.P(angus) is an-
other example of type-raising, briefly mentioned earlier, and allows us to replace a
Boolean-valued application such as \x.walk(x)(angus) with an equivalent function ap-
plication \P.P(angus)(\x.walk(x)). By β-reduction, both expressions reduce to
walk(angus).

The grammar simple-sem.fcfg contains a small set of rules for parsing and translating
simple examples of the kind that we have been looking at. Here’s a slightly more com-
plicated example:

>>> from nltk import load_parser
>>> parser = load_parser('grammars/book_grammars/simple-sem.fcfg', trace=0)
>>> sentence = 'Angus gives a bone to every dog'
>>> tokens = sentence.split()
>>> trees = parser.nbest_parse(tokens)
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>>> for tree in trees:
...     print tree.node['SEM']
all z2.(dog(z2) -> exists z1.(bone(z1) & give(angus,z1,z2)))

NLTK provides some utilities to make it easier to derive and inspect semantic inter-
pretations. The function batch_interpret() is intended for batch interpretation of a list
of input sentences. It builds a dictionary d where for each sentence sent in the input,
d[sent] is a list of pairs (synrep, semrep) consisting of trees and semantic representations
for sent. The value is a list since sent may be syntactically ambiguous; in the following
example, however, there is only one parse tree per sentence in the list.

(S[SEM=<walk(irene)>]
  (NP[-LOC, NUM='sg', SEM=<\P.P(irene)>]
    (PropN[-LOC, NUM='sg', SEM=<\P.P(irene)>] Irene))
  (VP[NUM='sg', SEM=<\x.walk(x)>]
    (IV[NUM='sg', SEM=<\x.walk(x)>, TNS='pres'] walks)))
(S[SEM=<exists z1.(ankle(z1) & bite(cyril,z1))>]
  (NP[-LOC, NUM='sg', SEM=<\P.P(cyril)>]
    (PropN[-LOC, NUM='sg', SEM=<\P.P(cyril)>] Cyril))
  (VP[NUM='sg', SEM=<\x.exists z1.(ankle(z1) & bite(x,z1))>]
    (TV[NUM='sg', SEM=<\X x.X(\y.bite(x,y))>, TNS='pres'] bites)
    (NP[NUM='sg', SEM=<\Q.exists x.(ankle(x) & Q(x))>]
      (Det[NUM='sg', SEM=<\P Q.exists x.(P(x) & Q(x))>] an)
      (Nom[NUM='sg', SEM=<\x.ankle(x)>]
        (N[NUM='sg', SEM=<\x.ankle(x)>] ankle)))))

We have seen now how to convert English sentences into logical forms, and earlier we
saw how logical forms could be checked as true or false in a model. Putting these two
mappings together, we can check the truth value of English sentences in a given model.
Let’s take model m as defined earlier. The utility batch_evaluate() resembles
batch_interpret(), except that we need to pass a model and a variable assignment as
parameters. The output is a triple (synrep, semrep, value), where synrep, semrep are as
before, and value is a truth value. For simplicity, the following example only processes
a single sentence.

>>> v = """
... bertie => b
... olive => o
... cyril => c
... boy => {b}
... girl => {o}
... dog => {c}
... walk => {o, c}
... see => {(b, o), (c, b), (o, c)}
... """
>>> val = nltk.parse_valuation(v)
>>> g = nltk.Assignment(val.domain)
>>> m = nltk.Model(val.domain, val)
>>> sent = 'Cyril sees every boy'
>>> grammar_file = 'grammars/book_grammars/simple-sem.fcfg'
>>> results = nltk.batch_evaluate([sent], grammar_file, m, g)[0]
>>> for (syntree, semrel, value) in results:
...     print semrep
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...     print value
exists z3.(ankle(z3) & bite(cyril,z3))
True

Quantifier Ambiguity Revisited
One important limitation of the methods described earlier is that they do not deal with
scope ambiguity. Our translation method is syntax-driven, in the sense that the se-
mantic representation is closely coupled with the syntactic analysis, and the scope of
the quantifiers in the semantics therefore reflects the relative scope of the corresponding
NPs in the syntactic parse tree. Consequently, a sentence like (26), repeated here, will
always be translated as (53a), not (53b).

(52) Every girl chases a dog.

(53) a. all x.(girl(x) -> exists y.(dog(y) & chase(x,y)))

b. exists y.(dog(y) & all x.(girl(x) -> chase(x,y)))

There are numerous approaches to dealing with scope ambiguity, and we will look very
briefly at one of the simplest. To start with, let’s briefly consider the structure of scoped
formulas. Figure 10-3 depicts the way in which the two readings of (52) differ.

Figure 10-3. Quantifier scopings.

Let’s consider the lefthand structure first. At the top, we have the quantifier corre-
sponding to every girl. The φ can be thought of as a placeholder for whatever is inside
the scope of the quantifier. Moving downward, we see that we can plug in the quantifier
corresponding to a dog as an instantiation of φ. This gives a new placeholder ψ, rep-
resenting the scope of a dog, and into this we can plug the “core” of the semantics,
namely the open sentence corresponding to x chases y. The structure on the righthand
side is identical, except we have swapped round the order of the two quantifiers.

In the method known as Cooper storage, a semantic representation is no longer an
expression of first-order logic, but instead a pair consisting of a “core” semantic rep-
resentation plus a list of binding operators. For the moment, think of a binding op-
erator as being identical to the semantic representation of a quantified NP such as (44) or
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(45). Following along the lines indicated in Figure 10-3, let’s assume that we have
constructed a Cooper-storage-style semantic representation of sentence (52), and let’s
take our core to be the open formula chase(x,y). Given a list of binding operators
corresponding to the two NPs in (52), we pick a binding operator off the list, and com-
bine it with the core.

\P.exists y.(dog(y) & P(y))(\z2.chase(z1,z2))

Then we take the result, and apply the next binding operator from the list to it.

\P.all x.(girl(x) -> P(x))(\z1.exists x.(dog(x) & chase(z1,x)))

Once the list is empty, we have a conventional logical form for the sentence. Combining
binding operators with the core in this way is called S-Retrieval. If we are careful to
allow every possible order of binding operators (for example, by taking all permutations
of the list; see Section 4.5), then we will be able to generate every possible scope ordering
of quantifiers.

The next question to address is how we build up a core+store representation compo-
sitionally. As before, each phrasal and lexical rule in the grammar will have a SEM feature,
but now there will be embedded features CORE and STORE. To illustrate the machinery,
let’s consider a simpler example, namely Cyril smiles. Here’s a lexical rule for the verb
smiles (taken from the grammar storage.fcfg), which looks pretty innocuous:

IV[SEM=[CORE=<\x.smile(x)>, STORE=(/)]] -> 'smiles'

The rule for the proper name Cyril is more complex.

NP[SEM=[CORE=<@x>, STORE=(<bo(\P.P(cyril),@x)>)]] -> 'Cyril'

The bo predicate has two subparts: the standard (type-raised) representation of a proper
name, and the expression @x, which is called the address of the binding operator. (We’ll
explain the need for the address variable shortly.) @x is a metavariable, that is, a variable
that ranges over individual variables of the logic and, as you will see, also provides the
value of core. The rule for VP just percolates up the semantics of the IV, and the inter-
esting work is done by the S rule.

VP[SEM=?s] -> IV[SEM=?s]

S[SEM=[CORE=<?vp(?subj)>, STORE=(?b1+?b2)]] ->
   NP[SEM=[CORE=?subj, STORE=?b1]] VP[SEM=[core=?vp, store=?b2]]

The core value at the S node is the result of applying the VP’s core value, namely
\x.smile(x), to the subject NP’s value. The latter will not be @x, but rather an instan-
tiation of @x, say, z3. After β-reduction, <?vp(?subj)> will be unified with
<smile(z3)>. Now, when @x is instantiated as part of the parsing process, it will be
instantiated uniformly. In particular, the occurrence of @x in the subject NP’s STORE will
also be mapped to z3, yielding the element bo(\P.P(cyril),z3). These steps can be seen
in the following parse tree.
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(S[SEM=[CORE=<smile(z3)>, STORE=(bo(\P.P(cyril),z3))]]
  (NP[SEM=[CORE=<z3>, STORE=(bo(\P.P(cyril),z3))]] Cyril)
  (VP[SEM=[CORE=<\x.smile(x)>, STORE=()]]
    (IV[SEM=[CORE=<\x.smile(x)>, STORE=()]] smiles)))

Let’s return to our more complex example, (52), and see what the storage style SEM
value is, after parsing with grammar storage.fcfg.

CORE  = <chase(z1,z2)>
STORE = (bo(\P.all x.(girl(x) -> P(x)),z1), bo(\P.exists x.(dog(x) & P(x)),z2))

It should be clearer now why the address variables are an important part of the binding
operator. Recall that during S-retrieval, we will be taking binding operators off the
STORE list and applying them successively to the CORE. Suppose we start with bo(\P.all
x.(girl(x) -> P(x)),z1), which we want to combine with chase(z1,z2). The quantifier
part of the binding operator is \P.all x.(girl(x) -> P(x)), and to combine this with
chase(z1,z2), the latter needs to first be turned into a λ-abstract. How do we know
which variable to abstract over? This is what the address z1 tells us, i.e., that every
girl has the role of chaser rather than chasee.

The module nltk.sem.cooper_storage deals with the task of turning storage-style se-
mantic representations into standard logical forms. First, we construct a CooperStore
instance, and inspect its STORE and CORE.

>>> from nltk.sem import cooper_storage as cs
>>> sentence = 'every girl chases a dog'
>>> trees = cs.parse_with_bindops(sentence, grammar='grammars/book_grammars/storage.fcfg')
>>> semrep = trees[0].node['sem']
>>> cs_semrep = cs.CooperStore(semrep)
>>> print cs_semrep.core
chase(z1,z2)
>>> for bo in cs_semrep.store:
...     print bo
bo(\P.all x.(girl(x) -> P(x)),z1)
bo(\P.exists x.(dog(x) & P(x)),z2)

Finally, we call s_retrieve() and check the readings.

>>> cs_semrep.s_retrieve(trace=True)
Permutation 1
   (\P.all x.(girl(x) -> P(x)))(\z1.chase(z1,z2))
   (\P.exists x.(dog(x) & P(x)))(\z2.all x.(girl(x) -> chase(x,z2)))
Permutation 2
   (\P.exists x.(dog(x) & P(x)))(\z2.chase(z1,z2))
   (\P.all x.(girl(x) -> P(x)))(\z1.exists x.(dog(x) & chase(z1,x)))

>>> for reading in cs_semrep.readings:
...     print reading
exists x.(dog(x) & all z3.(girl(z3) -> chase(z3,x)))
all x.(girl(x) -> exists z4.(dog(z4) & chase(x,z4)))
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10.5  Discourse Semantics
A discourse is a sequence of sentences. Very often, the interpretation of a sentence in
a discourse depends on what preceded it. A clear example of this comes from anaphoric
pronouns, such as he, she, and it. Given a discourse such as Angus used to have a dog.
But he recently disappeared., you will probably interpret he as referring to Angus’s dog.
However, in Angus used to have a dog. He took him for walks in New Town., you are
more likely to interpret he as referring to Angus himself.

Discourse Representation Theory
The standard approach to quantification in first-order logic is limited to single senten-
ces. Yet there seem to be examples where the scope of a quantifier can extend over two
or more sentences. We saw one earlier, and here’s a second example, together with a
translation.

(54) a. Angus owns a dog. It bit Irene.

b. ∃x.(dog(x) & own(Angus, x) & bite(x, Irene))

That is, the NP a dog acts like a quantifier which binds the it in the second sentence.
Discourse Representation Theory (DRT) was developed with the specific goal of pro-
viding a means for handling this and other semantic phenomena which seem to be
characteristic of discourse. A discourse representation structure (DRS) presents the
meaning of discourse in terms of a list of discourse referents and a list of conditions.
The discourse referents are the things under discussion in the discourse, and they
correspond to the individual variables of first-order logic. The DRS conditions apply
to those discourse referents, and correspond to atomic open formulas of first-order
logic. Figure 10-4 illustrates how a DRS for the first sentence in (54a) is augmented to
become a DRS for both sentences.

When the second sentence of (54a) is processed, it is interpreted in the context of what
is already present in the lefthand side of Figure 10-4. The pronoun it triggers the addi-
tion of a new discourse referent, say, u, and we need to find an anaphoric
antecedent for it—that is, we want to work out what it refers to. In DRT, the task of
finding the antecedent for an anaphoric pronoun involves linking it to a discourse ref-
erent already within the current DRS, and y is the obvious choice. (We will say more
about anaphora resolution shortly.) This processing step gives rise to a new condition
u = y. The remaining content contributed by the second sentence is also merged with
the content of the first, and this is shown on the righthand side of Figure 10-4.

Figure 10-4 illustrates how a DRS can represent more than just a single sentence. In
this case, it is a two-sentence discourse, but in principle a single DRS could correspond
to the interpretation of a whole text. We can inquire into the truth conditions of the
righthand DRS in Figure 10-4. Informally, it is true in some situation s if there are
entities a, c, and i in s corresponding to the discourse referents in the DRS such that
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all the conditions are true in s; that is, a is named Angus, c is a dog, a owns c, i is named
Irene, and c bit i.

In order to process DRSs computationally, we need to convert them into a linear format.
Here’s an example, where the DRS is a pair consisting of a list of discourse referents
and a list of DRS conditions:

([x, y], [angus(x), dog(y), own(x,y)])

The easiest way to build a DRS object in NLTK is by parsing a string representation .

>>> dp = nltk.DrtParser()
>>> drs1 = dp.parse('([x, y], [angus(x), dog(y), own(x, y)])') 
>>> print drs1
([x,y],[angus(x), dog(y), own(x,y)])

We can use the draw() method  to visualize the result, as shown in Figure 10-5.

>>> drs1.draw() 

Figure 10-5. DRS screenshot.

When we discussed the truth conditions of the DRSs in Figure 10-4, we assumed that
the topmost discourse referents were interpreted as existential quantifiers, while the

Figure 10-4. Building a DRS: The DRS on the lefthand side represents the result of processing the first
sentence in the discourse, while the DRS on the righthand side shows the effect of processing the second
sentence and integrating its content.
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conditions were interpreted as though they are conjoined. In fact, every DRS can be
translated into a formula of first-order logic, and the fol() method implements this
translation.

>>> print drs1.fol()
exists x y.((angus(x) & dog(y)) & own(x,y))

In addition to the functionality available for first-order logic expressions, DRT
Expressions have a DRS-concatenation operator, represented as the + symbol. The
concatenation of two DRSs is a single DRS containing the merged discourse referents
and the conditions from both arguments. DRS-concatenation automatically α-converts
bound variables to avoid name-clashes.

>>> drs2 = dp.parse('([x], [walk(x)]) + ([y], [run(y)])')
>>> print drs2
(([x],[walk(x)]) + ([y],[run(y)]))
>>> print drs2.simplify()
([x,y],[walk(x), run(y)])

While all the conditions seen so far have been atomic, it is possible to embed one DRS
within another, and this is how universal quantification is handled. In drs3, there are
no top-level discourse referents, and the sole condition is made up of two sub-DRSs,
connected by an implication. Again, we can use fol() to get a handle on the truth
conditions.

>>> drs3 = dp.parse('([], [(([x], [dog(x)]) -> ([y],[ankle(y), bite(x, y)]))])')
>>> print drs3.fol()
all x.(dog(x) -> exists y.(ankle(y) & bite(x,y)))

We pointed out earlier that DRT is designed to allow anaphoric pronouns to be inter-
preted by linking to existing discourse referents. DRT sets constraints on which dis-
course referents are “accessible” as possible antecedents, but is not intended to explain
how a particular antecedent is chosen from the set of candidates. The module
nltk.sem.drt_resolve_anaphora adopts a similarly conservative strategy: if the DRS
contains a condition of the form PRO(x), the method resolve_anaphora() replaces this
with a condition of the form x = [...], where [...] is a list of possible antecedents.

>>> drs4 = dp.parse('([x, y], [angus(x), dog(y), own(x, y)])')
>>> drs5 = dp.parse('([u, z], [PRO(u), irene(z), bite(u, z)])')
>>> drs6 = drs4 + drs5
>>> print drs6.simplify()
([x,y,u,z],[angus(x), dog(y), own(x,y), PRO(u), irene(z), bite(u,z)])
>>> print drs6.simplify().resolve_anaphora()
([x,y,u,z],[angus(x), dog(y), own(x,y), (u = [x,y,z]), irene(z), bite(u,z)])

Since the algorithm for anaphora resolution has been separated into its own module,
this facilitates swapping in alternative procedures that try to make more intelligent
guesses about the correct antecedent.

Our treatment of DRSs is fully compatible with the existing machinery for handling λ-
abstraction, and consequently it is straightforward to build compositional semantic
representations that are based on DRT rather than first-order logic. This technique is
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illustrated in the following rule for indefinites (which is part of the grammar drt.fcfg).
For ease of comparison, we have added the parallel rule for indefinites from simple-
sem.fcfg.

Det[NUM=sg,SEM=<\P Q.([x],[]) + P(x) + Q(x)>] -> 'a'
Det[NUM=sg,SEM=<\P Q. exists x.(P(x) & Q(x))>] -> 'a'

To get a better idea of how the DRT rule works, look at this subtree for the NP a dog:

(NP[NUM='sg', SEM=<\Q.(([x],[dog(x)]) + Q(x))>]
  (Det[NUM'sg', SEM=<\P Q.((([x],[]) + P(x)) + Q(x))>] a)
  (Nom[NUM='sg', SEM=<\x.([],[dog(x)])>]
    (N[NUM='sg', SEM=<\x.([],[dog(x)])>] dog)))))

The λ-abstract for the indefinite is applied as a function expression to \x.([],
[dog(x)]) which leads to \Q.(([x],[]) + ([],[dog(x)]) + Q(x)); after simplification,
we get \Q.(([x],[dog(x)]) + Q(x)) as the representation for the NP as a whole.

In order to parse with grammar drt.fcfg, we specify in the call to load_earley() that
SEM values in feature structures are to be parsed using DrtParser in place of the default
LogicParser.

>>> from nltk import load_parser
>>> parser = load_parser('grammars/book_grammars/drt.fcfg', logic_parser=nltk.DrtParser())
>>> trees = parser.nbest_parse('Angus owns a dog'.split())
>>> print trees[0].node['sem'].simplify()
([x,z2],[Angus(x), dog(z2), own(x,z2)])

Discourse Processing
When we interpret a sentence, we use a rich context for interpretation, determined in
part by the preceding context and in part by our background assumptions. DRT pro-
vides a theory of how the meaning of a sentence is integrated into a representation of
the prior discourse, but two things have been glaringly absent from the processing
approach just discussed. First, there has been no attempt to incorporate any kind of
inference; and second, we have only processed individual sentences. These omissions
are redressed by the module nltk.inference.discourse.

Whereas a discourse is a sequence s1, ... sn of sentences, a discourse thread is a sequence
s1-ri, ... sn-rj of readings, one for each sentence in the discourse. The module processes
sentences incrementally, keeping track of all possible threads when there is ambiguity.
For simplicity, the following example ignores scope ambiguity:

>>> dt = nltk.DiscourseTester(['A student dances', 'Every student is a person'])
>>> dt.readings()
s0 readings: s0-r0: exists x.(student(x) & dance(x))
s1 readings: s1-r0: all x.(student(x) -> person(x))

When a new sentence is added to the current discourse, setting the parameter
consistchk=True causes consistency to be checked by invoking the model checker for
each thread, i.e., each sequence of admissible readings. In this case, the user has the
option of retracting the sentence in question.
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>>> dt.add_sentence('No person dances', consistchk=True)
Inconsistent discourse d0 ['s0-r0', 's1-r0', 's2-r0']:
s0-r0: exists x.(student(x) & dance(x))
s1-r0: all x.(student(x) -> person(x))
s2-r0: -exists x.(person(x) & dance(x))
>>> dt.retract_sentence('No person dances', verbose=True)
Current sentences are
s0: A student dances
s1: Every student is a person

In a similar manner, we use informchk=True to check whether a new sentence φ is
informative relative to the current discourse. The theorem prover treats existing sen-
tences in the thread as assumptions and attempts to prove φ; it is informative if no such
proof can be found.

>>> dt.add_sentence('A person dances', informchk=True)
Sentence 'A person dances' under reading 'exists x.(person(x) & dance(x))':
Not informative relative to thread 'd0'

It is also possible to pass in an additional set of assumptions as background knowledge
and use these to filter out inconsistent readings; see the Discourse HOWTO at http://
www.nltk.org/howto for more details.

The discourse module can accommodate semantic ambiguity and filter out readings
that are not admissible. The following example invokes both Glue Semantics as well
as DRT. Since the Glue Semantics module is configured to use the wide-coverage Malt
dependency parser, the input (Every dog chases a boy. He runs.) needs to be tagged as
well as tokenized.

>>> from nltk.tag import RegexpTagger
>>> tagger = RegexpTagger(
...     [('^(chases|runs)$', 'VB'),
...      ('^(a)$', 'ex_quant'),
...      ('^(every)$', 'univ_quant'),
...      ('^(dog|boy)$', 'NN'),
...      ('^(He)$', 'PRP')
... ])
>>> rc = nltk.DrtGlueReadingCommand(depparser=nltk.MaltParser(tagger=tagger))
>>> dt = nltk.DiscourseTester(['Every dog chases a boy', 'He runs'], rc)
>>> dt.readings()
s0 readings:
s0-r0: ([],[(([x],[dog(x)]) -> ([z3],[boy(z3), chases(x,z3)]))]) 
s0-r1: ([z4],[boy(z4), (([x],[dog(x)]) -> ([],[chases(x,z4)]))])

s1 readings:
s1-r0: ([x],[PRO(x), runs(x)])

The first sentence of the discourse has two possible readings, depending on the quan-
tifier scoping. The unique reading of the second sentence represents the pronoun He
via the condition PRO(x). Now let’s look at the discourse threads that result:

>>> dt.readings(show_thread_readings=True)
d0: ['s0-r0', 's1-r0'] : INVALID: AnaphoraResolutionException
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d1: ['s0-r1', 's1-r0'] : ([z6,z10],[boy(z6), (([x],[dog(x)]) ->
([],[chases(x,z6)])), (z10 = z6), runs(z10)])

When we examine threads d0 and d1, we see that reading s0-r0, where every dog out-
scopes a boy, is deemed inadmissible because the pronoun in the second sentence
cannot be resolved. By contrast, in thread d1 the pronoun (relettered to z10) has been
bound via the equation (z10 = z6).

Inadmissible readings can be filtered out by passing the parameter filter=True.

>>> dt.readings(show_thread_readings=True, filter=True)
d1: ['s0-r1', 's1-r0'] : ([z12,z15],[boy(z12), (([x],[dog(x)]) ->
([],[chases(x,z12)])), (z17 = z15), runs(z15)])

Although this little discourse is extremely limited, it should give you a feel for the kind
of semantic processing issues that arise when we go beyond single sentences, and also
a feel for the techniques that can be deployed to address them.

10.6  Summary
• First-order logic is a suitable language for representing natural language meaning

in a computational setting since it is flexible enough to represent many useful as-
pects of natural meaning, and there are efficient theorem provers for reasoning with
first-order logic. (Equally, there are a variety of phenomena in natural language
semantics which are believed to require more powerful logical mechanisms.)

• As well as translating natural language sentences into first-order logic, we can state
the truth conditions of these sentences by examining models of first-order formu-
las.

• In order to build meaning representations compositionally, we supplement first-
order logic with the λ-calculus.

• β-reduction in the λ-calculus corresponds semantically to application of a function
to an argument. Syntactically, it involves replacing a variable bound by λ in the
function expression with the expression that provides the argument in the function
application.

• A key part of constructing a model lies in building a valuation which assigns in-
terpretations to non-logical constants. These are interpreted as either n-ary predi-
cates or as individual constants.

• An open expression is an expression containing one or more free variables. Open
expressions receive an interpretation only when their free variables receive values
from a variable assignment.

• Quantifiers are interpreted by constructing, for a formula φ[x] open in variable x,
the set of individuals which make φ[x] true when an assignment g assigns them as
the value of x. The quantifier then places constraints on that set.
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• A closed expression is one that has no free variables; that is, the variables are all
bound. A closed sentence is true or false with respect to all variable assignments.

• If two formulas differ only in the label of the variable bound by binding operator
(i.e., λ or a quantifier) , they are said to be α-equivalents. The result of relabeling
a bound variable in a formula is called α-conversion.

• Given a formula with two nested quantifiers Q1 and Q2, the outermost quantifier
Q1 is said to have wide scope (or scope over Q2). English sentences are frequently
ambiguous with respect to the scope of the quantifiers they contain.

• English sentences can be associated with a semantic representation by treating
SEM as a feature in a feature-based grammar. The SEM value of a complex expressions,
typically involves functional application of the SEM values of the component
expressions.

10.7  Further Reading
Consult http://www.nltk.org/ for further materials on this chapter and on how to install
the Prover9 theorem prover and Mace4 model builder. General information about these
two inference tools is given by (McCune, 2008).

For more examples of semantic analysis with NLTK, please see the semantics and logic
HOWTOs at http://www.nltk.org/howto. Note that there are implementations of two
other approaches to scope ambiguity, namely Hole semantics as described in (Black-
burn & Bos, 2005), and Glue semantics, as described in (Dalrymple et al., 1999).

There are many phenomena in natural language semantics that have not been touched
on in this chapter, most notably:

1. Events, tense, and aspect

2. Semantic roles

3. Generalized quantifiers, such as most

4. Intensional constructions involving, for example, verbs such as may and believe

While (1) and (2) can be dealt with using first-order logic, (3) and (4) require different
logics. These issues are covered by many of the references in the following readings.

A comprehensive overview of results and techniques in building natural language front-
ends to databases can be found in (Androutsopoulos, Ritchie & Thanisch, 1995).

Any introductory book to modern logic will present propositional and first-order logic.
(Hodges, 1977) is highly recommended as an entertaining and insightful text with many
illustrations from natural language.

For a wide-ranging, two-volume textbook on logic that also presents contemporary
material on the formal semantics of natural language, including Montague Grammar
and intensional logic, see (Gamut, 1991a, 1991b). (Kamp & Reyle, 1993) provides the
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definitive account of Discourse Representation Theory, and covers a large and inter-
esting fragment of natural language, including tense, aspect, and modality. Another
comprehensive study of the semantics of many natural language constructions is (Car-
penter, 1997).

There are numerous works that introduce logical semantics within the framework of
linguistic theory. (Chierchia & McConnell-Ginet, 1990) is relatively agnostic about
syntax, while (Heim & Kratzer, 1998) and (Larson & Segal, 1995) are both more ex-
plicitly oriented toward integrating truth-conditional semantics into a Chomskyan
framework.

(Blackburn & Bos, 2005) is the first textbook devoted to computational semantics, and
provides an excellent introduction to the area. It expands on many of the topics covered
in this chapter, including underspecification of quantifier scope ambiguity, first-order
inference, and discourse processing.

To gain an overview of more advanced contemporary approaches to semantics, in-
cluding treatments of tense and generalized quantifiers, try consulting (Lappin, 1996)
or (van Benthem & ter Meulen, 1997).

10.8  Exercises
1. ○ Translate the following sentences into propositional logic and verify that they

parse with LogicParser. Provide a key that shows how the propositional variables
in your translation correspond to expressions of English.

a. If Angus sings, it is not the case that Bertie sulks.

b. Cyril runs and barks.

c. It will snow if it doesn’t rain.

d. It’s not the case that Irene will be happy if Olive or Tofu comes.

e. Pat didn’t cough or sneeze.

f. If you don’t come if I call, I won’t come if you call.

2. ○ Translate the following sentences into predicate-argument formulas of first-order
logic.

a. Angus likes Cyril and Irene hates Cyril.

b. Tofu is taller than Bertie.

c. Bruce loves himself and Pat does too.

d. Cyril saw Bertie, but Angus didn’t.

e. Cyril is a four-legged friend.

f. Tofu and Olive are near each other.

3. ○ Translate the following sentences into quantified formulas of first-order logic.

a. Angus likes someone and someone likes Julia.
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b. Angus loves a dog who loves him.

c. Nobody smiles at Pat.

d. Somebody coughs and sneezes.

e. Nobody coughed or sneezed.

f. Bruce loves somebody other than Bruce.

g. Nobody other than Matthew loves Pat.

h. Cyril likes everyone except for Irene.

i. Exactly one person is asleep.

4. ○ Translate the following verb phrases using λ-abstracts and quantified formulas
of first-order logic.

a. feed Cyril and give a capuccino to Angus

b. be given ‘War and Peace’ by Pat

c. be loved by everyone

d. be loved or detested by everyone

e. be loved by everyone and detested by no-one

5. ○ Consider the following statements:

>>> lp = nltk.LogicParser()
>>> e2 = lp.parse('pat')
>>> e3 = nltk.ApplicationExpression(e1, e2)
>>> print e3.simplify()
exists y.love(pat, y)

Clearly something is missing here, namely a declaration of the value of e1. In order
for ApplicationExpression(e1, e2) to be β-convertible to exists y.love(pat, y),
e1 must be a λ-abstract which can take pat as an argument. Your task is to construct
such an abstract, bind it to e1, and satisfy yourself that these statements are all
satisfied (up to alphabetic variance). In addition, provide an informal English
translation of e3.simplify().

Now carry on doing this same task for the further cases of e3.simplify() shown
here:

>>> print e3.simplify()
exists y.(love(pat,y) | love(y,pat))

>>> print e3.simplify()
exists y.(love(pat,y) | love(y,pat))

>>> print e3.simplify()
walk(fido)

6. ○ As in the preceding exercise, find a λ-abstract e1 that yields results equivalent to
those shown here:

>>> e2 = lp.parse('chase')
>>> e3 = nltk.ApplicationExpression(e1, e2)
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>>> print e3.simplify()
\x.all y.(dog(y) -> chase(x,pat))

>>> e2 = lp.parse('chase')
>>> e3 = nltk.ApplicationExpression(e1, e2)
>>> print e3.simplify()
\x.exists y.(dog(y) & chase(pat,x))

>>> e2 = lp.parse('give')
>>> e3 = nltk.ApplicationExpression(e1, e2)
>>> print e3.simplify()
\x0 x1.exists y.(present(y) & give(x1,y,x0))

7. ○ As in the preceding exercise, find a λ-abstract e1 that yields results equivalent to
those shown here:

>>> e2 = lp.parse('bark')
>>> e3 = nltk.ApplicationExpression(e1, e2)
>>> print e3.simplify()
exists y.(dog(x) & bark(x))

>>> e2 = lp.parse('bark')
>>> e3 = nltk.ApplicationExpression(e1, e2)
>>> print e3.simplify()
bark(fido)

>>> e2 = lp.parse('\\P. all x. (dog(x) -> P(x))')
>>> e3 = nltk.ApplicationExpression(e1, e2)
>>> print e3.simplify()
all x.(dog(x) -> bark(x))

8. ◑ Develop a method for translating English sentences into formulas with binary
generalized quantifiers. In such an approach, given a generalized quantifier Q, a
quantified formula is of the form Q(A, B), where both A and B are expressions of
type 〈e, t〉. Then, for example, all(A, B) is true iff A denotes a subset of what B
denotes.

9. ◑ Extend the approach in the preceding exercise so that the truth conditions for
quantifiers such as most and exactly three can be computed in a model.

10. ◑ Modify the sem.evaluate code so that it will give a helpful error message if an
expression is not in the domain of a model’s valuation function.

11. ● Select three or four contiguous sentences from a book for children. A possible
source of examples are the collections of stories in nltk.corpus.gutenberg: bryant-
stories.txt, burgess-busterbrown.txt, and edgeworth-parents.txt. Develop a
grammar that will allow your sentences to be translated into first-order logic, and
build a model that will allow those translations to be checked for truth or falsity.

12. ● Carry out the preceding exercise, but use DRT as the meaning representation.

13. ● Taking (Warren & Pereira, 1982) as a starting point, develop a technique for
converting a natural language query into a form that can be evaluated more effi-
ciently in a model. For example, given a query of the form (P(x) & Q(x)), convert
it to (Q(x) & P(x)) if the extension of Q is smaller than the extension of P.

406 | Chapter 10: Analyzing the Meaning of Sentences



CHAPTER 11

Managing Linguistic Data

Structured collections of annotated linguistic data are essential in most areas of NLP;
however, we still face many obstacles in using them. The goal of this chapter is to answer
the following questions:

1. How do we design a new language resource and ensure that its coverage, balance,
and documentation support a wide range of uses?

2. When existing data is in the wrong format for some analysis tool, how can we
convert it to a suitable format?

3. What is a good way to document the existence of a resource we have created so
that others can easily find it?

Along the way, we will study the design of existing corpora, the typical workflow for
creating a corpus, and the life cycle of a corpus. As in other chapters, there will be many
examples drawn from practical experience managing linguistic data, including data
that has been collected in the course of linguistic fieldwork, laboratory work, and web
crawling.

11.1  Corpus Structure: A Case Study
The TIMIT Corpus was the first annotated speech database to be widely distributed,
and it has an especially clear organization. TIMIT was developed by a consortium in-
cluding Texas Instruments and MIT, from which it derives its name. It was designed
to provide data for the acquisition of acoustic-phonetic knowledge and to support the
development and evaluation of automatic speech recognition systems.

The Structure of TIMIT
Like the Brown Corpus, which displays a balanced selection of text genres and sources,
TIMIT includes a balanced selection of dialects, speakers, and materials. For each of
eight dialect regions, 50 male and female speakers having a range of ages and educa-
tional backgrounds each read 10 carefully chosen sentences. Two sentences, read by
all speakers, were designed to bring out dialect variation:
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(1) a. she had your dark suit in greasy wash water all year

b. don’t ask me to carry an oily rag like that

The remaining sentences were chosen to be phonetically rich, involving all phones
(sounds) and a comprehensive range of diphones (phone bigrams). Additionally, the
design strikes a balance between multiple speakers saying the same sentence in order
to permit comparison across speakers, and having a large range of sentences covered
by the corpus to get maximal coverage of diphones. Five of the sentences read by each
speaker are also read by six other speakers (for comparability). The remaining three
sentences read by each speaker were unique to that speaker (for coverage).

NLTK includes a sample from the TIMIT Corpus. You can access its documentation
in the usual way, using help(nltk.corpus.timit). Print nltk.corpus.timit.fileids()
to see a list of the 160 recorded utterances in the corpus sample. Each filename has
internal structure, as shown in Figure 11-1.

Figure 11-1. Structure of a TIMIT identifier: Each recording is labeled using a string made up of the
speaker’s dialect region, gender, speaker identifier, sentence type, and sentence identifier.

Each item has a phonetic transcription which can be accessed using the phones() meth-
od. We can access the corresponding word tokens in the customary way. Both access
methods permit an optional argument offset=True, which includes the start and end
offsets of the corresponding span in the audio file.

>>> phonetic = nltk.corpus.timit.phones('dr1-fvmh0/sa1')
>>> phonetic
['h#', 'sh', 'iy', 'hv', 'ae', 'dcl', 'y', 'ix', 'dcl', 'd', 'aa', 'kcl',
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's', 'ux', 'tcl', 'en', 'gcl', 'g', 'r', 'iy', 's', 'iy', 'w', 'aa',
'sh', 'epi', 'w', 'aa', 'dx', 'ax', 'q', 'ao', 'l', 'y', 'ih', 'ax', 'h#']
>>> nltk.corpus.timit.word_times('dr1-fvmh0/sa1')
[('she', 7812, 10610), ('had', 10610, 14496), ('your', 14496, 15791),
('dark', 15791, 20720), ('suit', 20720, 25647), ('in', 25647, 26906),
('greasy', 26906, 32668), ('wash', 32668, 37890), ('water', 38531, 42417),
('all', 43091, 46052), ('year', 46052, 50522)]

In addition to this text data, TIMIT includes a lexicon that provides the canonical
pronunciation of every word, which can be compared with a particular utterance:

>>> timitdict = nltk.corpus.timit.transcription_dict()
>>> timitdict['greasy'] + timitdict['wash'] + timitdict['water']
['g', 'r', 'iy1', 's', 'iy', 'w', 'ao1', 'sh', 'w', 'ao1', 't', 'axr']
>>> phonetic[17:30]
['g', 'r', 'iy', 's', 'iy', 'w', 'aa', 'sh', 'epi', 'w', 'aa', 'dx', 'ax']

This gives us a sense of what a speech processing system would have to do in producing
or recognizing speech in this particular dialect (New England). Finally, TIMIT includes
demographic data about the speakers, permitting fine-grained study of vocal, social,
and gender characteristics.

>>> nltk.corpus.timit.spkrinfo('dr1-fvmh0')
SpeakerInfo(id='VMH0', sex='F', dr='1', use='TRN', recdate='03/11/86',
birthdate='01/08/60', ht='5\'05"', race='WHT', edu='BS',
comments='BEST NEW ENGLAND ACCENT SO FAR')

Notable Design Features
TIMIT illustrates several key features of corpus design. First, the corpus contains two
layers of annotation, at the phonetic and orthographic levels. In general, a text or speech
corpus may be annotated at many different linguistic levels, including morphological,
syntactic, and discourse levels. Moreover, even at a given level there may be different
labeling schemes or even disagreement among annotators, such that we want to rep-
resent multiple versions. A second property of TIMIT is its balance across multiple
dimensions of variation, for coverage of dialect regions and diphones. The inclusion of
speaker demographics brings in many more independent variables that may help to
account for variation in the data, and which facilitate later uses of the corpus for pur-
poses that were not envisaged when the corpus was created, such as sociolinguistics.
A third property is that there is a sharp division between the original linguistic event
captured as an audio recording and the annotations of that event. The same holds true
of text corpora, in the sense that the original text usually has an external source, and
is considered to be an immutable artifact. Any transformations of that artifact which
involve human judgment—even something as simple as tokenization—are subject to
later revision; thus it is important to retain the source material in a form that is as close
to the original as possible.

A fourth feature of TIMIT is the hierarchical structure of the corpus. With 4 files per
sentence, and 10 sentences for each of 500 speakers, there are 20,000 files. These are
organized into a tree structure, shown schematically in Figure 11-2. At the top level
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there is a split between training and testing sets, which gives away its intended use for
developing and evaluating statistical models.

Finally, notice that even though TIMIT is a speech corpus, its transcriptions and asso-
ciated data are just text, and can be processed using programs just like any other text
corpus. Therefore, many of the computational methods described in this book are ap-
plicable. Moreover, notice that all of the data types included in the TIMIT Corpus fall
into the two basic categories of lexicon and text, which we will discuss later. Even the
speaker demographics data is just another instance of the lexicon data type.

This last observation is less surprising when we consider that text and record structures
are the primary domains for the two subfields of computer science that focus on data
management, namely text retrieval and databases. A notable feature of linguistic data
management is that it usually brings both data types together, and that it can draw on
results and techniques from both fields.

Figure 11-2. Structure of the published TIMIT Corpus: The CD-ROM contains doc, train, and test
directories at the top level; the train and test directories both have eight sub-directories, one per dialect
region; each of these contains further subdirectories, one per speaker; the contents of the directory for
female speaker aks0 are listed, showing 10 wav files accompanied by a text transcription, a word-
aligned transcription, and a phonetic transcription.
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Fundamental Data Types
Despite its complexity, the TIMIT Corpus contains only two fundamental data types,
namely lexicons and texts. As we saw in Chapter 2, most lexical resources can be rep-
resented using a record structure, i.e., a key plus one or more fields, as shown in
Figure 11-3. A lexical resource could be a conventional dictionary or comparative
wordlist, as illustrated. It could also be a phrasal lexicon, where the key field is a phrase
rather than a single word. A thesaurus also consists of record-structured data, where
we look up entries via non-key fields that correspond to topics. We can also construct
special tabulations (known as paradigms) to illustrate contrasts and systematic varia-
tion, as shown in Figure 11-3 for three verbs. TIMIT’s speaker table is also a kind of
lexicon.

Figure 11-3. Basic linguistic data types—lexicons and texts: Amid their diversity, lexicons have a
record structure, whereas annotated texts have a temporal organization.

At the most abstract level, a text is a representation of a real or fictional speech event,
and the time-course of that event carries over into the text itself. A text could be a small
unit, such as a word or sentence, or a complete narrative or dialogue. It may come with
annotations such as part-of-speech tags, morphological analysis, discourse structure,
and so forth. As we saw in the IOB tagging technique (Chapter 7), it is possible to
represent higher-level constituents using tags on individual words. Thus the abstraction
of text shown in Figure 11-3 is sufficient.
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Despite the complexities and idiosyncrasies of individual corpora, at base they are col-
lections of texts together with record-structured data. The contents of a corpus are
often biased toward one or the other of these types. For example, the Brown Corpus
contains 500 text files, but we still use a table to relate the files to 15 different genres.
At the other end of the spectrum, WordNet contains 117,659 synset records, yet it
incorporates many example sentences (mini-texts) to illustrate word usages. TIMIT is
an interesting midpoint on this spectrum, containing substantial free-standing material
of both the text and lexicon types.

11.2  The Life Cycle of a Corpus
Corpora are not born fully formed, but involve careful preparation and input from
many people over an extended period. Raw data needs to be collected, cleaned up,
documented, and stored in a systematic structure. Various layers of annotation might
be applied, some requiring specialized knowledge of the morphology or syntax of the
language. Success at this stage depends on creating an efficient workflow involving
appropriate tools and format converters. Quality control procedures can be put in place
to find inconsistencies in the annotations, and to ensure the highest possible level of
inter-annotator agreement. Because of the scale and complexity of the task, large cor-
pora may take years to prepare, and involve tens or hundreds of person-years of effort.
In this section, we briefly review the various stages in the life cycle of a corpus.

Three Corpus Creation Scenarios
In one type of corpus, the design unfolds over in the course of the creator’s explorations.
This is the pattern typical of traditional “field linguistics,” in which material from elic-
itation sessions is analyzed as it is gathered, with tomorrow’s elicitation often based on
questions that arise in analyzing today’s. The resulting corpus is then used during sub-
sequent years of research, and may serve as an archival resource indefinitely. Comput-
erization is an obvious boon to work of this type, as exemplified by the popular program
Shoebox, now over two decades old and re-released as Toolbox (see Section 2.4). Other
software tools, even simple word processors and spreadsheets, are routinely used to
acquire the data. In the next section, we will look at how to extract data from these
sources.

Another corpus creation scenario is typical of experimental research where a body of
carefully designed material is collected from a range of human subjects, then analyzed
to evaluate a hypothesis or develop a technology. It has become common for such
databases to be shared and reused within a laboratory or company, and often to be
published more widely. Corpora of this type are the basis of the “common task” method
of research management, which over the past two decades has become the norm in
government-funded research programs in language technology. We have already en-
countered many such corpora in the earlier chapters; we will see how to write Python
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programs to implement the kinds of curation tasks that are necessary before such cor-
pora are published.

Finally, there are efforts to gather a “reference corpus” for a particular language, such
as the American National Corpus (ANC) and the British National Corpus (BNC). Here
the goal has been to produce a comprehensive record of the many forms, styles, and
uses of a language. Apart from the sheer challenge of scale, there is a heavy reliance on
automatic annotation tools together with post-editing to fix any errors. However, we
can write programs to locate and repair the errors, and also to analyze the corpus for
balance.

Quality Control
Good tools for automatic and manual preparation of data are essential. However, the
creation of a high-quality corpus depends just as much on such mundane things as
documentation, training, and workflow. Annotation guidelines define the task and
document the markup conventions. They may be regularly updated to cover difficult
cases, along with new rules that are devised to achieve more consistent annotations.
Annotators need to be trained in the procedures, including methods for resolving cases
not covered in the guidelines. A workflow needs to be established, possibly with sup-
porting software, to keep track of which files have been initialized, annotated, validated,
manually checked, and so on. There may be multiple layers of annotation, provided by
different specialists. Cases of uncertainty or disagreement may require adjudication.

Large annotation tasks require multiple annotators, which raises the problem of
achieving consistency. How consistently can a group of annotators perform? We can
easily measure consistency by having a portion of the source material independently
annotated by two people. This may reveal shortcomings in the guidelines or differing
abilities with the annotation task. In cases where quality is paramount, the entire corpus
can be annotated twice, and any inconsistencies adjudicated by an expert.

It is considered best practice to report the inter-annotator agreement that was achieved
for a corpus (e.g., by double-annotating 10% of the corpus). This score serves as a
helpful upper bound on the expected performance of any automatic system that is
trained on this corpus.

Caution!
Care should be exercised when interpreting an inter-annotator agree-
ment score, since annotation tasks vary greatly in their difficulty. For
example, 90% agreement would be a terrible score for part-of-speech
tagging, but an exceptional score for semantic role labeling.

The Kappa coefficient κ measures agreement between two people making category
judgments, correcting for expected chance agreement. For example, suppose an item
is to be annotated, and four coding options are equally likely. In this case, two people
coding randomly would be expected to agree 25% of the time. Thus, an agreement of
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25% will be assigned κ = 0, and better levels of agreement will be scaled accordingly.
For an agreement of 50%, we would get κ = 0.333, as 50 is a third of the way from 25
to 100. Many other agreement measures exist; see help(nltk.metrics.agreement) for
details.

We can also measure the agreement between two independent segmentations of lan-
guage input, e.g., for tokenization, sentence segmentation, and named entity recogni-
tion. In Figure 11-4 we see three possible segmentations of a sequence of items which
might have been produced by annotators (or programs). Although none of them agree
exactly, S1 and S2 are in close agreement, and we would like a suitable measure. Win-
dowdiff is a simple algorithm for evaluating the agreement of two segmentations by
running a sliding window over the data and awarding partial credit for near misses. If
we preprocess our tokens into a sequence of zeros and ones, to record when a token is
followed by a boundary, we can represent the segmentations as strings and apply the
windowdiff scorer.

>>> s1 = "00000010000000001000000"
>>> s2 = "00000001000000010000000"
>>> s3 = "00010000000000000001000"
>>> nltk.windowdiff(s1, s1, 3)
0
>>> nltk.windowdiff(s1, s2, 3)
4
>>> nltk.windowdiff(s2, s3, 3)
16

In this example, the window had a size of 3. The windowdiff computation slides this
window across a pair of strings. At each position it totals up the number of boundaries
found inside this window, for both strings, then computes the difference. These dif-
ferences are then summed. We can increase or shrink the window size to control the
sensitivity of the measure.

Curation Versus Evolution
As large corpora are published, researchers are increasingly likely to base their inves-
tigations on balanced, focused subsets that were derived from corpora produced for

Figure 11-4. Three segmentations of a sequence: The small rectangles represent characters, words,
sentences, in short, any sequence which might be divided into linguistic units; S1 and S2 are in close
agreement, but both differ significantly from S3.
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entirely different reasons. For instance, the Switchboard database, originally collected
for speaker identification research, has since been used as the basis for published studies
in speech recognition, word pronunciation, disfluency, syntax, intonation, and dis-
course structure. The motivations for recycling linguistic corpora include the desire to
save time and effort, the desire to work on material available to others for replication,
and sometimes a desire to study more naturalistic forms of linguistic behavior than
would be possible otherwise. The process of choosing a subset for such a study may
count as a non-trivial contribution in itself.

In addition to selecting an appropriate subset of a corpus, this new work could involve
reformatting a text file (e.g., converting to XML), renaming files, retokenizing the text,
selecting a subset of the data to enrich, and so forth. Multiple research groups might
do this work independently, as illustrated in Figure 11-5. At a later date, should some-
one want to combine sources of information from different versions, the task will
probably be extremely onerous.

Figure 11-5. Evolution of a corpus over time: After a corpus is published, research groups will use it
independently, selecting and enriching different pieces; later research that seeks to integrate separate
annotations confronts the difficult challenge of aligning the annotations.

The task of using derived corpora is made even more difficult by the lack of any record
about how the derived version was created, and which version is the most up-to-date.

An alternative to this chaotic situation is for a corpus to be centrally curated, and for
committees of experts to revise and extend it at periodic intervals, considering sub-
missions from third parties and publishing new releases from time to time. Print dic-
tionaries and national corpora may be centrally curated in this way. However, for most
corpora this model is simply impractical.

A middle course is for the original corpus publication to have a scheme for identifying
any sub-part. Each sentence, tree, or lexical entry could have a globally unique identi-
fier, and each token, node, or field (respectively) could have a relative offset. Annota-
tions, including segmentations, could reference the source using this identifier scheme
(a method which is known as standoff annotation). This way, new annotations could
be distributed independently of the source, and multiple independent annotations of
the same source could be compared and updated without touching the source.

If the corpus publication is provided in multiple versions, the version number or date
could be part of the identification scheme. A table of correspondences between
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identifiers across editions of the corpus would permit any standoff annotations to be
updated easily.

Caution!
Sometimes an updated corpus contains revisions of base material that
has been externally annotated. Tokens might be split or merged, and
constituents may have been rearranged. There may not be a one-to-one
correspondence between old and new identifiers. It is better to cause
standoff annotations to break on such components of the new version
than to silently allow their identifiers to refer to incorrect locations.

11.3  Acquiring Data
Obtaining Data from the Web
The Web is a rich source of data for language analysis purposes. We have already
discussed methods for accessing individual files, RSS feeds, and search engine results
(see Section 3.1). However, in some cases we want to obtain large quantities of web text.

The simplest approach is to obtain a published corpus of web text. The ACL Special
Interest Group on Web as Corpus (SIGWAC) maintains a list of resources at http://
www.sigwac.org.uk/. The advantage of using a well-defined web corpus is that they are
documented, stable, and permit reproducible experimentation.

If the desired content is localized to a particular website, there are many utilities for
capturing all the accessible contents of a site, such as GNU Wget (http://www.gnu.org/
software/wget/). For maximal flexibility and control, a web crawler can be used, such
as Heritrix (http://crawler.archive.org/). Crawlers permit fine-grained control over
where to look, which links to follow, and how to organize the results. For example, if
we want to compile a bilingual text collection having corresponding pairs of documents
in each language, the crawler needs to detect the structure of the site in order to extract
the correspondence between the documents, and it needs to organize the downloaded
pages in such a way that the correspondence is captured. It might be tempting to write
your own web crawler, but there are dozens of pitfalls having to do with detecting
MIME types, converting relative to absolute URLs, avoiding getting trapped in cyclic
link structures, dealing with network latencies, avoiding overloading the site or being
banned from accessing the site, and so on.

Obtaining Data from Word Processor Files
Word processing software is often used in the manual preparation of texts and lexicons
in projects that have limited computational infrastructure. Such projects often provide
templates for data entry, though the word processing software does not ensure that the
data is correctly structured. For example, each text may be required to have a title and
date. Similarly, each lexical entry may have certain obligatory fields. As the data grows
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in size and complexity, a larger proportion of time may be spent maintaining its con-
sistency.

How can we extract the content of such files so that we can manipulate it in external
programs? Moreover, how can we validate the content of these files to help authors
create well-structured data, so that the quality of the data can be maximized in the
context of the original authoring process?

Consider a dictionary in which each entry has a part-of-speech field, drawn from a set
of 20 possibilities, displayed after the pronunciation field, and rendered in 11-point
bold type. No conventional word processor has search or macro functions capable of
verifying that all part-of-speech fields have been correctly entered and displayed. This
task requires exhaustive manual checking. If the word processor permits the document
to be saved in a non-proprietary format, such as text, HTML, or XML, we can some-
times write programs to do this checking automatically.

Consider the following fragment of a lexical entry: “sleep [sli:p] v.i. condition of body
and mind...”. We can key in such text using MSWord, then “Save as Web Page,” then
inspect the resulting HTML file:

<p class=MsoNormal>sleep
  <span style='mso-spacerun:yes'> </span>
  [<span class=SpellE>sli:p</span>]
  <span style='mso-spacerun:yes'> </span>
  <b><span style='font-size:11.0pt'>v.i.</span></b>
  <span style='mso-spacerun:yes'> </span>
  <i>a condition of body and mind ...<o:p></o:p></i>
</p>

Observe that the entry is represented as an HTML paragraph, using the <p> element,
and that the part of speech appears inside a <span style='font-size:11.0pt'> element.
The following program defines the set of legal parts-of-speech, legal_pos. Then it ex-
tracts all 11-point content from the dict.htm file and stores it in the set used_pos. Observe
that the search pattern contains a parenthesized sub-expression; only the material that
matches this subexpression is returned by re.findall. Finally, the program constructs
the set of illegal parts-of-speech as the set difference between used_pos and legal_pos:

>>> legal_pos = set(['n', 'v.t.', 'v.i.', 'adj', 'det'])
>>> pattern = re.compile(r"'font-size:11.0pt'>([a-z.]+)<")
>>> document = open("dict.htm").read()
>>> used_pos = set(re.findall(pattern, document))
>>> illegal_pos = used_pos.difference(legal_pos)
>>> print list(illegal_pos)
['v.i', 'intrans']

This simple program represents the tip of the iceberg. We can develop sophisticated
tools to check the consistency of word processor files, and report errors so that the
maintainer of the dictionary can correct the original file using the original word
processor.
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Once we know the data is correctly formatted, we can write other programs to convert
the data into a different format. The program in Example 11-1 strips out the HTML
markup using nltk.clean_html(), extracts the words and their pronunciations, and
generates output in “comma-separated value” (CSV) format.

Example 11-1. Converting HTML created by Microsoft Word into comma-separated values.

def lexical_data(html_file):
    SEP = '_ENTRY'
    html = open(html_file).read()
    html = re.sub(r'<p', SEP + '<p', html)
    text = nltk.clean_html(html)
    text = ' '.join(text.split())
    for entry in text.split(SEP):
        if entry.count(' ') > 2:
            yield entry.split(' ', 3)

>>> import csv
>>> writer = csv.writer(open("dict1.csv", "wb"))
>>> writer.writerows(lexical_data("dict.htm"))

Obtaining Data from Spreadsheets and Databases
Spreadsheets are often used for acquiring wordlists or paradigms. For example, a com-
parative wordlist may be created using a spreadsheet, with a row for each cognate set
and a column for each language (see nltk.corpus.swadesh and www.rosettapro
ject.org). Most spreadsheet software can export their data in CSV format. As we will
see later, it is easy for Python programs to access these using the csv module.

Sometimes lexicons are stored in a full-fledged relational database. When properly
normalized, these databases can ensure the validity of the data. For example, we can
require that all parts-of-speech come from a specified vocabulary by declaring that the
part-of-speech field is an enumerated type or a foreign key that references a separate
part-of-speech table. However, the relational model requires the structure of the data
(the schema) be declared in advance, and this runs counter to the dominant approach
to structuring linguistic data, which is highly exploratory. Fields which were assumed
to be obligatory and unique often turn out to be optional and repeatable. A relational
database can accommodate this when it is fully known in advance; however, if it is not,
or if just about every property turns out to be optional or repeatable, the relational
approach is unworkable.

Nevertheless, when our goal is simply to extract the contents from a database, it is
enough to dump out the tables (or SQL query results) in CSV format and load them
into our program. Our program might perform a linguistically motivated query that
cannot easily be expressed in SQL, e.g., select all words that appear in example sentences
for which no dictionary entry is provided. For this task, we would need to extract enough
information from a record for it to be uniquely identified, along with the headwords
and example sentences. Let’s suppose this information was now available in a CSV file
dict.csv:
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"sleep","sli:p","v.i","a condition of body and mind ..."
"walk","wo:k","v.intr","progress by lifting and setting down each foot ..."
"wake","weik","intrans","cease to sleep"

Now we can express this query as shown here:

>>> import csv
>>> lexicon = csv.reader(open('dict.csv'))
>>> pairs = [(lexeme, defn) for (lexeme, _, _, defn) in lexicon]
>>> lexemes, defns = zip(*pairs)
>>> defn_words = set(w for defn in defns for w in defn.split())
>>> sorted(defn_words.difference(lexemes))
['...', 'a', 'and', 'body', 'by', 'cease', 'condition', 'down', 'each',
'foot', 'lifting', 'mind', 'of', 'progress', 'setting', 'to']

This information would then guide the ongoing work to enrich the lexicon, work that
updates the content of the relational database.

Converting Data Formats
Annotated linguistic data rarely arrives in the most convenient format, and it is often
necessary to perform various kinds of format conversion. Converting between character
encodings has already been discussed (see Section 3.3). Here we focus on the structure
of the data.

In the simplest case, the input and output formats are isomorphic. For instance, we
might be converting lexical data from Toolbox format to XML, and it is straightforward
to transliterate the entries one at a time (Section 11.4). The structure of the data is
reflected in the structure of the required program: a for loop whose body takes care of
a single entry.

In another common case, the output is a digested form of the input, such as an inverted
file index. Here it is necessary to build an index structure in memory (see Example 4.8),
then write it to a file in the desired format. The following example constructs an index
that maps the words of a dictionary definition to the corresponding lexeme  for each
lexical entry , having tokenized the definition text , and discarded short words .
Once the index has been constructed, we open a file and then iterate over the index
entries, to write out the lines in the required format .

>>> idx = nltk.Index((defn_word, lexeme) 
...                  for (lexeme, defn) in pairs 
...                  for defn_word in nltk.word_tokenize(defn) 
...                  if len(defn_word) > 3) 
>>> idx_file = open("dict.idx", "w")
>>> for word in sorted(idx):
...     idx_words = ', '.join(idx[word])
...     idx_line = "%s: %s\n" % (word, idx_words) 
...     idx_file.write(idx_line)
>>> idx_file.close()

The resulting file dict.idx contains the following lines. (With a larger dictionary, we
would expect to find multiple lexemes listed for each index entry.)
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body: sleep
cease: wake
condition: sleep
down: walk
each: walk
foot: walk
lifting: walk
mind: sleep
progress: walk
setting: walk
sleep: wake

In some cases, the input and output data both consist of two or more dimensions. For
instance, the input might be a set of files, each containing a single column of word
frequency data. The required output might be a two-dimensional table in which the
original columns appear as rows. In such cases we populate an internal data structure
by filling up one column at a time, then read off the data one row at a time as we write
data to the output file.

In the most vexing cases, the source and target formats have slightly different coverage
of the domain, and information is unavoidably lost when translating between them.
For example, we could combine multiple Toolbox files to create a single CSV file con-
taining a comparative wordlist, losing all but the \lx field of the input files. If the CSV
file was later modified, it would be a labor-intensive process to inject the changes into
the original Toolbox files. A partial solution to this “round-tripping” problem is to
associate explicit identifiers with each linguistic object, and to propagate the identifiers
with the objects.

Deciding Which Layers of Annotation to Include
Published corpora vary greatly in the richness of the information they contain. At a
minimum, a corpus will typically contain at least a sequence of sound or orthographic
symbols. At the other end of the spectrum, a corpus could contain a large amount of
information about the syntactic structure, morphology, prosody, and semantic content
of every sentence, plus annotation of discourse relations or dialogue acts. These extra
layers of annotation may be just what someone needs for performing a particular data
analysis task. For example, it may be much easier to find a given linguistic pattern if
we can search for specific syntactic structures; and it may be easier to categorize a
linguistic pattern if every word has been tagged with its sense. Here are some commonly
provided annotation layers:

Word tokenization
The orthographic form of text does not unambiguously identify its tokens. A to-
kenized and normalized version, in addition to the conventional orthographic ver-
sion, may be a very convenient resource.

Sentence segmentation
As we saw in Chapter 3, sentence segmentation can be more difficult than it seems.
Some corpora therefore use explicit annotations to mark sentence segmentation.
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Paragraph segmentation
Paragraphs and other structural elements (headings, chapters, etc.) may be explic-
itly annotated.

Part-of-speech
The syntactic category of each word in a document.

Syntactic structure
A tree structure showing the constituent structure of a sentence.

Shallow semantics
Named entity and coreference annotations, and semantic role labels.

Dialogue and discourse
Dialogue act tags and rhetorical structure.

Unfortunately, there is not much consistency between existing corpora in how they
represent their annotations. However, two general classes of annotation representation
should be distinguished. Inline annotation modifies the original document by insert-
ing special symbols or control sequences that carry the annotated information. For
example, when part-of-speech tagging a document, the string "fly" might be replaced
with the string "fly/NN", to indicate that the word fly is a noun in this context. In
contrast, standoff annotation does not modify the original document, but instead
creates a new file that adds annotation information using pointers that reference the
original document. For example, this new document might contain the string "<token
id=8 pos='NN'/>", to indicate that token 8 is a noun.

Standards and Tools
For a corpus to be widely useful, it needs to be available in a widely supported format.
However, the cutting edge of NLP research depends on new kinds of annotations,
which by definition are not widely supported. In general, adequate tools for creation,
publication, and use of linguistic data are not widely available. Most projects must
develop their own set of tools for internal use, which is no help to others who lack the
necessary resources. Furthermore, we do not have adequate, generally accepted stand-
ards for expressing the structure and content of corpora. Without such standards, gen-
eral-purpose tools are impossible—though at the same time, without available tools,
adequate standards are unlikely to be developed, used, and accepted.

One response to this situation has been to forge ahead with developing a generic format
that is sufficiently expressive to capture a wide variety of annotation types (see Sec-
tion 11.8 for examples). The challenge for NLP is to write programs that cope with the
generality of such formats. For example, if the programming task involves tree data,
and the file format permits arbitrary directed graphs, then input data must be validated
to check for tree properties such as rootedness, connectedness, and acyclicity. If the
input files contain other layers of annotation, the program would need to know how
to ignore them when the data was loaded, but not invalidate or obliterate those layers
when the tree data was saved back to the file.
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Another response has been to write one-off scripts to manipulate corpus formats; such
scripts litter the filespaces of many NLP researchers. NLTK’s corpus readers are a more
systematic approach, founded on the premise that the work of parsing a corpus format
should be done only once (per programming language).

Instead of focusing on a common format, we believe it is more promising to develop a
common interface (see nltk.corpus). Consider the case of treebanks, an important
corpus type for work in NLP. There are many ways to store a phrase structure tree in
a file. We can use nested parentheses, or nested XML elements, or a dependency no-
tation with a (child-id, parent-id) pair on each line, or an XML version of the dependency
notation, etc. However, in each case the logical structure is almost the same. It is much
easier to devise a common interface that allows application programmers to write code
to access tree data using methods such as children(), leaves(), depth(), and so forth.
Note that this approach follows accepted practice within computer science, viz. ab-
stract data types, object-oriented design, and the three-layer architecture (Fig-
ure 11-6). The last of these—from the world of relational databases—allows end-user
applications to use a common model (the “relational model”) and a common language
(SQL) to abstract away from the idiosyncrasies of file storage. It also allows innovations
in filesystem technologies to occur without disturbing end-user applications. In the
same way, a common corpus interface insulates application programs from data
formats.

Figure 11-6. A common format versus a common interface.

In this context, when creating a new corpus for dissemination, it is expedient to use a
widely used format wherever possible. When this is not possible, the corpus could be
accompanied with software—such as an nltk.corpus module—that supports existing
interface methods.

Special Considerations When Working with Endangered Languages
The importance of language to science and the arts is matched in significance by the
cultural treasure embodied in language. Each of the world’s ~7,000 human languages
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is rich in unique respects, in its oral histories and creation legends, down to its gram-
matical constructions and its very words and their nuances of meaning. Threatened
remnant cultures have words to distinguish plant subspecies according to therapeutic
uses that are unknown to science. Languages evolve over time as they come into contact
with each other, and each one provides a unique window onto human pre-history. In
many parts of the world, small linguistic variations from one town to the next add up
to a completely different language in the space of a half-hour drive. For its breathtaking
complexity and diversity, human language is as a colorful tapestry stretching through
time and space.

However, most of the world’s languages face extinction. In response to this, many
linguists are hard at work documenting the languages, constructing rich records of this
important facet of the world’s linguistic heritage. What can the field of NLP offer to
help with this effort? Developing taggers, parsers, named entity recognizers, etc., is not
an early priority, and there is usually insufficient data for developing such tools in any
case. Instead, the most frequently voiced need is to have better tools for collecting and
curating data, with a focus on texts and lexicons.

On the face of things, it should be a straightforward matter to start collecting texts in
an endangered language. Even if we ignore vexed issues such as who owns the texts,
and sensitivities surrounding cultural knowledge contained in the texts, there is the
obvious practical issue of transcription. Most languages lack a standard orthography.
When a language has no literary tradition, the conventions of spelling and punctuation
are not well established. Therefore it is common practice to create a lexicon in tandem
with a text collection, continually updating the lexicon as new words appear in the
texts. This work could be done using a text processor (for the texts) and a spreadsheet
(for the lexicon). Better still, SIL’s free linguistic software Toolbox and Fieldworks
provide sophisticated support for integrated creation of texts and lexicons.

When speakers of the language in question are trained to enter texts themselves, a
common obstacle is an overriding concern for correct spelling. Having a lexicon greatly
helps this process, but we need to have lookup methods that do not assume someone
can determine the citation form of an arbitrary word. The problem may be acute for
languages having a complex morphology that includes prefixes. In such cases it helps
to tag lexical items with semantic domains, and to permit lookup by semantic domain
or by gloss.

Permitting lookup by pronunciation similarity is also a big help. Here’s a simple dem-
onstration of how to do this. The first step is to identify confusible letter sequences,
and map complex versions to simpler versions. We might also notice that the relative
order of letters within a cluster of consonants is a source of spelling errors, and so we
normalize the order of consonants.
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>>> mappings = [('ph', 'f'), ('ght', 't'), ('^kn', 'n'), ('qu', 'kw'),
...             ('[aeiou]+', 'a'), (r'(.)\1', r'\1')]
>>> def signature(word):
...     for patt, repl in mappings:
...         word = re.sub(patt, repl, word)
...     pieces = re.findall('[^aeiou]+', word)
...     return ''.join(char for piece in pieces for char in sorted(piece))[:8]
>>> signature('illefent')
'lfnt'
>>> signature('ebsekwieous')
'bskws'
>>> signature('nuculerr')
'nclr'

Next, we create a mapping from signatures to words, for all the words in our lexicon.
We can use this to get candidate corrections for a given input word (but we must first
compute that word’s signature).

>>> signatures = nltk.Index((signature(w), w) for w in nltk.corpus.words.words())
>>> signatures[signature('nuculerr')]
['anicular', 'inocular', 'nucellar', 'nuclear', 'unicolor', 'uniocular', 'unocular']

Finally, we should rank the results in terms of similarity with the original word. This
is done by the function rank(). The only remaining function provides a simple interface
to the user:

>>> def rank(word, wordlist):
...     ranked = sorted((nltk.edit_dist(word, w), w) for w in wordlist)
...     return [word for (_, word) in ranked]
>>> def fuzzy_spell(word):
...     sig = signature(word)
...     if sig in signatures:
...         return rank(word, signatures[sig])
...     else:
...         return []
>>> fuzzy_spell('illefent')
['olefiant', 'elephant', 'oliphant', 'elephanta']
>>> fuzzy_spell('ebsekwieous')
['obsequious']
>>> fuzzy_spell('nucular')
['nuclear', 'nucellar', 'anicular', 'inocular', 'unocular', 'unicolor', 'uniocular']

This is just one illustration where a simple program can facilitate access to lexical data
in a context where the writing system of a language may not be standardized, or where
users of the language may not have a good command of spellings. Other simple appli-
cations of NLP in this area include building indexes to facilitate access to data, gleaning
wordlists from texts, locating examples of word usage in constructing a lexicon, de-
tecting prevalent or exceptional patterns in poorly understood data, and performing
specialized validation on data created using various linguistic software tools. We will
return to the last of these in Section 11.5.
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11.4  Working with XML
The Extensible Markup Language (XML) provides a framework for designing domain-
specific markup languages. It is sometimes used for representing annotated text and
for lexical resources. Unlike HTML with its predefined tags, XML permits us to make
up our own tags. Unlike a database, XML permits us to create data without first spec-
ifying its structure, and it permits us to have optional and repeatable elements. In this
section, we briefly review some features of XML that are relevant for representing lin-
guistic data, and show how to access data stored in XML files using Python programs.

Using XML for Linguistic Structures
Thanks to its flexibility and extensibility, XML is a natural choice for representing
linguistic structures. Here’s an example of a simple lexical entry.

(2) <entry>
  <headword>whale</headword>
  <pos>noun</pos>
  <gloss>any of the larger cetacean mammals having a streamlined
    body and breathing through a blowhole on the head</gloss>
</entry>

It consists of a series of XML tags enclosed in angle brackets. Each opening tag, such
as <gloss>, is matched with a closing tag, </gloss>; together they constitute an XML
element. The preceding example has been laid out nicely using whitespace, but it could
equally have been put on a single long line. Our approach to processing XML will
usually not be sensitive to whitespace. In order for XML to be well formed, all opening
tags must have corresponding closing tags, at the same level of nesting (i.e., the XML
document must be a well-formed tree).

XML permits us to repeat elements, e.g., to add another gloss field, as we see next. We
will use different whitespace to underscore the point that layout does not matter.

(3) <entry><headword>whale</headword><pos>noun</pos><gloss>any of the
larger cetacean mammals having a streamlined body and breathing
through a blowhole on the head</gloss><gloss>a very large person;
impressive in size or qualities</gloss></entry>

A further step might be to link our lexicon to some external resource, such as WordNet,
using external identifiers. In (4) we group the gloss and a synset identifier inside a new
element, which we have called “sense.”

(4) <entry>
  <headword>whale</headword>
  <pos>noun</pos>
  <sense>
    <gloss>any of the larger cetacean mammals having a streamlined
      body and breathing through a blowhole on the head</gloss>
    <synset>whale.n.02</synset>
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  </sense>
    <gloss>a very large person; impressive in size or qualities</gloss>
    <synset>giant.n.04</synset>
  </sense>
</entry>

Alternatively, we could have represented the synset identifier using an XML
attribute, without the need for any nested structure, as in (5).

(5) <entry>
  <headword>whale</headword>
  <pos>noun</pos>
  <gloss synset="whale.n.02">any of the larger cetacean mammals having
      a streamlined body and breathing through a blowhole on the head</gloss>
  <gloss synset="giant.n.04">a very large person; impressive in size or
      qualities</gloss>
</entry>

This illustrates some of the flexibility of XML. If it seems somewhat arbitrary, that’s
because it is! Following the rules of XML, we can invent new attribute names, and nest
them as deeply as we like. We can repeat elements, leave them out, and put them in a
different order each time. We can have fields whose presence depends on the value of
some other field; e.g., if the part of speech is verb, then the entry can have a
past_tense element to hold the past tense of the verb, but if the part of speech is noun,
no past_tense element is permitted. To impose some order over all this freedom, we
can constrain the structure of an XML file using a “schema,” which is a declaration
akin to a context-free grammar. Tools exist for testing the validity of an XML file with
respect to a schema.

The Role of XML
We can use XML to represent many kinds of linguistic information. However, the
flexibility comes at a price. Each time we introduce a complication, such as by permit-
ting an element to be optional or repeated, we make more work for any program that
accesses the data. We also make it more difficult to check the validity of the data, or to
interrogate the data using one of the XML query languages.

Thus, using XML to represent linguistic structures does not magically solve the data
modeling problem. We still have to work out how to structure the data, then define
that structure with a schema, and then write programs to read and write the format
and convert it to other formats. Similarly, we still need to follow some standard prin-
ciples concerning data normalization. It is wise to avoid making duplicate copies of the
same information, so that we don’t end up with inconsistent data when only one copy
is changed. For example, a cross-reference that was represented as <xref>headword</
xref> would duplicate the storage of the headword of some other lexical entry, and the
link would break if the copy of the string at the other location was modified. Existential
dependencies between information types need to be modeled, so that we can’t create
elements without a home. For example, if sense definitions cannot exist independently
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of a lexical entry, the sense element can be nested inside the entry element. Many-to-
many relations need to be abstracted out of hierarchical structures. For example, if a
word can have many corresponding senses, and a sense can have several corresponding
words, then both words and senses must be enumerated separately, as must the list of
(word, sense) pairings. This complex structure might even be split across three separate
XML files.

As we can see, although XML provides us with a convenient format accompanied by
an extensive collection of tools, it offers no panacea.

The ElementTree Interface
Python’s ElementTree module provides a convenient way to access data stored in XML
files. ElementTree is part of Python’s standard library (since Python 2.5), and is also
provided as part of NLTK in case you are using Python 2.4.

We will illustrate the use of ElementTree using a collection of Shakespeare plays that
have been formatted using XML. Let’s load the XML file and inspect the raw data, first
at the top of the file , where we see some XML headers and the name of a schema
called play.dtd, followed by the root element PLAY. We pick it up again at the start of
Act 1 . (Some blank lines have been omitted from the output.)

>>> merchant_file = nltk.data.find('corpora/shakespeare/merchant.xml')
>>> raw = open(merchant_file).read()
>>> print raw[0:168] 
<?xml version="1.0"?>
<?xml-stylesheet type="text/css" href="shakes.css"?>
<!-- <!DOCTYPE PLAY SYSTEM "play.dtd"> -->
<PLAY>
<TITLE>The Merchant of Venice</TITLE>
>>> print raw[1850:2075] 
<TITLE>ACT I</TITLE>
<SCENE><TITLE>SCENE I.  Venice. A street.</TITLE>
<STAGEDIR>Enter ANTONIO, SALARINO, and SALANIO</STAGEDIR>
<SPEECH>
<SPEAKER>ANTONIO</SPEAKER>
<LINE>In sooth, I know not why I am so sad:</LINE>

We have just accessed the XML data as a string. As we can see, the string at the start
of Act 1 contains XML tags for title, scene, stage directions, and so forth.

The next step is to process the file contents as structured XML data, using Element
Tree. We are processing a file (a multiline string) and building a tree, so it’s not sur-
prising that the method name is parse . The variable merchant contains an XML ele-
ment PLAY . This element has internal structure; we can use an index to get its first
child, a TITLE element . We can also see the text content of this element, the title of
the play . To get a list of all the child elements, we use the getchildren() method .

>>> from nltk.etree.ElementTree import ElementTree
>>> merchant = ElementTree().parse(merchant_file) 
>>> merchant
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<Element PLAY at 22fa800> 
>>> merchant[0]
<Element TITLE at 22fa828> 
>>> merchant[0].text
'The Merchant of Venice' 
>>> merchant.getchildren() 
[<Element TITLE at 22fa828>, <Element PERSONAE at 22fa7b0>, <Element SCNDESCR at 2300170>,
<Element PLAYSUBT at 2300198>, <Element ACT at 23001e8>, <Element ACT at 234ec88>,
<Element ACT at 23c87d8>, <Element ACT at 2439198>, <Element ACT at 24923c8>]

The play consists of a title, the personae, a scene description, a subtitle, and five acts.
Each act has a title and some scenes, and each scene consists of speeches which are
made up of lines, a structure with four levels of nesting. Let’s dig down into Act IV:

>>> merchant[-2][0].text
'ACT IV'
>>> merchant[-2][1]
<Element SCENE at 224cf80>
>>> merchant[-2][1][0].text
'SCENE I.  Venice. A court of justice.'
>>> merchant[-2][1][54]
<Element SPEECH at 226ee40>
>>> merchant[-2][1][54][0]
<Element SPEAKER at 226ee90>
>>> merchant[-2][1][54][0].text
'PORTIA'
>>> merchant[-2][1][54][1]
<Element LINE at 226eee0>
>>> merchant[-2][1][54][1].text
"The quality of mercy is not strain'd,"

Your Turn: Repeat some of the methods just shown, for one of the
other Shakespeare plays included in the corpus, such as Romeo and Ju-
liet or Macbeth. For a list, see nltk.corpus.shakespeare.fileids().

Although we can access the entire tree this way, it is more convenient to search for sub-
elements with particular names. Recall that the elements at the top level have several
types. We can iterate over just the types we are interested in (such as the acts), using
merchant.findall('ACT'). Here’s an example of doing such tag-specific searches at ev-
ery level of nesting:

>>> for i, act in enumerate(merchant.findall('ACT')):
...     for j, scene in enumerate(act.findall('SCENE')):
...         for k, speech in enumerate(scene.findall('SPEECH')):
...             for line in speech.findall('LINE'):
...                 if 'music' in str(line.text):
...                     print "Act %d Scene %d Speech %d: %s" % (i+1, j+1, k+1, line.text)
Act 3 Scene 2 Speech 9: Let music sound while he doth make his choice;
Act 3 Scene 2 Speech 9: Fading in music: that the comparison
Act 3 Scene 2 Speech 9: And what is music then? Then music is
Act 5 Scene 1 Speech 23: And bring your music forth into the air.
Act 5 Scene 1 Speech 23: Here will we sit and let the sounds of music
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Act 5 Scene 1 Speech 23: And draw her home with music.
Act 5 Scene 1 Speech 24: I am never merry when I hear sweet music.
Act 5 Scene 1 Speech 25: Or any air of music touch their ears,
Act 5 Scene 1 Speech 25: By the sweet power of music: therefore the poet
Act 5 Scene 1 Speech 25: But music for the time doth change his nature.
Act 5 Scene 1 Speech 25: The man that hath no music in himself,
Act 5 Scene 1 Speech 25: Let no such man be trusted. Mark the music.
Act 5 Scene 1 Speech 29: It is your music, madam, of the house.
Act 5 Scene 1 Speech 32: No better a musician than the wren.

Instead of navigating each step of the way down the hierarchy, we can search for par-
ticular embedded elements. For example, let’s examine the sequence of speakers. We
can use a frequency distribution to see who has the most to say:

>>> speaker_seq = [s.text for s in merchant.findall('ACT/SCENE/SPEECH/SPEAKER')]
>>> speaker_freq = nltk.FreqDist(speaker_seq)
>>> top5 = speaker_freq.keys()[:5]
>>> top5
['PORTIA', 'SHYLOCK', 'BASSANIO', 'GRATIANO', 'ANTONIO']

We can also look for patterns in who follows whom in the dialogues. Since there are
23 speakers, we need to reduce the “vocabulary” to a manageable size first, using the
method described in Section 5.3.

>>> mapping = nltk.defaultdict(lambda: 'OTH')
>>> for s in top5:
...     mapping[s] = s[:4]
...
>>> speaker_seq2 = [mapping[s] for s in speaker_seq]
>>> cfd = nltk.ConditionalFreqDist(nltk.ibigrams(speaker_seq2))
>>> cfd.tabulate()
     ANTO BASS GRAT  OTH PORT SHYL
ANTO    0   11    4   11    9   12
BASS   10    0   11   10   26   16
GRAT    6    8    0   19    9    5
 OTH    8   16   18  153   52   25
PORT    7   23   13   53    0   21
SHYL   15   15    2   26   21    0

Ignoring the entry of 153 for exchanges between people other than the top five, the
largest values suggest that Othello and Portia have the most significant interactions.

Using ElementTree for Accessing Toolbox Data
In Section 2.4, we saw a simple interface for accessing Toolbox data, a popular and
well-established format used by linguists for managing data. In this section, we discuss
a variety of techniques for manipulating Toolbox data in ways that are not supported
by the Toolbox software. The methods we discuss could be applied to other record-
structured data, regardless of the actual file format.

We can use the toolbox.xml() method to access a Toolbox file and load it into an
ElementTree object. This file contains a lexicon for the Rotokas language of Papua New
Guinea.
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>>> from nltk.corpus import toolbox
>>> lexicon = toolbox.xml('rotokas.dic')

There are two ways to access the contents of the lexicon object: by indexes and by
paths. Indexes use the familiar syntax; thus lexicon[3] returns entry number 3 (which
is actually the fourth entry counting from zero) and lexicon[3][0] returns its first field:

>>> lexicon[3][0]
<Element lx at 77bd28>
>>> lexicon[3][0].tag
'lx'
>>> lexicon[3][0].text
'kaa'

The second way to access the contents of the lexicon object uses paths. The lexicon is
a series of record objects, each containing a series of field objects, such as lx and ps.
We can conveniently address all of the lexemes using the path record/lx. Here we use
the findall() function to search for any matches to the path record/lx, and we access
the text content of the element, normalizing it to lowercase:

>>> [lexeme.text.lower() for lexeme in lexicon.findall('record/lx')]
['kaa', 'kaa', 'kaa', 'kaakaaro', 'kaakaaviko', 'kaakaavo', 'kaakaoko',
'kaakasi', 'kaakau', 'kaakauko', 'kaakito', 'kaakuupato', ..., 'kuvuto']

Let’s view the Toolbox data in XML format. The write() method of ElementTree ex-
pects a file object. We usually create one of these using Python’s built-in open() func-
tion. In order to see the output displayed on the screen, we can use a special predefined
file object called stdout  (standard output), defined in Python’s sys module.

>>> import sys
>>> from nltk.etree.ElementTree import ElementTree
>>> tree = ElementTree(lexicon[3])
>>> tree.write(sys.stdout) 
<record>
  <lx>kaa</lx>
  <ps>N</ps>
  <pt>MASC</pt>
  <cl>isi</cl>
  <ge>cooking banana</ge>
  <tkp>banana bilong kukim</tkp>
  <pt>itoo</pt>
  <sf>FLORA</sf>
  <dt>12/Aug/2005</dt>
  <ex>Taeavi iria kaa isi kovopaueva kaparapasia.</ex>
  <xp>Taeavi i bin planim gaden banana bilong kukim tasol long paia.</xp>
  <xe>Taeavi planted banana in order to cook it.</xe>
</record>

Formatting Entries
We can use the same idea we saw in the previous section to generate HTML tables
instead of plain text. This would be useful for publishing a Toolbox lexicon on the
Web. It produces HTML elements <table>, <tr> (table row), and <td> (table data).
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>>> html = "<table>\n"
>>> for entry in lexicon[70:80]:
...     lx = entry.findtext('lx')
...     ps = entry.findtext('ps')
...     ge = entry.findtext('ge')
...     html += "  <tr><td>%s</td><td>%s</td><td>%s</td></tr>\n" % (lx, ps, ge)
>>> html += "</table>"
>>> print html
<table>
  <tr><td>kakae</td><td>???</td><td>small</td></tr>
  <tr><td>kakae</td><td>CLASS</td><td>child</td></tr>
  <tr><td>kakaevira</td><td>ADV</td><td>small-like</td></tr>
  <tr><td>kakapikoa</td><td>???</td><td>small</td></tr>
  <tr><td>kakapikoto</td><td>N</td><td>newborn baby</td></tr>
  <tr><td>kakapu</td><td>V</td><td>place in sling for purpose of carrying</td></tr>
  <tr><td>kakapua</td><td>N</td><td>sling for lifting</td></tr>
  <tr><td>kakara</td><td>N</td><td>arm band</td></tr>
  <tr><td>Kakarapaia</td><td>N</td><td>village name</td></tr>
  <tr><td>kakarau</td><td>N</td><td>frog</td></tr>
</table>

11.5  Working with Toolbox Data
Given the popularity of Toolbox among linguists, we will discuss some further methods
for working with Toolbox data. Many of the methods discussed in previous chapters,
such as counting, building frequency distributions, and tabulating co-occurrences, can
be applied to the content of Toolbox entries. For example, we can trivially compute
the average number of fields for each entry:

>>> from nltk.corpus import toolbox
>>> lexicon = toolbox.xml('rotokas.dic')
>>> sum(len(entry) for entry in lexicon) / len(lexicon)
13.635955056179775

In this section, we will discuss two tasks that arise in the context of documentary lin-
guistics, neither of which is supported by the Toolbox software.

Adding a Field to Each Entry
It is often convenient to add new fields that are derived automatically from existing
ones. Such fields often facilitate search and analysis. For instance, in Example 11-2 we
define a function cv(), which maps a string of consonants and vowels to the corre-
sponding CV sequence, e.g., kakapua would map to CVCVCVV. This mapping has four
steps. First, the string is converted to lowercase, then we replace any non-alphabetic
characters [^a-z] with an underscore. Next, we replace all vowels with V. Finally, any-
thing that is not a V or an underscore must be a consonant, so we replace it with a C.
Now, we can scan the lexicon and add a new cv field after every lx field. Exam-
ple 11-2 shows what this does to a particular entry; note the last line of output, which
shows the new cv field.
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Example 11-2. Adding a new cv field to a lexical entry.

from nltk.etree.ElementTree import SubElement

def cv(s):
    s = s.lower()
    s = re.sub(r'[^a-z]',     r'_', s)
    s = re.sub(r'[aeiou]',    r'V', s)
    s = re.sub(r'[^V_]',      r'C', s)
    return (s)

def add_cv_field(entry):
    for field in entry:
        if field.tag == 'lx':
            cv_field = SubElement(entry, 'cv')
            cv_field.text = cv(field.text)

>>> lexicon = toolbox.xml('rotokas.dic')
>>> add_cv_field(lexicon[53])
>>> print nltk.to_sfm_string(lexicon[53])
\lx kaeviro
\ps V
\pt A
\ge lift off
\ge take off
\tkp go antap
\sc MOTION
\vx 1
\nt used to describe action of plane
\dt 03/Jun/2005
\ex Pita kaeviroroe kepa kekesia oa vuripierevo kiuvu.
\xp Pita i go antap na lukim haus win i bagarapim.
\xe Peter went to look at the house that the wind destroyed.
\cv CVVCVCV

If a Toolbox file is being continually updated, the program in Exam-
ple 11-2 will need to be run more than once. It would be possible to
modify add_cv_field() to modify the contents of an existing entry.
However, it is a safer practice to use such programs to create enriched
files for the purpose of data analysis, without replacing the manually
curated source files.

Validating a Toolbox Lexicon
Many lexicons in Toolbox format do not conform to any particular schema. Some
entries may include extra fields, or may order existing fields in a new way. Manually
inspecting thousands of lexical entries is not practicable. However, we can easily iden-
tify frequent versus exceptional field sequences, with the help of a FreqDist:

>>> fd = nltk.FreqDist(':'.join(field.tag for field in entry) for entry in lexicon)
>>> fd.items()
[('lx:ps:pt:ge:tkp:dt:ex:xp:xe', 41), ('lx:rt:ps:pt:ge:tkp:dt:ex:xp:xe', 37),
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('lx:rt:ps:pt:ge:tkp:dt:ex:xp:xe:ex:xp:xe', 27), ('lx:ps:pt:ge:tkp:nt:dt:ex:xp:xe', 20),
..., ('lx:alt:rt:ps:pt:ge:eng:eng:eng:tkp:tkp:dt:ex:xp:xe:ex:xp:xe:ex:xp:xe', 1)]

After inspecting the high-frequency field sequences, we could devise a context-free
grammar for lexical entries. The grammar in Example 11-3 uses the CFG format we
saw in Chapter 8. Such a grammar models the implicit nested structure of Toolbox
entries, building a tree structure, where the leaves of the tree are individual field names.
We iterate over the entries and report their conformance with the grammar, as shown
in Example 11-3. Those that are accepted by the grammar are prefixed with a '+' ,
and those that are rejected are prefixed with a '-' . During the process of developing
such a grammar, it helps to filter out some of the tags .

Example 11-3. Validating Toolbox entries using a context-free grammar.

grammar = nltk.parse_cfg('''
  S -> Head PS Glosses Comment Date Sem_Field Examples
  Head -> Lexeme Root
  Lexeme -> "lx"
  Root -> "rt" |
  PS -> "ps"
  Glosses -> Gloss Glosses |
  Gloss -> "ge" | "tkp" | "eng"
  Date -> "dt"
  Sem_Field -> "sf"
  Examples -> Example Ex_Pidgin Ex_English Examples |
  Example -> "ex"
  Ex_Pidgin -> "xp"
  Ex_English -> "xe"
  Comment -> "cmt" | "nt" |
  ''')

def validate_lexicon(grammar, lexicon, ignored_tags):
    rd_parser = nltk.RecursiveDescentParser(grammar)
    for entry in lexicon:
        marker_list = [field.tag for field in entry if field.tag not in ignored_tags]
        if rd_parser.nbest_parse(marker_list):
            print "+", ':'.join(marker_list) 
        else:
            print "-", ':'.join(marker_list) 

>>> lexicon = toolbox.xml('rotokas.dic')[10:20]
>>> ignored_tags = ['arg', 'dcsv', 'pt', 'vx'] 
>>> validate_lexicon(grammar, lexicon, ignored_tags)
- lx:ps:ge:tkp:sf:nt:dt:ex:xp:xe:ex:xp:xe:ex:xp:xe
- lx:rt:ps:ge:tkp:nt:dt:ex:xp:xe:ex:xp:xe
- lx:ps:ge:tkp:nt:dt:ex:xp:xe:ex:xp:xe
- lx:ps:ge:tkp:nt:sf:dt
- lx:ps:ge:tkp:dt:cmt:ex:xp:xe:ex:xp:xe
- lx:ps:ge:ge:ge:tkp:cmt:dt:ex:xp:xe
- lx:rt:ps:ge:ge:tkp:dt
- lx:rt:ps:ge:eng:eng:eng:ge:tkp:tkp:dt:cmt:ex:xp:xe:ex:xp:xe:ex:xp:xe:ex:xp:xe:ex:xp:xe
- lx:rt:ps:ge:tkp:dt:ex:xp:xe
- lx:ps:ge:ge:tkp:dt:ex:xp:xe:ex:xp:xe
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Another approach would be to use a chunk parser (Chapter 7), since these are much
more effective at identifying partial structures and can report the partial structures that
have been identified. In Example 11-4 we set up a chunk grammar for the entries of a
lexicon, then parse each entry. A sample of the output from this program is shown in
Figure 11-7.

Figure 11-7. XML representation of a lexical entry, resulting from chunk parsing a Toolbox record.

Example 11-4. Chunking a Toolbox lexicon: A chunk grammar describing the structure of entries for
a lexicon for Iu Mien, a language of China.

from nltk_contrib import toolbox

grammar = r"""
      lexfunc: {<lf>(<lv><ln|le>*)*}
      example: {<rf|xv><xn|xe>*}
      sense:   {<sn><ps><pn|gv|dv|gn|gp|dn|rn|ge|de|re>*<example>*<lexfunc>*}
      record:   {<lx><hm><sense>+<dt>}
    """

>>> from nltk.etree.ElementTree import ElementTree
>>> db = toolbox.ToolboxData()
>>> db.open(nltk.data.find('corpora/toolbox/iu_mien_samp.db'))
>>> lexicon = db.parse(grammar, encoding='utf8')
>>> toolbox.data.indent(lexicon)
>>> tree = ElementTree(lexicon)
>>> output = open("iu_mien_samp.xml", "w")
>>> tree.write(output, encoding='utf8')
>>> output.close()
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11.6  Describing Language Resources Using OLAC Metadata
Members of the NLP community have a common need for discovering language re-
sources with high precision and recall. The solution which has been developed by the
Digital Libraries community involves metadata aggregation.

What Is Metadata?
The simplest definition of metadata is “structured data about data.” Metadata is de-
scriptive information about an object or resource, whether it be physical or electronic.
Although the term “metadata” itself is relatively new, the underlying concepts behind
metadata have been in use for as long as collections of information have been organized.
Library catalogs represent a well-established type of metadata; they have served as col-
lection management and resource discovery tools for decades. Metadata can be gen-
erated either “by hand” or automatically using software.

The Dublin Core Metadata Initiative began in 1995 to develop conventions for finding,
sharing, and managing information. The Dublin Core metadata elements represent a
broad, interdisciplinary consensus about the core set of elements that are likely to be
widely useful to support resource discovery. The Dublin Core consists of 15 metadata
elements, where each element is optional and repeatable: Title, Creator, Subject, De-
scription, Publisher, Contributor, Date, Type, Format, Identifier, Source, Language,
Relation, Coverage, and Rights. This metadata set can be used to describe resources
that exist in digital or traditional formats.

The Open Archives Initiative (OAI) provides a common framework across digital re-
positories of scholarly materials, regardless of their type, including documents, data,
software, recordings, physical artifacts, digital surrogates, and so forth. Each repository
consists of a network-accessible server offering public access to archived items. Each
item has a unique identifier, and is associated with a Dublin Core metadata record (and
possibly additional records in other formats). The OAI defines a protocol for metadata
search services to “harvest” the contents of repositories.

OLAC: Open Language Archives Community
The Open Language Archives Community, or OLAC, is an international partnership
of institutions and individuals who are creating a worldwide virtual library of language
resources by: (i) developing consensus on best current practices for the digital archiving
of language resources, and (ii) developing a network of interoperating repositories and
services for housing and accessing such resources. OLAC’s home on the Web is at http:
//www.language-archives.org/.

OLAC Metadata is a standard for describing language resources. Uniform description
across repositories is ensured by limiting the values of certain metadata elements to the
use of terms from controlled vocabularies. OLAC metadata can be used to describe
data and tools, in both physical and digital formats. OLAC metadata extends the
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Dublin Core Metadata Set, a widely accepted standard for describing resources of all
types. To this core set, OLAC adds descriptors to cover fundamental properties of
language resources, such as subject language and linguistic type. Here’s an example of
a complete OLAC record:

<?xml version="1.0" encoding="UTF-8"?>
<olac:olac xmlns:olac="http://www.language-archives.org/OLAC/1.1/"
           xmlns="http://purl.org/dc/elements/1.1/"
           xmlns:dcterms="http://purl.org/dc/terms/"
           xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
           xsi:schemaLocation="http://www.language-archives.org/OLAC/1.1/
                http://www.language-archives.org/OLAC/1.1/olac.xsd">
  <title>A grammar of Kayardild. With comparative notes on Tangkic.</title>
  <creator>Evans, Nicholas D.</creator>
  <subject>Kayardild grammar</subject>
  <subject xsi:type="olac:language" olac:code="gyd">Kayardild</subject>
  <language xsi:type="olac:language" olac:code="en">English</language>
  <description>Kayardild Grammar (ISBN 3110127954)</description>
  <publisher>Berlin - Mouton de Gruyter</publisher>
  <contributor xsi:type="olac:role" olac:code="author">Nicholas Evans</contributor>
  <format>hardcover, 837 pages</format>
  <relation>related to ISBN 0646119966</relation>
  <coverage>Australia</coverage>
  <type xsi:type="olac:linguistic-type" olac:code="language_description"/>
  <type xsi:type="dcterms:DCMIType">Text</type>
</olac:olac>

Participating language archives publish their catalogs in an XML format, and these
records are regularly “harvested” by OLAC services using the OAI protocol. In addition
to this software infrastructure, OLAC has documented a series of best practices for
describing language resources, through a process that involved extended consultation
with the language resources community (e.g., see http://www.language-archives.org/
REC/bpr.html).

OLAC repositories can be searched using a query engine on the OLAC website. Search-
ing for “German lexicon” finds the following resources, among others:

• CALLHOME German Lexicon, at http://www.language-archives.org/item/oai:
www.ldc.upenn.edu:LDC97L18

• MULTILEX multilingual lexicon, at http://www.language-archives.org/item/oai:el
ra.icp.inpg.fr:M0001

• Slelex Siemens Phonetic lexicon, at http://www.language-archives.org/item/oai:elra
.icp.inpg.fr:S0048

Searching for “Korean” finds a newswire corpus, and a treebank, a lexicon, a child-
language corpus, and interlinear glossed texts. It also finds software, including a syn-
tactic analyzer and a morphological analyzer.

Observe that the previous URLs include a substring of the form:
oai:www.ldc.upenn.edu:LDC97L18. This is an OAI identifier, using a URI scheme regis-
tered with ICANN (the Internet Corporation for Assigned Names and Numbers). These
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identifiers have the format oai:archive:local_id, where oai is the name of the URI
scheme, archive is an archive identifier, such as www.ldc.upenn.edu, and local_id is the
resource identifier assigned by the archive, e.g., LDC97L18.

Given an OAI identifier for an OLAC resource, it is possible to retrieve the complete
XML record for the resource using a URL of the following form: http://www.language-
archives.org/static-records/oai:archive:local_id.

11.7  Summary
• Fundamental data types, present in most corpora, are annotated texts and lexicons.

Texts have a temporal structure, whereas lexicons have a record structure.

• The life cycle of a corpus includes data collection, annotation, quality control, and
publication. The life cycle continues after publication as the corpus is modified
and enriched during the course of research.

• Corpus development involves a balance between capturing a representative sample
of language usage, and capturing enough material from any one source or genre to
be useful; multiplying out the dimensions of variability is usually not feasible be-
cause of resource limitations.

• XML provides a useful format for the storage and interchange of linguistic data,
but provides no shortcuts for solving pervasive data modeling problems.

• Toolbox format is widely used in language documentation projects; we can write
programs to support the curation of Toolbox files, and to convert them to XML.

• The Open Language Archives Community (OLAC) provides an infrastructure for
documenting and discovering language resources.

11.8  Further Reading
Extra materials for this chapter are posted at http://www.nltk.org/, including links to
freely available resources on the Web.

The primary sources of linguistic corpora are the Linguistic Data Consortium and the
European Language Resources Agency, both with extensive online catalogs. More de-
tails concerning the major corpora mentioned in the chapter are available: American
National Corpus (Reppen, Ide & Suderman, 2005), British National Corpus (BNC,
1999), Thesaurus Linguae Graecae (TLG, 1999), Child Language Data Exchange Sys-
tem (CHILDES) (MacWhinney, 1995), and TIMIT (Garofolo et al., 1986).

Two special interest groups of the Association for Computational Linguistics that or-
ganize regular workshops with published proceedings are SIGWAC, which promotes
the use of the Web as a corpus and has sponsored the CLEANEVAL task for removing
HTML markup, and SIGANN, which is encouraging efforts toward interoperability of
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linguistic annotations. An extended discussion of web crawling is provided by (Croft,
Metzler & Strohman, 2009).

Full details of the Toolbox data format are provided with the distribution (Buseman,
Buseman & Early, 1996), and with the latest distribution freely available from http://
www.sil.org/computing/toolbox/. For guidelines on the process of constructing a Tool-
box lexicon, see http://www.sil.org/computing/ddp/. More examples of our efforts with
the Toolbox are documented in (Bird, 1999) and (Robinson, Aumann & Bird, 2007).
Dozens of other tools for linguistic data management are available, some surveyed by
(Bird & Simons, 2003). See also the proceedings of the LaTeCH workshops on language
technology for cultural heritage data.

There are many excellent resources for XML (e.g., http://zvon.org/) and for writing
Python programs to work with XML http://www.python.org/doc/lib/markup.html.
Many editors have XML modes. XML formats for lexical information include OLIF
(http://www.olif.net/) and LIFT (http://code.google.com/p/lift-standard/).

For a survey of linguistic annotation software, see the Linguistic Annotation Page at
http://www.ldc.upenn.edu/annotation/. The initial proposal for standoff annotation was
(Thompson & McKelvie, 1997). An abstract data model for linguistic annotations,
called “annotation graphs,” was proposed in (Bird & Liberman, 2001). A general-
purpose ontology for linguistic description (GOLD) is documented at http://www.lin
guistics-ontology.org/.

For guidance on planning and constructing a corpus, see (Meyer, 2002) and (Farghaly,
2003). More details of methods for scoring inter-annotator agreement are available in
(Artstein & Poesio, 2008) and (Pevzner & Hearst, 2002).

Rotokas data was provided by Stuart Robinson, and Iu Mien data was provided by Greg
Aumann.

For more information about the Open Language Archives Community, visit http://www
.language-archives.org/, or see (Simons & Bird, 2003).

11.9  Exercises
1. ◑ In Example 11-2 the new field appeared at the bottom of the entry. Modify this

program so that it inserts the new subelement right after the lx field. (Hint: create
the new cv field using Element('cv'), assign a text value to it, then use the
insert() method of the parent element.)

2. ◑ Write a function that deletes a specified field from a lexical entry. (We could use
this to sanitize our lexical data before giving it to others, e.g., by removing fields
containing irrelevant or uncertain content.)

3. ◑ Write a program that scans an HTML dictionary file to find entries having an
illegal part-of-speech field, and then reports the headword for each entry.
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4. ◑ Write a program to find any parts-of-speech (ps field) that occurred less than 10
times. Perhaps these are typing mistakes?

5. ◑ We saw a method for adding a cv field (Section 11.5). There is an interesting
issue with keeping this up-to-date when someone modifies the content of the lx
field on which it is based. Write a version of this program to add a cv field, replacing
any existing cv field.

6. ◑ Write a function to add a new field syl which gives a count of the number of
syllables in the word.

7. ◑ Write a function which displays the complete entry for a lexeme. When the
lexeme is incorrectly spelled, it should display the entry for the most similarly
spelled lexeme.

8. ◑ Write a function that takes a lexicon and finds which pairs of consecutive fields
are most frequent (e.g., ps is often followed by pt). (This might help us to discover
some of the structure of a lexical entry.)

9. ◑ Create a spreadsheet using office software, containing one lexical entry per row,
consisting of a headword, a part of speech, and a gloss. Save the spreadsheet in
CSV format. Write Python code to read the CSV file and print it in Toolbox format,
using lx for the headword, ps for the part of speech, and gl for the gloss.

10. ◑ Index the words of Shakespeare’s plays, with the help of nltk.Index. The result-
ing data structure should permit lookup on individual words, such as music, re-
turning a list of references to acts, scenes, and speeches, of the form [(3, 2, 9),
(5, 1, 23), ...], where (3, 2, 9) indicates Act 3 Scene 2 Speech 9.

11. ◑ Construct a conditional frequency distribution which records the word length
for each speech in The Merchant of Venice, conditioned on the name of the char-
acter; e.g., cfd['PORTIA'][12] would give us the number of speeches by Portia
consisting of 12 words.

12. ◑ Write a recursive function to convert an arbitrary NLTK tree into an XML coun-
terpart, with non-terminals represented as XML elements, and leaves represented
as text content, e.g.:

<S>
  <NP type="SBJ">
    <NP>
      <NNP>Pierre</NNP>
      <NNP>Vinken</NNP>
    </NP>
    <COMMA>,</COMMA>

13. ● Obtain a comparative wordlist in CSV format, and write a program that prints
those cognates having an edit-distance of at least three from each other.

14. ● Build an index of those lexemes which appear in example sentences. Suppose
the lexeme for a given entry is w. Then, add a single cross-reference field xrf to this
entry, referencing the headwords of other entries having example sentences con-
taining w. Do this for all entries and save the result as a Toolbox-format file.
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Afterword: The Language Challenge

Natural language throws up some interesting computational challenges. We’ve ex-
plored many of these in the preceding chapters, including tokenization, tagging, clas-
sification, information extraction, and building syntactic and semantic representations.
You should now be equipped to work with large datasets, to create robust models of
linguistic phenomena, and to extend them into components for practical language
technologies. We hope that the Natural Language Toolkit (NLTK) has served to open
up the exciting endeavor of practical natural language processing to a broader audience
than before.

In spite of all that has come before, language presents us with far more than a temporary
challenge for computation. Consider the following sentences which attest to the riches
of language:

1. Overhead the day drives level and grey, hiding the sun by a flight of grey spears.
(William Faulkner, As I Lay Dying, 1935)

2. When using the toaster please ensure that the exhaust fan is turned on. (sign in
dormitory kitchen)

3. Amiodarone weakly inhibited CYP2C9, CYP2D6, and CYP3A4-mediated activi-
ties with Ki values of 45.1-271.6 μM (Medline, PMID: 10718780)

4. Iraqi Head Seeks Arms (spoof news headline)

5. The earnest prayer of a righteous man has great power and wonderful results.
(James 5:16b)

6. Twas brillig, and the slithy toves did gyre and gimble in the wabe (Lewis Carroll,
Jabberwocky, 1872)

7. There are two ways to do this, AFAIK :smile: (Internet discussion archive)

Other evidence for the riches of language is the vast array of disciplines whose work
centers on language. Some obvious disciplines include translation, literary criticism,
philosophy, anthropology, and psychology. Many less obvious disciplines investigate
language use, including law, hermeneutics, forensics, telephony, pedagogy, archaeol-
ogy, cryptanalysis, and speech pathology. Each applies distinct methodologies to gather

441



observations, develop theories, and test hypotheses. All serve to deepen our under-
standing of language and of the intellect that is manifested in language.

In view of the complexity of language and the broad range of interest in studying it
from different angles, it’s clear that we have barely scratched the surface here. Addi-
tionally, within NLP itself, there are many important methods and applications that
we haven’t mentioned.

In our closing remarks we will take a broader view of NLP, including its foundations
and the further directions you might want to explore. Some of the topics are not well
supported by NLTK, and you might like to rectify that problem by contributing new
software and data to the toolkit.

Language Processing Versus Symbol Processing
The very notion that natural language could be treated in a computational manner grew
out of a research program, dating back to the early 1900s, to reconstruct mathematical
reasoning using logic, most clearly manifested in work by Frege, Russell, Wittgenstein,
Tarski, Lambek, and Carnap. This work led to the notion of language as a formal system
amenable to automatic processing. Three later developments laid the foundation for
natural language processing. The first was formal language theory. This defined a
language as a set of strings accepted by a class of automata, such as context-free lan-
guages and pushdown automata, and provided the underpinnings for computational
syntax.

The second development was symbolic logic. This provided a formal method for cap-
turing selected aspects of natural language that are relevant for expressing logical
proofs. A formal calculus in symbolic logic provides the syntax of a language, together
with rules of inference and, possibly, rules of interpretation in a set-theoretic model;
examples are propositional logic and first-order logic. Given such a calculus, with a
well-defined syntax and semantics, it becomes possible to associate meanings with
expressions of natural language by translating them into expressions of the formal cal-
culus. For example, if we translate John saw Mary into a formula saw(j, m), we (im-
plicitly or explicitly) interpret the English verb saw as a binary relation, and John and
Mary as denoting individuals. More general statements like All birds fly require quan-
tifiers, in this case ∀, meaning for all: ∀x (bird(x) → fly(x)). This use of logic provided
the technical machinery to perform inferences that are an important part of language
understanding.

A closely related development was the principle of compositionality, namely that
the meaning of a complex expression is composed from the meaning of its parts and
their mode of combination (Chapter 10). This principle provided a useful corre-
spondence between syntax and semantics, namely that the meaning of a complex ex-
pression could be computed recursively. Consider the sentence It is not true that p,
where p is a proposition. We can represent the meaning of this sentence as not(p).
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Similarly, we can represent the meaning of John saw Mary as saw(j, m). Now we can
compute the interpretation of It is not true that John saw Mary recursively, using the
foregoing information, to get not(saw(j,m)).

The approaches just outlined share the premise that computing with natural language
crucially relies on rules for manipulating symbolic representations. For a certain period
in the development of NLP, particularly during the 1980s, this premise provided a
common starting point for both linguists and practitioners of NLP, leading to a family
of grammar formalisms known as unification-based (or feature-based) grammar (see
Chapter 9), and to NLP applications implemented in the Prolog programming lan-
guage. Although grammar-based NLP is still a significant area of research, it has become
somewhat eclipsed in the last 15–20 years due to a variety of factors. One significant
influence came from automatic speech recognition. Although early work in speech
processing adopted a model that emulated the kind of rule-based phonological pho-
nology processing typified by the Sound Pattern of English (Chomsky & Halle, 1968),
this turned out to be hopelessly inadequate in dealing with the hard problem of rec-
ognizing actual speech in anything like real time. By contrast, systems which involved
learning patterns from large bodies of speech data were significantly more accurate,
efficient, and robust. In addition, the speech community found that progress in building
better systems was hugely assisted by the construction of shared resources for quanti-
tatively measuring performance against common test data. Eventually, much of the
NLP community embraced a data-intensive orientation to language processing, cou-
pled with a growing use of machine-learning techniques and evaluation-led
methodology.

Contemporary Philosophical Divides
The contrasting approaches to NLP described in the preceding section relate back to
early metaphysical debates about rationalism versus empiricism and realism versus
idealism that occurred in the Enlightenment period of Western philosophy. These
debates took place against a backdrop of orthodox thinking in which the source of all
knowledge was believed to be divine revelation. During this period of the 17th and 18th
centuries, philosophers argued that human reason or sensory experience has priority
over revelation. Descartes and Leibniz, among others, took the rationalist position,
asserting that all truth has its origins in human thought, and in the existence of “innate
ideas” implanted in our minds from birth. For example, they argued that the principles
of Euclidean geometry were developed using human reason, and were not the result of
supernatural revelation or sensory experience. In contrast, Locke and others took the
empiricist view, that our primary source of knowledge is the experience of our faculties,
and that human reason plays a secondary role in reflecting on that experience. Often-
cited evidence for this position was Galileo’s discovery—based on careful observation
of the motion of the planets—that the solar system is heliocentric and not geocentric.
In the context of linguistics, this debate leads to the following question: to what extent
does human linguistic experience, versus our innate “language faculty,” provide the
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basis for our knowledge of language? In NLP this issue surfaces in debates about the
priority of corpus data versus linguistic introspection in the construction of computa-
tional models.

A further concern, enshrined in the debate between realism and idealism, was the
metaphysical status of the constructs of a theory. Kant argued for a distinction between
phenomena, the manifestations we can experience, and “things in themselves” which
can never been known directly. A linguistic realist would take a theoretical construct
like noun phrase to be a real-world entity that exists independently of human percep-
tion and reason, and which actually causes the observed linguistic phenomena. A lin-
guistic idealist, on the other hand, would argue that noun phrases, along with more
abstract constructs, like semantic representations, are intrinsically unobservable, and
simply play the role of useful fictions. The way linguists write about theories often
betrays a realist position, whereas NLP practitioners occupy neutral territory or else
lean toward the idealist position. Thus, in NLP, it is often enough if a theoretical ab-
straction leads to a useful result; it does not matter whether this result sheds any light
on human linguistic processing.

These issues are still alive today, and show up in the distinctions between symbolic
versus statistical methods, deep versus shallow processing, binary versus gradient clas-
sifications, and scientific versus engineering goals. However, such contrasts are now
highly nuanced, and the debate is no longer as polarized as it once was. In fact, most
of the discussions—and most of the advances, even—involve a “balancing act.” For
example, one intermediate position is to assume that humans are innately endowed
with analogical and memory-based learning methods (weak rationalism), and use these
methods to identify meaningful patterns in their sensory language experience (empiri-
cism).

We have seen many examples of this methodology throughout this book. Statistical
methods inform symbolic models anytime corpus statistics guide the selection of pro-
ductions in a context-free grammar, i.e., “grammar engineering.” Symbolic methods
inform statistical models anytime a corpus that was created using rule-based methods
is used as a source of features for training a statistical language model, i.e., “grammatical
inference.” The circle is closed.

NLTK Roadmap
The Natural Language Toolkit is a work in progress, and is being continually expanded
as people contribute code. Some areas of NLP and linguistics are not (yet) well sup-
ported in NLTK, and contributions in these areas are especially welcome. Check http:
//www.nltk.org/ for news about developments after the publication date of this book.
Contributions in the following areas are particularly encouraged:
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Phonology and morphology
Computational approaches to the study of sound patterns and word structures
typically use a finite-state toolkit. Phenomena such as suppletion and non-concat-
enative morphology are difficult to address using the string-processing methods
we have been studying. The technical challenge is not only to link NLTK to a high-
performance finite-state toolkit, but to avoid duplication of lexical data and to link
the morphosyntactic features needed by morph analyzers and syntactic parsers.

High-performance components
Some NLP tasks are too computationally intensive for pure Python implementa-
tions to be feasible. However, in some cases the expense arises only when training
models, not when using them to label inputs. NLTK’s package system provides a
convenient way to distribute trained models, even models trained using corpora
that cannot be freely distributed. Alternatives are to develop Python interfaces to
high-performance machine learning tools, or to expand the reach of Python by
using parallel programming techniques such as MapReduce.

Lexical semantics
This is a vibrant area of current research, encompassing inheritance models of the
lexicon, ontologies, multiword expressions, etc., mostly outside the scope of NLTK
as it stands. A conservative goal would be to access lexical information from rich
external stores in support of tasks in word sense disambiguation, parsing, and
semantic interpretation.

Natural language generation
Producing coherent text from underlying representations of meaning is an impor-
tant part of NLP; a unification-based approach to NLG has been developed in
NLTK, and there is scope for more contributions in this area.

Linguistic fieldwork
A major challenge faced by linguists is to document thousands of endangered lan-
guages, work which generates heterogeneous and rapidly evolving data in large
quantities. More fieldwork data formats, including interlinear text formats and
lexicon interchange formats, could be supported in NLTK, helping linguists to
curate and analyze this data, while liberating them to spend as much time as pos-
sible on data elicitation.

Other languages
Improved support for NLP in languages other than English could involve work in
two areas: obtaining permission to distribute more corpora with NLTK’s data col-
lection; and writing language-specific HOWTOs for posting at http://www.nltk
.org/howto, illustrating the use of NLTK and discussing language-specific problems
for NLP, including character encodings, word segmentation, and morphology.
NLP researchers with expertise in a particular language could arrange to translate
this book and host a copy on the NLTK website; this would go beyond translating
the discussions to providing equivalent worked examples using data in the target
language, a non-trivial undertaking.
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NLTK-Contrib
Many of NLTK’s core components were contributed by members of the NLP com-
munity, and were initially housed in NLTK’s “Contrib” package, nltk_contrib.
The only requirement for software to be added to this package is that it must be
written in Python, relevant to NLP, and given the same open source license as the
rest of NLTK. Imperfect software is welcome, and will probably be improved over
time by other members of the NLP community.

Teaching materials
Since the earliest days of NLTK development, teaching materials have accompa-
nied the software, materials that have gradually expanded to fill this book, plus a
substantial quantity of online materials as well. We hope that instructors who
supplement these materials with presentation slides, problem sets, solution sets,
and more detailed treatments of the topics we have covered will make them avail-
able, and will notify the authors so we can link them from http://www.nltk.org/. Of
particular value are materials that help NLP become a mainstream course in the
undergraduate programs of computer science and linguistics departments, or that
make NLP accessible at the secondary level, where there is significant scope for
including computational content in the language, literature, computer science, and
information technology curricula.

Only a toolkit
As stated in the preface, NLTK is a toolkit, not a system. Many problems will be
tackled with a combination of NLTK, Python, other Python libraries, and interfaces
to external NLP tools and formats.
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Envoi...
Linguists are sometimes asked how many languages they speak, and have to explain
that this field actually concerns the study of abstract structures that are shared by lan-
guages, a study which is more profound and elusive than learning to speak as many
languages as possible. Similarly, computer scientists are sometimes asked how many
programming languages they know, and have to explain that computer science actually
concerns the study of data structures and algorithms that can be implemented in any
programming language, a study which is more profound and elusive than striving for
fluency in as many programming languages as possible.

This book has covered many topics in the field of Natural Language Processing. Most
of the examples have used Python and English. However, it would be unfortunate if
readers concluded that NLP is about how to write Python programs to manipulate
English text, or more broadly, about how to write programs (in any programming lan-
guage) to manipulate text (in any natural language). Our selection of Python and Eng-
lish was expedient, nothing more. Even our focus on programming itself was only a
means to an end: as a way to understand data structures and algorithms for representing
and manipulating collections of linguistically annotated text, as a way to build new
language technologies to better serve the needs of the information society, and ulti-
mately as a pathway into deeper understanding of the vast riches of human language.

But for the present: happy hacking!
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score, 115, 272, 273, 274, 276, 277
search, 177
SEM, 362, 363, 385, 386, 390, 393, 395, 396,

403

sem, 363, 396, 400
sem.evaluate, 406
Senseval, 257
senseval, 258
ShiftReduceParser, 305
show_clause, 285
show_most_informative_features, 228
show_raw_rtuple, 285
similar, 5, 6, 21, 319
simplify, 388
sort, 12, 136, 192
SpeakerInfo, 409
sr, 65
State, 20, 187
stem, 104, 105
str2tuple, 181
SubElement, 432
substance_holonyms, 74
substance_meronyms, 70, 74
Synset, 67, 68, 69, 70, 71, 72
synset, 68, 69, 70, 71, 425, 426
s_retrieve, 396

T
tabulate, 54, 55, 119
tag, 146, 164, 181, 184, 185, 186, 187, 188, 189,

195, 196, 198, 207, 210, 226, 231,
232, 233, 241, 273, 275

tagged_sents, 183, 231, 233, 238, 241, 275
tagged_words, 182, 187, 229
tags, 135, 164, 188, 198, 210, 277, 433
Text, 4, 284, 436
token, 26, 105, 139, 319, 421
tokenize, 263
tokens, 16, 80, 81, 82, 86, 105, 107, 108, 111,

139, 140, 153, 198, 206, 234, 308,
309, 317, 328, 335, 352, 353, 355,
392

toolbox, 66, 67, 430, 431, 434, 438
toolbox.ToolboxData, 434
train, 112, 225
translate, 66, 74
tree, 268, 294, 298, 300, 301, 311, 316, 317,

319, 335, 352, 353, 355, 393, 430,
434

Tree, 315, 322
Tree.productions, 325
tree2conlltags, 273
treebank, 51, 315, 316
trees, 294, 311, 334, 335, 363, 392, 393, 396,

400
trigrams, 141
TrigramTagger, 205
tuples, 192
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turns, 12
Type, 2, 4, 169

U
Undefined, 379
unify, 342
UnigramTagger, 200, 203, 219, 274
url, 80, 82, 147, 148

V
Valuation, 371, 378
values, 149, 192
Variable, 375
VariableBinderExpression, 389

W
wordlist, 61, 64, 98, 99, 111, 201, 424
wordnet, 67, 162, 170

X
xml, 427, 436
xml_posts, 235
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Symbols
! (exclamation mark)

!= (not equal to) operator, 22, 376
" " (quotation marks, double), in strings, 87
$ (dollar sign) in regular expressions, 98, 101
% (percent sign)

%% in string formatting, 119
%*s formatting string, 107, 119
%s and %d conversion specifiers, 118

& (ampersand), and operator, 368
' ' (quotation marks, single) in strings, 88
' ' (quotation marks, single), in strings, 87
' (apostrophe) in tokenization, 110
( ) (parentheses)

adding extra to break lines of code, 139
enclosing expressions in Python, 2
in function names, 9
in regular expressions, 100, 104
in tuples, 134
use with strings, 88

* (asterisk)
*? non-greedy matching in regular

expressions, 104
multiplication operator, 2

multiplying strings, 88
in regular expressions, 100, 101

+ (plus sign)
+= (addition and assignment) operator,

195
concatenating lists, 11
concatenating strings, 16, 88
in regular expressions, 100, 101

, (comma) operator, 133
- (hyphen) in tokenization, 110

- (minus sign), negation operator, 368
-> (implication) operator, 368
. (dot) wildcard character in regular

expressions, 98, 101
/ (slash),

division operator, 2
: (colon), ending Python statements, 26
< (less than) operator, 22
<-> (equivalence) operator, 368
<= (less than or equal to) operator, 22
= (equals sign)

== (equal to) operator, 22
== (identity) operator, 132
assignment operator, 14, 130
equality operator, 376

> (greater than) operator, 22
>= (greater than or equal to) operator, 22
? (question mark) in regular expressions, 99,

101
[ ] (brackets)

enclosing keys in dictionary, 65
indexing lists, 12
omitting in list comprehension used as

function parameter, 55
regular expression character classes, 99

\ (backslash)
ending broken line of code, 139
escaping string literals, 87
in regular expressions, 100, 101
use with multiline strings, 88

^ (caret)
character class negation in regular

expressions, 100
end of string matching in regular

expressions, 99

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.
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regular expression metacharacter, 101
{ } (curly braces) in regular expressions, 100
| (pipe character)

alternation in regular expressions, 100, 101
or operator, 368

α-conversion, 389
α-equivalents, 389
β-reduction, 388
λ (lambda operator), 386–390

A
accumulative functions, 150
accuracy of classification, 239
ACL (Association for Computational

Linguistics), 34
Special Interest Group on Web as Corpus

(SIGWAC), 416
adjectives, categorizing and tagging, 186
adjuncts of lexical head, 347
adverbs, categorizing and tagging, 186
agreement, 329–331

resources for further reading, 357
algorithm design, 160–167

dynamic programming, 165
recursion, 161
resources for further information, 173

all operator, 376
alphabetic variants, 389
ambiguity

broad-coverage grammars and, 317
capturing structural ambiguity with

dependency parser, 311
quantifier scope, 381, 394–397
scope of modifier, 314
structurally ambiguous sentences, 300
ubiquitous ambiguity in sentence structure,

293
anagram dictionary, creating, 196
anaphora resolution, 29
anaphoric antecedent, 397
AND (in SQL), 365
and operator, 24
annotated text corpora, 46–48
annotation layers

creating, 412
deciding which to include when acquiring

data, 420
quality control for, 413
survey of annotation software, 438

annotation, inline, 421
antecedent, 28
antonymy, 71
apostrophes in tokenization, 110
appending, 11
arguments

functions as, 149
named, 152
passing to functions (example), 143

arguments in logic, 369, 372
arity, 378
articles, 186
assert statements

using in defensive programming, 159
using to find logical errors, 146

assignment, 130, 378
defined, 14
to list index values, 13

Association for Computational Linguistics (see
ACL)

associative arrays, 189
assumptions, 369
atomic values, 336
attribute value matrix, 336
attribute-value pairs (Toolbox lexicon), 67
attributes, XML, 426
auxiliaries, 348
auxiliary verbs, 336

inversion and, 348

B
\b word boundary in regular expressions, 110
backoff, 200
backtracking, 303
bar charts, 168
base case, 161
basic types, 373
Bayes classifier (see naive Bayes classifier)
bigram taggers, 204
bigrams, 20

generating random text with, 55
binary formats, text, 85
binary predicate, 372
binary search, 160
binding variables, 374
binning, 249
BIO Format, 286
book module (NLTK), downloading, 3
Boolean operators, 368
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in propositional logic, truth conditions for,
368

Boolean values, 336
bottom-up approach to dynamic

programming, 167
bottom-up parsing, 304
bound, 374, 375
breakpoints, 158
Brill tagging, 208

demonstration of NLTK Brill tagger, 209
steps in, 209

Brown Corpus, 42–44
bugs, 156

C
call structure, 165
call-by-value, 144
carriage return and linefeed characters, 80
case in German, 353–356
Catalan numbers, 317
categorical grammar, 346
categorizing and tagging words, 179–219

adjectives and adverbs, 186
automatically adding POS tags to text, 198–

203
determining word category, 210–213
differences in POS tagsets, 213
exploring tagged corpora using POS tags,

187–189
mapping words to properties using Python

dictionaries, 189–198
n-gram tagging, 203–208
nouns, 184
resources for further reading, 214
tagged corpora, 181–189
transformation-based tagging, 208–210
using POS (part-of-speech) tagger, 179
using unsimplified POS tags, 187
verbs, 185

character class symbols in regular expressions,
110

character encodings, 48, 54, 94
(see also Unicode)
using your local encoding in Python, 97

characteristic function, 377
chart, 307
chart parsing, 307

Earley chart parser, 334
charts, displaying information in, 168

chat text, 42
chatbots, 31
child nodes, 279
chink, 268, 286
chinking, 268
chunk grammar, 265
chunking, 214, 264–270

building nested structure with cascaded
chunkers, 278–279

chinking, 268
developing and evaluating chunkers, 270–

278
reading IOB format and CoNLL 2000

corpus, 270–272
simple evaluation and baselines, 272–

274
training classifier-based chunkers, 274–

278
exploring text corpora with NP chunker,

267
noun phrase (NP), 264
representing chunks, tags versus trees, 269
resources for further reading, 286
tag patterns, 266
Toolbox lexicon, 434
using regular expressions, 266

chunks, 264
class labels, 221
classification, 221–259

classifier trained to recognize named
entities, 283

decision trees, 242–245
defined, 221
evaluating models, 237–241

accuracy, 239
confusion matrices, 240
cross-validation, 241
precision and recall, 239
test set, 238

generative versus conditional, 254
Maximum Entropy classifiers, 251–254
modelling linguistic patterns, 255
naive Bayes classifiers, 246–250
supervised (see supervised classification)

classifier-based chunkers, 274–278
closed class, 212
closed formula, 375
closures (+ and *), 100
clustering package (nltk.cluster), 172
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CMU Pronouncing Dictionary for U.S.
English, 63

code blocks, nested, 25
code examples, downloading, 57
code points, 94
codecs module, 95
coindex (in feature structure), 340
collocations, 20, 81
comma operator (,), 133
comparative wordlists, 65
comparison operators

numerical, 22
for words, 23

complements of lexical head, 347
complements of verbs, 313
complex types, 373
complex values, 336
components, language understanding, 31
computational linguistics, challenges of natural

language, 441
computer understanding of sentence meaning,

368
concatenation, 11, 88

lists and strings, 87
strings, 16

conclusions in logic, 369
concordances

creating, 40
graphical POS-concordance tool, 184

conditional classifiers, 254
conditional expressions, 25
conditional frequency distributions, 44, 52–56

combining with regular expressions, 103
condition and event pairs, 52
counting words by genre, 52
generating random text with bigrams, 55
male and female names ending in each

alphabet letter, 62
plotting and tabulating distributions, 53
using to find minimally contrasting set of

words, 64
ConditionalFreqDist, 52

commonly used methods, 56
conditionals, 22, 133
confusion matrix, 207, 240
consecutive classification, 232

non phrase chunking with consecutive
classifier, 275

consistent, 366

constituent structure, 296
constituents, 297
context

exploiting in part-of-speech classifier, 230
for taggers, 203

context-free grammar, 298, 300
(see also grammars)
probabilistic context-free grammar, 320

contractions in tokenization, 112
control, 22
control structures, 26
conversion specifiers, 118
conversions of data formats, 419
coordinate structures, 295
coreferential, 373
corpora, 39–52

annotated text corpora, 46–48
Brown Corpus, 42–44
creating and accessing, resources for further

reading, 438
defined, 39
differences in corpus access methods, 50
exploring text corpora using a chunker,

267
Gutenberg Corpus, 39–42
Inaugural Address Corpus, 45
from languages other than English, 48
loading your own corpus, 51
obtaining from Web, 416
Reuters Corpus, 44
sources of, 73
tagged, 181–189
text corpus structure, 49–51
web and chat text, 42
wordlists, 60–63

corpora, included with NLTK, 46
corpus

case study, structure of TIMIT, 407–412
corpus HOWTOs, 122
life cycle of, 412–416

creation scenarios, 412
curation versus evolution, 415
quality control, 413

widely-used format for, 421
counters, legitimate uses of, 141
cross-validation, 241
CSV (comma-separated value) format, 418
CSV (comma-separated-value) format, 170
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D
\d decimal digits in regular expressions, 110
\D nondigit characters in regular expressions,

111
data formats, converting, 419
data types

dictionary, 190
documentation for Python standard types,

173
finding type of Python objects, 86
function parameter, 146
operations on objects, 86

database query via natural language, 361–365
databases, obtaining data from, 418
debugger (Python), 158
debugging techniques, 158
decimal integers, formatting, 119
decision nodes, 242
decision stumps, 243
decision trees, 242–245

entropy and information gain, 243
decision-tree classifier, 229
declarative style, 140
decoding, 94
def keyword, 9
defaultdict, 193
defensive programming, 159
demonstratives, agreement with noun, 329
dependencies, 310

criteria for, 312
existential dependencies, modeling in

XML, 427
non-projective, 312
projective, 311
unbounded dependency constructions,

349–353
dependency grammars, 310–315

valency and the lexicon, 312
dependents, 310
descriptive models, 255
determiners, 186

agreement with nouns, 333
deve-test set, 225
development set, 225

similarity to test set, 238
dialogue act tagging, 214
dialogue acts, identifying types, 235
dialogue systems (see spoken dialogue systems)
dictionaries

feature set, 223
feature structures as, 337
pronouncing dictionary, 63–65
Python, 189–198

default, 193
defining, 193
dictionary data type, 190
finding key given a value, 197
indexing lists versus, 189
summary of dictionary methods, 197
updating incrementally, 195

storing features and values, 327
translation, 66

dictionary
methods, 197

dictionary data structure (Python), 65
directed acyclic graphs (DAGs), 338
discourse module, 401
discourse semantics, 397–402

discourse processing, 400–402
discourse referents, 397
discourse representation structure (DRS),

397
Discourse Representation Theory (DRT),

397–400
dispersion plot, 6
divide-and-conquer strategy, 160
docstrings, 143

contents and structure of, 148
example of complete docstring, 148
module-level, 155

doctest block, 148
doctest module, 160
document classification, 227
documentation

functions, 148
online Python documentation, versions

and, 173
Python, resources for further information,

173
docutils module, 148
domain (of a model), 377
DRS (discourse representation structure), 397
DRS conditions, 397
DRT (Discourse Representation Theory), 397–

400
Dublin Core Metadata initiative, 435
duck typing, 281
dynamic programming, 165
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application to parsing with context-free
grammar, 307

different approaches to, 167

E
Earley chart parser, 334
electronic books, 80
elements, XML, 425
ElementTree interface, 427–429

using to access Toolbox data, 429
elif clause, if . . . elif statement, 133
elif statements, 26
else statements, 26
encoding, 94
encoding features, 223
encoding parameters, codecs module, 95
endangered languages, special considerations

with, 423–424
entities, 373
entity detection, using chunking, 264–270
entries

adding field to, in Toolbox, 431
contents of, 60
converting data formats, 419
formatting in XML, 430

entropy, 251
(see also Maximum Entropy classifiers)
calculating for gender prediction task, 243
maximizing in Maximum Entropy

classifier, 252
epytext markup language, 148
equality, 132, 372
equivalence (<->) operator, 368
equivalent, 340
error analysis, 225
errors

runtime, 13
sources of, 156
syntax, 3

evaluation sets, 238
events, pairing with conditions in conditional

frequency distribution, 52
exceptions, 158
existential quantifier, 374
exists operator, 376
Expected Likelihood Estimation, 249
exporting data, 117

F
f-structure, 357
feature extractors

defining for dialogue acts, 235
defining for document classification, 228
defining for noun phrase (NP) chunker,

276–278
defining for punctuation, 234
defining for suffix checking, 229
Recognizing Textual Entailment (RTE),

236
selecting relevant features, 224–227

feature paths, 339
feature sets, 223
feature structures, 328

order of features, 337
resources for further reading, 357

feature-based grammars, 327–360
auxiliary verbs and inversion, 348
case and gender in German, 353
example grammar, 333
extending, 344–356
lexical heads, 347
parsing using Earley chart parser, 334
processing feature structures, 337–344

subsumption and unification, 341–344
resources for further reading, 357
subcategorization, 344–347
syntactic agreement, 329–331
terminology, 336
translating from English to SQL, 362
unbounded dependency constructions,

349–353
using attributes and constraints, 331–336

features, 223
non-binary features in naive Bayes

classifier, 249
fields, 136
file formats, libraries for, 172
files

opening and reading local files, 84
writing program output to, 120

fillers, 349
first-order logic, 372–385

individual variables and assignments, 378
model building, 383
quantifier scope ambiguity, 381
summary of language, 376
syntax, 372–375
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theorem proving, 375
truth in model, 377

floating-point numbers, formatting, 119
folds, 241
for statements, 26

combining with if statements, 26
inside a list comprehension, 63
iterating over characters in strings, 90

format strings, 118
formatting program output, 116–121

converting from lists to strings, 116
strings and formats, 117–118
text wrapping, 120
writing results to file, 120

formulas of propositional logic, 368
formulas, type (t), 373
free, 375
Frege’s Principle, 385
frequency distributions, 17, 22

conditional (see conditional frequency
distributions)

functions defined for, 22
letters, occurrence in strings, 90

functions, 142–154
abstraction provided by, 147
accumulative, 150
as arguments to another function, 149
call-by-value parameter passing, 144
checking parameter types, 146
defined, 9, 57
documentation for Python built-in

functions, 173
documenting, 148
errors from, 157
for frequency distributions, 22
for iteration over sequences, 134
generating plurals of nouns (example), 58
higher-order, 151
inputs and outputs, 143
named arguments, 152
naming, 142
poorly-designed, 147
recursive, call structure, 165
saving in modules, 59
variable scope, 145
well-designed, 147

G
gaps, 349

gazetteer, 282
gender identification, 222

Decision Tree model for, 242
gender in German, 353–356
Generalized Phrase Structure Grammar

(GPSG), 345
generate_model ( ) function, 55
generation of language output, 29
generative classifiers, 254
generator expressions, 138

functions exemplifying, 151
genres, systematic differences between, 42–44
German, case and gender in, 353–356
gerunds, 211
glyphs, 94
gold standard, 201
government-sponsored challenges to machine

learning application in NLP, 257
gradient (grammaticality), 318
grammars, 327

(see also feature-based grammars)
chunk grammar, 265
context-free, 298–302

parsing with, 302–310
validating Toolbox entries with, 433
writing your own, 300

dependency, 310–315
development, 315–321

problems with ambiguity, 317
treebanks and grammars, 315–317
weighted grammar, 318–321

dilemmas in sentence structure analysis,
292–295

resources for further reading, 322
scaling up, 315

grammatical category, 328
graphical displays of data

conditional frequency distributions, 56
Matplotlib, 168–170

graphs
defining and manipulating, 170
directed acyclic graphs, 338

greedy sequence classification, 232
Gutenberg Corpus, 40–42, 80

H
hapaxes, 19
hash arrays, 189, 190

(see also dictionaries)
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head of a sentence, 310
criteria for head and dependencies, 312

heads, lexical, 347
headword (lemma), 60
Heldout Estimation, 249
hexadecimal notation for Unicode string

literal, 95
Hidden Markov Models, 233
higher-order functions, 151
holonyms, 70
homonyms, 60
HTML documents, 82
HTML markup, stripping out, 418
hypernyms, 70

searching corpora for, 106
semantic similarity and, 72

hyphens in tokenization, 110
hyponyms, 69

I
identifiers for variables, 15
idioms, Python, 24
IDLE (Interactive DeveLopment

Environment), 2
if . . . elif statements, 133
if statements, 25

combining with for statements, 26
conditions in, 133

immediate constituents, 297
immutable, 93
implication (->) operator, 368
in operator, 91
Inaugural Address Corpus, 45
inconsistent, 366
indenting code, 138
independence assumption, 248

naivete of, 249
indexes

counting from zero (0), 12
list, 12–14
mapping dictionary definition to lexeme,

419
speeding up program by using, 163
string, 15, 89, 91
text index created using a stemmer, 107
words containing a given consonant-vowel

pair, 103
inference, 369
information extraction, 261–289

architecture of system, 263
chunking, 264–270
defined, 262
developing and evaluating chunkers, 270–

278
named entity recognition, 281–284
recursion in linguistic structure, 278–281
relation extraction, 284
resources for further reading, 286

information gain, 243
inside, outside, begin tags (see IOB tags)
integer ordinal, finding for character, 95
interpreter

>>> prompt, 2
accessing, 2
using text editor instead of to write

programs, 56
inverted clauses, 348
IOB tags, 269, 286

reading, 270–272
is operator, 145

testing for object identity, 132
ISO 639 language codes, 65
iterative optimization techniques, 251

J
joint classifier models, 231
joint-features (maximum entropy model), 252

K
Kappa coefficient (k), 414
keys, 65, 191

complex, 196
keyword arguments, 153
Kleene closures, 100

L
lambda expressions, 150, 386–390

example, 152
lambda operator (λ), 386
Lancaster stemmer, 107
language codes, 65
language output, generating, 29
language processing, symbol processing

versus, 442
language resources

describing using OLAC metadata, 435–437
LanguageLog (linguistics blog), 35
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latent semantic analysis, 171
Latin-2 character encoding, 94
leaf nodes, 242
left-corner parser, 306
left-recursive, 302
lemmas, 60

lexical relationships between, 71
pairing of synset with a word, 68

lemmatization, 107
example of, 108

length of a text, 7
letter trie, 162
lexical categories, 179
lexical entry, 60
lexical relations, 70
lexical resources

comparative wordlists, 65
pronouncing dictionary, 63–65
Shoebox and Toolbox lexicons, 66
wordlist corpora, 60–63

lexicon, 60
(see also lexical resources)
chunking Toolbox lexicon, 434
defined, 60
validating in Toolbox, 432–435

LGB rule of name resolution, 145
licensed, 350
likelihood ratios, 224
Linear-Chain Conditional Random Field

Models, 233
linguistic objects, mappings from keys to

values, 190
linguistic patterns, modeling, 255
linguistics and NLP-related concepts, resources

for, 34
list comprehensions, 24

for statement in, 63
function invoked in, 64
used as function parameters, 55

lists, 10
appending item to, 11
concatenating, using + operator, 11
converting to strings, 116
indexing, 12–14
indexing, dictionaries versus, 189
normalizing and sorting, 86
Python list type, 86
sorted, 14
strings versus, 92

tuples versus, 136
local variables, 58
logic

first-order, 372–385
natural language, semantics, and, 365–368
propositional, 368–371
resources for further reading, 404

logical constants, 372
logical form, 368
logical proofs, 370
loops, 26

looping with conditions, 26
lowercase, converting text to, 45, 107

M
machine learning

application to NLP, web pages for
government challenges, 257

decision trees, 242–245
Maximum Entropy classifiers, 251–254
naive Bayes classifiers, 246–250
packages, 237
resources for further reading, 257
supervised classification, 221–237

machine translation (MT)
limitations of, 30
using NLTK’s babelizer, 30

mapping, 189
Matplotlib package, 168–170
maximal projection, 347
Maximum Entropy classifiers, 251–254
Maximum Entropy Markov Models, 233
Maximum Entropy principle, 253
memoization, 167
meronyms, 70
metadata, 435

OLAC (Open Language Archives
Community), 435

modals, 186
model building, 383
model checking, 379
models

interpretation of sentences of logical
language, 371

of linguistic patterns, 255
representation using set theory, 367
truth-conditional semantics in first-order

logic, 377
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what can be learned from models of
language, 255

modifiers, 314
modules

defined, 59
multimodule programs, 156
structure of Python module, 154

morphological analysis, 213
morphological cues to word category, 211
morphological tagging, 214
morphosyntactic information in tagsets, 212
MSWord, text from, 85
mutable, 93

N
\n newline character in regular expressions,

111
n-gram tagging, 203–208

across sentence boundaries, 208
combining taggers, 205
n-gram tagger as generalization of unigram

tagger, 203
performance limitations, 206
separating training and test data, 203
storing taggers, 206
unigram tagging, 203
unknown words, 206

naive Bayes assumption, 248
naive Bayes classifier, 246–250

developing for gender identification task,
223

double-counting problem, 250
as generative classifier, 254
naivete of independence assumption, 249
non-binary features, 249
underlying probabilistic model, 248
zero counts and smoothing, 248

name resolution, LGB rule for, 145
named arguments, 152
named entities

commonly used types of, 281
relations between, 284

named entity recognition (NER), 281–284
Names Corpus, 61
negative lookahead assertion, 284
NER (see named entity recognition)
nested code blocks, 25
NetworkX package, 170
new words in languages, 212

newlines, 84
matching in regular expressions, 109
printing with print statement, 90
resources for further information, 122

non-logical constants, 372
non-standard words, 108
normalizing text, 107–108

lemmatization, 108
using stemmers, 107

noun phrase (NP), 297
noun phrase (NP) chunking, 264

regular expression–based NP chunker, 267
using unigram tagger, 272

noun phrases, quantified, 390
nouns

categorizing and tagging, 184
program to find most frequent noun tags,

187
syntactic agreement, 329

numerically intense algorithms in Python,
increasing efficiency of, 257

NumPy package, 171

O
object references, 130

copying, 132
objective function, 114
objects, finding data type for, 86
OLAC metadata, 74, 435

definition of metadata, 435
Open Language Archives Community, 435

Open Archives Initiative (OAI), 435
open class, 212
open formula, 374
Open Language Archives Community

(OLAC), 435
operators, 369

(see also names of individual operators)
addition and multiplication, 88
Boolean, 368
numerical comparison, 22
scope of, 157
word comparison, 23

or operator, 24
orthography, 328
out-of-vocabulary items, 206
overfitting, 225, 245
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P
packages, 59
parameters, 57

call-by-value parameter passing, 144
checking types of, 146
defined, 9
defining for functions, 143

parent nodes, 279
parsing, 318

(see also grammars)
with context-free grammar

left-corner parser, 306
recursive descent parsing, 303
shift-reduce parsing, 304
well-formed substring tables, 307–310

Earley chart parser, parsing feature-based
grammars, 334

parsers, 302
projective dependency parser, 311

part-of-speech tagging (see POS tagging)
partial information, 341
parts of speech, 179
PDF text, 85
Penn Treebank Corpus, 51, 315
personal pronouns, 186
philosophical divides in contemporary NLP,

444
phonetics

computer-readable phonetic alphabet
(SAMPA), 137

phones, 63
resources for further information, 74

phrasal level, 347
phrasal projections, 347
pipeline for NLP, 31
pixel images, 169
plotting functions, Matplotlib, 168
Porter stemmer, 107
POS (part-of-speech) tagging, 179, 208, 229

(see also tagging)
differences in POS tagsets, 213
examining word context, 230
finding IOB chunk tag for word's POS tag,

272
in information retrieval, 263
morphology in POS tagsets, 212
resources for further reading, 214
simplified tagset, 183
storing POS tags in tagged corpora, 181

tagged data from four Indian languages,
182

unsimplifed tags, 187
use in noun phrase chunking, 265
using consecutive classifier, 231

pre-sorting, 160
precision, evaluating search tasks for, 239
precision/recall trade-off in information

retrieval, 205
predicates (first-order logic), 372
prepositional phrase (PP), 297
prepositional phrase attachment ambiguity,

300
Prepositional Phrase Attachment Corpus, 316
prepositions, 186
present participles, 211
Principle of Compositionality, 385, 443
print statements, 89

newline at end, 90
string formats and, 117

prior probability, 246
probabilistic context-free grammar (PCFG),

320
probabilistic model, naive Bayes classifier, 248
probabilistic parsing, 318
procedural style, 139
processing pipeline (NLP), 86
productions in grammars, 293

rules for writing CFGs for parsing in
NLTK, 301

program development, 154–160
debugging techniques, 158
defensive programming, 159
multimodule programs, 156
Python module structure, 154
sources of error, 156

programming style, 139
programs, writing, 129–177

advanced features of functions, 149–154
algorithm design, 160–167
assignment, 130
conditionals, 133
equality, 132
functions, 142–149
resources for further reading, 173
sequences, 133–138
style considerations, 138–142

legitimate uses for counters, 141
procedural versus declarative style, 139
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Python coding style, 138
summary of important points, 172
using Python libraries, 167–172

Project Gutenberg, 80
projections, 347
projective, 311
pronouncing dictionary, 63–65
pronouns

anaphoric antecedents, 397
interpreting in first-order logic, 373
resolving in discourse processing, 401

proof goal, 376
properties of linguistic categories, 331
propositional logic, 368–371

Boolean operators, 368
propositional symbols, 368
pruning decision nodes, 245
punctuation, classifier for, 233
Python

carriage return and linefeed characters, 80
codecs module, 95
dictionary data structure, 65
dictionary methods, summary of, 197
documentation, 173
documentation and information resources,

34
ElementTree module, 427
errors in understanding semantics of, 157
finding type of any object, 86
getting started, 2
increasing efficiency of numerically intense

algorithms, 257
libraries, 167–172

CSV, 170
Matplotlib, 168–170
NetworkX, 170
NumPy, 171
other, 172

reference materials, 122
style guide for Python code, 138
textwrap module, 120

Python Package Index, 172

Q
quality control in corpus creation, 413
quantification

first-order logic, 373, 380
quantified noun phrases, 390
scope ambiguity, 381, 394–397

quantified formulas, interpretation of, 380
questions, answering, 29
quotation marks in strings, 87

R
random text

generating in various styles, 6
generating using bigrams, 55

raster (pixel) images, 169
raw strings, 101
raw text, processing, 79–128

capturing user input, 85
detecting word patterns with regular

expressions, 97–101
formatting from lists to strings, 116–121
HTML documents, 82
NLP pipeline, 86
normalizing text, 107–108
reading local files, 84
regular expressions for tokenizing text, 109–

112
resources for further reading, 122
RSS feeds, 83
search engine results, 82
segmentation, 112–116
strings, lowest level text processing, 87–93
summary of important points, 121
text from web and from disk, 80
text in binary formats, 85
useful applications of regular expressions,

102–106
using Unicode, 93–97

raw( ) function, 41
re module, 101, 110
recall, evaluating search tasks for, 240
Recognizing Textual Entailment (RTE), 32,

235
exploiting word context, 230

records, 136
recursion, 161

function to compute Sanskrit meter
(example), 165

in linguistic structure, 278–281
tree traversal, 280
trees, 279–280

performance and, 163
in syntactic structure, 301

recursive, 301
recursive descent parsing, 303
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reentrancy, 340
references (see object references)
regression testing framework, 160
regular expressions, 97–106

character class and other symbols, 110
chunker based on, evaluating, 272
extracting word pieces, 102
finding word stems, 104
matching initial and final vowel sequences

and all consonants, 102
metacharacters, 101
metacharacters, summary of, 101
noun phrase (NP) chunker based on, 265
ranges and closures, 99
resources for further information, 122
searching tokenized text, 105
symbols, 110
tagger, 199
tokenizing text, 109–112
use in PlaintextCorpusReader, 51
using basic metacharacters, 98
using for relation extraction, 284
using with conditional frequency

distributions, 103
relation detection, 263
relation extraction, 284
relational operators, 22
reserved words, 15
return statements, 144
return value, 57
reusing code, 56–59

creating programs using a text editor, 56
functions, 57
modules, 59

Reuters Corpus, 44
root element (XML), 427
root hypernyms, 70
root node, 242
root synsets, 69
Rotokas language, 66

extracting all consonant-vowel sequences
from words, 103

Toolbox file containing lexicon, 429
RSS feeds, 83

feedparser library, 172
RTE (Recognizing Textual Entailment), 32,

235
exploiting word context, 230

runtime errors, 13

S
\s whitespace characters in regular

expressions, 111
\S nonwhitespace characters in regular

expressions, 111
SAMPA computer-readable phonetic alphabet,

137
Sanskrit meter, computing, 165
satisfies, 379
scope of quantifiers, 381
scope of variables, 145
searches

binary search, 160
evaluating for precision and recall, 239
processing search engine results, 82
using POS tags, 187

segmentation, 112–116
in chunking and tokenization, 264
sentence, 112
word, 113–116

semantic cues to word category, 211
semantic interpretations, NLTK functions for,

393
semantic role labeling, 29
semantics

natural language, logic and, 365–368
natural language, resources for

information, 403
semantics of English sentences, 385–397

quantifier ambiguity, 394–397
transitive verbs, 391–394
⋏-calculus, 386–390

SemCor tagging, 214
sentence boundaries, tagging across, 208
sentence segmentation, 112, 233

in chunking, 264
in information retrieval process, 263

sentence structure, analyzing, 291–326
context-free grammar, 298–302
dependencies and dependency grammar,

310–315
grammar development, 315–321
grammatical dilemmas, 292
parsing with context-free grammar, 302–

310
resources for further reading, 322
summary of important points, 321
syntax, 295–298

sents( ) function, 41
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sequence classification, 231–233
other methods, 233
POS tagging with consecutive classifier,

232
sequence iteration, 134
sequences, 133–138

combining different sequence types, 136
converting between sequence types, 135
operations on sequence types, 134
processing using generator expressions,

137
strings and lists as, 92

shift operation, 305
shift-reduce parsing, 304
Shoebox, 66, 412
sibling nodes, 279
signature, 373
similarity, semantic, 71
Sinica Treebank Corpus, 316
slash categories, 350
slicing

lists, 12, 13
strings, 15, 90

smoothing, 249
space-time trade-offs in algorihm design, 163
spaces, matching in regular expressions, 109
Speech Synthesis Markup Language (W3C

SSML), 214
spellcheckers, Words Corpus used by, 60
spoken dialogue systems, 31
spreadsheets, obtaining data from, 418
SQL (Structured Query Language), 362

translating English sentence to, 362
stack trace, 158
standards for linguistic data creation, 421
standoff annotation, 415, 421
start symbol for grammars, 298, 334
startswith( ) function, 45
stemming, 107

NLTK HOWTO, 122
stemmers, 107
using regular expressions, 104
using stem( ) fuinction, 105

stopwords, 60
stress (in pronunciation), 64
string formatting expressions, 117
string literals, Unicode string literal in Python,

95
strings, 15, 87–93

accessing individual characters, 89
accessing substrings, 90
basic operations with, 87–89
converting lists to, 116
formats, 117–118
formatting

lining things up, 118
tabulating data, 119

immutability of, 93
lists versus, 92
methods, 92
more operations on, useful string methods,

92
printing, 89
Python’s str data type, 86
regular expressions as, 101
tokenizing, 86

structurally ambiguous sentences, 300
structure sharing, 340

interaction with unification, 343
structured data, 261
style guide for Python code, 138
stylistics, 43
subcategories of verbs, 314
subcategorization, 344–347
substrings (WFST), 307
substrings, accessing, 90
subsumes, 341
subsumption, 341–344
suffixes, classifier for, 229
supervised classification, 222–237

choosing features, 224–227
documents, 227
exploiting context, 230
gender identification, 222
identifying dialogue act types, 235
part-of-speech tagging, 229
Recognizing Textual Entailment (RTE),

235
scaling up to large datasets, 237
sentence segmentation, 233
sequence classification, 231–233

Swadesh wordlists, 65
symbol processing, language processing

versus, 442
synonyms, 67
synsets, 67

semantic similarity, 71
in WordNet concept hierarchy, 69
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syntactic agreement, 329–331
syntactic cues to word category, 211
syntactic structure, recursion in, 301
syntax, 295–298
syntax errors, 3

T
\t tab character in regular expressions, 111
T9 system, entering text on mobile phones, 99
tabs

avoiding in code indentation, 138
matching in regular expressions, 109

tag patterns, 266
matching, precedence in, 267

tagging, 179–219
adjectives and adverbs, 186
combining taggers, 205
default tagger, 198
evaluating tagger performance, 201
exploring tagged corpora, 187–189
lookup tagger, 200–201
mapping words to tags using Python

dictionaries, 189–198
nouns, 184
part-of-speech (POS) tagging, 229
performance limitations, 206
reading tagged corpora, 181
regular expression tagger, 199
representing tagged tokens, 181
resources for further reading, 214
across sentence boundaries, 208
separating training and testing data, 203
simplified part-of-speech tagset, 183
storing taggers, 206
transformation-based, 208–210
unigram tagging, 202
unknown words, 206
unsimplified POS tags, 187
using POS (part-of-speech) tagger, 179
verbs, 185

tags
in feature structures, 340
IOB tags representing chunk structures,

269
XML, 425

tagsets, 179
morphosyntactic information in POS

tagsets, 212
simplified POS tagset, 183

terms (first-order logic), 372
test sets, 44, 223

choosing for classification models, 238
testing classifier for document classification,

228
text, 1

computing statistics from, 16–22
counting vocabulary, 7–10
entering on mobile phones (T9 system), 99
as lists of words, 10–16
searching, 4–7

examining common contexts, 5
text alignment, 30
text editor, creating programs with, 56
textonyms, 99
textual entailment, 32
textwrap module, 120
theorem proving in first order logic, 375
timeit module, 164
TIMIT Corpus, 407–412
tokenization, 80

chunking and, 264
in information retrieval, 263
issues with, 111
list produced from tokenizing string, 86
regular expressions for, 109–112
representing tagged tokens, 181
segmentation and, 112
with Unicode strings as input and output,

97
tokenized text, searching, 105
tokens, 8
Toolbox, 66, 412, 431–435

accessing data from XML, using
ElementTree, 429

adding field to each entry, 431
resources for further reading, 438
validating lexicon, 432–435

tools for creation, publication, and use of
linguistic data, 421

top-down approach to dynamic programming,
167

top-down parsing, 304
total likelihood, 251
training

classifier, 223
classifier for document classification, 228
classifier-based chunkers, 274–278
taggers, 203
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unigram chunker using CoNLL 2000
Chunking Corpus, 273

training sets, 223, 225
transformation-based tagging, 208–210
transitive verbs, 314, 391–394
translations

comparative wordlists, 66
machine (see machine translation)

treebanks, 315–317
trees, 279–281

representing chunks, 270
traversal of, 280

trie, 162
trigram taggers, 204
truth conditions, 368
truth-conditional semantics in first-order logic,

377
tuples, 133

lists versus, 136
parentheses with, 134
representing tagged tokens, 181

Turing Test, 31, 368
type-raising, 390
type-token distinction, 8
TypeError, 157
types, 8, 86

(see also data types)
types (first-order logic), 373

U
unary predicate, 372
unbounded dependency constructions, 349–

353
defined, 350

underspecified, 333
Unicode, 93–97

decoding and encoding, 94
definition and description of, 94
extracting gfrom files, 94
resources for further information, 122
using your local encoding in Python, 97

unicodedata module, 96
unification, 342–344
unigram taggers

confusion matrix for, 240
noun phrase chunking with, 272

unigram tagging, 202
lookup tagger (example), 200
separating training and test data, 203

unique beginners, 69
Universal Feed Parser, 83
universal quantifier, 374
unknown words, tagging, 206
updating dictionary incrementally, 195
US Presidential Inaugural Addresses Corpus,

45
user input, capturing, 85

V
valencies, 313
validity of arguments, 369
validity of XML documents, 426
valuation, 377

examining quantifier scope ambiguity, 381
Mace4 model converted to, 384

valuation function, 377
values, 191

complex, 196
variables

arguments of predicates in first-order logic,
373

assignment, 378
bound by quantifiers in first-order logic,

373
defining, 14
local, 58
naming, 15
relabeling bound variables, 389
satisfaction of, using to interpret quantified

formulas, 380
scope of, 145

verb phrase (VP), 297
verbs

agreement paradigm for English regular
verbs, 329

auxiliary, 336
auxiliary verbs and inversion of subject and

verb, 348
categorizing and tagging, 185
examining for dependency grammar, 312
head of sentence and dependencies, 310
present participle, 211
transitive, 391–394

W
\W non-word characters in Python, 110, 111
\w word characters in Python, 110, 111
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web text, 42
Web, obtaining data from, 416
websites, obtaining corpora from, 416
weighted grammars, 318–321

probabilistic context-free grammar (PCFG),
320

well-formed (XML), 425
well-formed formulas, 368
well-formed substring tables (WFST), 307–

310
whitespace

regular expression characters for, 109
tokenizing text on, 109

wildcard symbol (.), 98
windowdiff scorer, 414
word classes, 179
word comparison operators, 23
word occurrence, counting in text, 8
word offset, 45
word processor files, obtaining data from, 417
word segmentation, 113–116
word sense disambiguation, 28
word sequences, 7
wordlist corpora, 60–63
WordNet, 67–73

concept hierarchy, 69
lemmatizer, 108
more lexical relations, 70
semantic similarity, 71
visualization of hypernym hierarchy using

Matplotlib and NetworkX, 170
Words Corpus, 60
words( ) function, 40
wrapping text, 120

X
XML, 425–431

ElementTree interface, 427–429
formatting entries, 430
representation of lexical entry from chunk

parsing Toolbox record, 434
resources for further reading, 438
role of, in using to represent linguistic

structures, 426
using ElementTree to access Toolbox data,

429
using for linguistic structures, 425
validity of documents, 426

Z
zero counts (naive Bayes classifier), 249
zero projection, 347
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Even though it has been protected since the 1930s, the right whale is still the most
endangered of all the great whales.

The large and bulky right whale is easily distinguished from other whales by the calluses
on its head. It has a broad back without a dorsal fin and a long arching mouth that



begins above the eye. Its body is black, except for a white patch on its belly. Wounds
and scars may appear bright orange, often becoming infested with whale lice or
cyamids. The calluses—which are also found near the blowholes, above the eyes, and
on the chin, and upper lip—are black or gray. It has large flippers that are shaped like
paddles, and a distinctive V-shaped blow, caused by the widely spaced blowholes on
the top of its head, which rises to 16 feet above the ocean’s surface.

The right whale feeds on planktonic organisms, including shrimp-like krill and cope-
pods. As baleen whales, they have a series of 225–250 fringed overlapping plates hang-
ing from each side of the upper jaw, where teeth would otherwise be located. The plates
are black and can be as long as 7.2 feet. Right whales are “grazers of the sea,” often
swimming slowly with their mouths open. As water flows into the mouth and through
the baleen, prey is trapped near the tongue.

Because females are not sexually mature until 10 years of age and they give birth to a
single calf after a year-long pregnancy, populations grow slowly. The young right whale
stays with its mother for one year.

Right whales are found worldwide but in very small numbers. A right whale is com-
monly found alone or in small groups of 1 to 3, but when courting, they may form
groups of up to 30. Like most baleen whales, they are seasonally migratory. They inhabit
colder waters for feeding and then migrate to warmer waters for breeding and calving.
Although they may move far out to sea during feeding seasons, right whales give birth
in coastal areas. Interestingly, many of the females do not return to these coastal breed-
ing areas every year, but visit the area only in calving years. Where they go in other
years remains a mystery.

The right whale’s only predators are orcas and humans. When danger lurks, a group
of right whales may come together in a circle, with their tails pointing outward, to deter
a predator. This defense is not always successful and calves are occasionally separated
from their mother and killed.

Right whales are among the slowest swimming whales, although they may reach speeds
up to 10 mph in short spurts. They can dive to at least 1,000 feet and can stay submerged
for up to 40 minutes. The right whale is extremely endangered, even after years of
protected status. Only in the past 15 years is there evidence of a population recovery
in the Southern Hemisphere, and it is still not known if the right whale will survive at
all in the Northern Hemisphere. Although not presently hunted, current conservation
problems include collisions with ships, conflicts with fishing activities, habitat de-
struction, oil drilling, and possible competition from other whale species. Right whales
have no teeth, so ear bones and, in some cases, eye lenses can be used to estimate the
age of a right whale at death. It is believed that right whales live at least 50 years, but
there is little data on their longevity.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.




	Natural Language Processing with Python
	Table of Contents
	Preface
	Audience
	Emphasis
	What You Will Learn
	Organization
	Why Python?
	Software Requirements
	Natural Language Toolkit (NLTK)
	For Instructors
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Royalties

	Chapter 1. Language Processing and Python
	1.1  Computing with Language: Texts and Words
	Getting Started with Python
	Getting Started with NLTK
	Searching Text
	Counting Vocabulary

	1.2  A Closer Look at Python: Texts as Lists of Words
	Lists
	Indexing Lists
	Variables
	Strings

	1.3  Computing with Language: Simple Statistics
	Frequency Distributions
	Fine-Grained Selection of Words
	Collocations and Bigrams
	Counting Other Things

	1.4  Back to Python: Making Decisions and Taking Control
	Conditionals
	Operating on Every Element
	Nested Code Blocks
	Looping with Conditions

	1.5  Automatic Natural Language Understanding
	Word Sense Disambiguation
	Pronoun Resolution
	Generating Language Output
	Machine Translation
	Spoken Dialogue Systems
	Textual Entailment
	Limitations of NLP

	1.6  Summary
	1.7  Further Reading
	1.8  Exercises

	Chapter 2. Accessing Text Corpora and Lexical
  Resources
	2.1  Accessing Text Corpora
	Gutenberg Corpus
	Web and Chat Text
	Brown Corpus
	Reuters Corpus
	Inaugural Address Corpus
	Annotated Text Corpora
	Corpora in Other Languages
	Text Corpus Structure
	Loading Your Own Corpus

	2.2  Conditional Frequency Distributions
	Conditions and Events
	Counting Words by Genre
	Plotting and Tabulating Distributions
	Generating Random Text with Bigrams

	2.3  More Python: Reusing Code
	Creating Programs with a Text Editor
	Functions
	Modules

	2.4  Lexical Resources
	Wordlist Corpora
	A Pronouncing Dictionary
	Comparative Wordlists
	Shoebox and Toolbox Lexicons

	2.5  WordNet
	Senses and Synonyms
	The WordNet Hierarchy
	More Lexical Relations
	Semantic Similarity

	2.6  Summary
	2.7  Further Reading
	2.8  Exercises

	Chapter 3. Processing Raw Text
	3.1  Accessing Text from the Web and from Disk
	Electronic Books
	Dealing with HTML
	Processing Search Engine Results
	Processing RSS Feeds
	Reading Local Files
	Extracting Text from PDF, MSWord, and Other Binary Formats
	Capturing User Input
	The NLP Pipeline

	3.2  Strings: Text Processing at the Lowest Level
	Basic Operations with Strings
	Printing Strings
	Accessing Individual Characters
	Accessing Substrings
	More Operations on Strings
	The Difference Between Lists and Strings

	3.3  Text Processing with Unicode
	What Is Unicode?
	Extracting Encoded Text from Files
	Using Your Local Encoding in Python

	3.4  Regular Expressions for Detecting Word Patterns
	Using Basic Metacharacters
	Ranges and Closures

	3.5  Useful Applications of Regular Expressions
	Extracting Word Pieces
	Doing More with Word Pieces
	Finding Word Stems
	Searching Tokenized Text

	3.6  Normalizing Text
	Stemmers
	Lemmatization

	3.7  Regular Expressions for Tokenizing Text
	Simple Approaches to Tokenization
	NLTK’s Regular Expression Tokenizer
	Further Issues with Tokenization

	3.8  Segmentation
	Sentence Segmentation
	Word Segmentation

	3.9  Formatting: From Lists to Strings
	From Lists to Strings
	Strings and Formats
	Lining Things Up
	Writing Results to a File
	Text Wrapping

	3.10  Summary
	3.11  Further Reading
	3.12  Exercises

	Chapter 4. Writing Structured Programs
	4.1  Back to the Basics
	Assignment
	Equality
	Conditionals

	4.2  Sequences
	Operating on Sequence Types
	Combining Different Sequence Types
	Generator Expressions

	4.3  Questions of Style
	Python Coding Style
	Procedural Versus Declarative Style
	Some Legitimate Uses for Counters

	4.4  Functions: The Foundation of Structured Programming
	Function Inputs and Outputs
	Parameter Passing
	Variable Scope
	Checking Parameter Types
	Functional Decomposition
	Documenting Functions

	4.5  Doing More with Functions
	Functions As Arguments
	Accumulative Functions
	Higher-Order Functions
	Named Arguments

	4.6  Program Development
	Structure of a Python Module
	Multimodule Programs
	Sources of Error
	Debugging Techniques
	Defensive Programming

	4.7  Algorithm Design
	Recursion
	Space-Time Trade-offs
	Dynamic Programming

	4.8  A Sample of Python Libraries
	Matplotlib
	NetworkX
	csv
	NumPy
	Other Python Libraries

	4.9  Summary
	4.10  Further Reading
	4.11  Exercises

	Chapter 5. Categorizing and Tagging Words
	5.1  Using a Tagger
	5.2  Tagged Corpora
	Representing Tagged Tokens
	Reading Tagged Corpora
	A Simplified Part-of-Speech Tagset
	Nouns
	Verbs
	Adjectives and Adverbs
	Unsimplified Tags
	Exploring Tagged Corpora

	5.3  Mapping Words to Properties Using Python Dictionaries
	Indexing Lists Versus Dictionaries
	Dictionaries in Python
	Defining Dictionaries
	Default Dictionaries
	Incrementally Updating a Dictionary
	Complex Keys and Values
	Inverting a Dictionary

	5.4  Automatic Tagging
	The Default Tagger
	The Regular Expression Tagger
	The Lookup Tagger
	Evaluation

	5.5  N-Gram Tagging
	Unigram Tagging
	Separating the Training and Testing Data
	General N-Gram Tagging
	Combining Taggers
	Tagging Unknown Words
	Storing Taggers
	Performance Limitations
	Tagging Across Sentence Boundaries

	5.6  Transformation-Based Tagging
	5.7  How to Determine the Category of a Word
	Morphological Clues
	Syntactic Clues
	Semantic Clues
	New Words
	Morphology in Part-of-Speech Tagsets

	5.8  Summary
	5.9  Further Reading
	5.10  Exercises

	Chapter 6. Learning to Classify Text
	6.1  Supervised Classification
	Gender Identification
	Choosing the Right Features
	Document Classification
	Part-of-Speech Tagging
	Exploiting Context
	Sequence Classification
	Other Methods for Sequence Classification

	6.2  Further Examples of Supervised Classification
	Sentence Segmentation
	Identifying Dialogue Act Types
	Recognizing Textual Entailment
	Scaling Up to Large Datasets

	6.3  Evaluation
	The Test Set
	Accuracy
	Precision and Recall
	Confusion Matrices
	Cross-Validation

	6.4  Decision Trees
	Entropy and Information Gain

	6.5  Naive Bayes Classifiers
	Underlying Probabilistic Model
	Zero Counts and Smoothing
	Non-Binary Features
	The Naivete of Independence
	The Cause of Double-Counting

	6.6  Maximum Entropy Classifiers
	The Maximum Entropy Model
	Maximizing Entropy
	Generative Versus Conditional Classifiers

	6.7  Modeling Linguistic Patterns
	What Do Models Tell Us?

	6.8  Summary
	6.9  Further Reading
	6.10  Exercises

	Chapter 7. Extracting Information from Text
	7.1  Information Extraction
	Information Extraction Architecture

	7.2  Chunking
	Noun Phrase Chunking
	Tag Patterns
	Chunking with Regular Expressions
	Exploring Text Corpora
	Chinking
	Representing Chunks: Tags Versus Trees

	7.3  Developing and Evaluating Chunkers
	Reading IOB Format and the CoNLL-2000 Chunking Corpus
	Simple Evaluation and Baselines
	Training Classifier-Based Chunkers

	7.4  Recursion in Linguistic Structure
	Building Nested Structure with Cascaded Chunkers
	Trees
	Tree Traversal

	7.5  Named Entity Recognition
	7.6  Relation Extraction
	7.7  Summary
	7.8  Further Reading
	7.9  Exercises

	Chapter 8. Analyzing Sentence Structure
	8.1  Some Grammatical Dilemmas
	Linguistic Data and Unlimited Possibilities
	Ubiquitous Ambiguity

	8.2  What’s the Use of Syntax?
	Beyond n-grams

	8.3  Context-Free Grammar
	A Simple Grammar
	Writing Your Own Grammars
	Recursion in Syntactic Structure

	8.4  Parsing with Context-Free Grammar
	Recursive Descent Parsing
	Shift-Reduce Parsing
	The Left-Corner Parser
	Well-Formed Substring Tables

	8.5  Dependencies and Dependency Grammar
	Valency and the Lexicon
	Scaling Up

	8.6  Grammar Development
	Treebanks and Grammars
	Pernicious Ambiguity
	Weighted Grammar

	8.7  Summary
	8.8  Further Reading
	8.9  Exercises

	Chapter 9. Building Feature-Based Grammars
	9.1  Grammatical Features
	Syntactic Agreement
	Using Attributes and Constraints
	Terminology

	9.2  Processing Feature Structures
	Subsumption and Unification

	9.3  Extending a Feature-Based Grammar
	Subcategorization
	Heads Revisited
	Auxiliary Verbs and Inversion
	Unbounded Dependency Constructions
	Case and Gender in German

	9.4  Summary
	9.5  Further Reading
	9.6  Exercises

	Chapter 10. Analyzing the Meaning of Sentences
	10.1  Natural Language Understanding
	Querying a Database
	Natural Language, Semantics, and Logic

	10.2  Propositional Logic
	10.3  First-Order Logic
	Syntax
	First-Order Theorem Proving
	Summarizing the Language of First-Order Logic
	Truth in Model
	Individual Variables and Assignments
	Quantification
	Quantifier Scope Ambiguity
	Model Building

	10.4  The Semantics of English Sentences
	Compositional Semantics in Feature-Based Grammar
	The λ-Calculus
	Quantified NPs
	Transitive Verbs
	Quantifier Ambiguity Revisited

	10.5  Discourse Semantics
	Discourse Representation Theory
	Discourse Processing

	10.6  Summary
	10.7  Further Reading
	10.8  Exercises

	Chapter 11. Managing Linguistic Data
	11.1  Corpus Structure: A Case Study
	The Structure of TIMIT
	Notable Design Features
	Fundamental Data Types

	11.2  The Life Cycle of a Corpus
	Three Corpus Creation Scenarios
	Quality Control
	Curation Versus Evolution

	11.3  Acquiring Data
	Obtaining Data from the Web
	Obtaining Data from Word Processor Files
	Obtaining Data from Spreadsheets and Databases
	Converting Data Formats
	Deciding Which Layers of Annotation to Include
	Standards and Tools
	Special Considerations When Working with Endangered Languages

	11.4  Working with XML
	Using XML for Linguistic Structures
	The Role of XML
	The ElementTree Interface
	Using ElementTree for Accessing Toolbox Data
	Formatting Entries

	11.5  Working with Toolbox Data
	Adding a Field to Each Entry
	Validating a Toolbox Lexicon

	11.6  Describing Language Resources Using OLAC Metadata
	What Is Metadata?
	OLAC: Open Language Archives Community

	11.7  Summary
	11.8  Further Reading
	11.9  Exercises

	Afterword: The Language Challenge
	Language Processing Versus Symbol Processing
	Contemporary Philosophical Divides
	NLTK Roadmap
	Envoi...

	Bibliography
	NLTK Index
	General Index


